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Multi-hazard susceptibility prediction is an important component of disasters risk management plan. An
effective multi-hazard risk mitigation strategy includes assessing individual hazards as well as their
interactions. However, with the rapid development of artificial intelligence technology, multi-hazard sus-
ceptibility prediction techniques based on machine learning has encountered a huge bottleneck. In order
to effectively solve this problem, this study proposes a multi-hazard susceptibility mapping framework
using the classical deep learning algorithm of Convolutional Neural Networks (CNN). First, we use histor-
ical flash flood, debris flow and landslide locations based on Google Earth images, extensive field surveys,
topography, hydrology, and environmental data sets to train and validate the proposed CNN method.
Next, the proposed CNN method is assessed in comparison to conventional logistic regression and
k-nearest neighbor methods using several objective criteria, i.e., coefficient of determination, overall
accuracy, mean absolute error and the root mean square error. Experimental results show that the
CNNmethod outperforms the conventional machine learning algorithms in predicting probability of flash
floods, debris flows and landslides. Finally, the susceptibility maps of the three hazards based on CNN are
combined to create a multi-hazard susceptibility map. It can be observed from the map that 62.43% of the
study area are prone to hazards, while 37.57% of the study area are harmless. In hazard-prone areas,
16.14%, 4.94% and 30.66% of the study area are susceptible to flash floods, debris flows and landslides,
respectively. In terms of concurrent hazards, 0.28%, 7.11% and 3.13% of the study area are susceptible
to the joint occurrence of flash floods and debris flow, debris flow and landslides, and flash floods and
landslides, respectively, whereas, 0.18% of the study area is subject to all the three hazards. The results
of this study can benefit engineers, disaster managers and local government officials involved in sustain-
able land management and disaster risk mitigation.

� 2022 China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Environmental hazards are usually studied separately. Many
researchers around the world focus on single hazards, such as land-
slides (Wang et al., 2020a; Habumugisha et al.,2022; Youssef
et al.,2022a), floods (Hosseini et al., 2021; Rafiei-Sardooi et al.,
2021), debris flows (Marra et al., 2017; Abuzied and Pradhan,
2021), forest fires (Abedi Gheshlaghi et al., 2021; Feizizadeh
et al., 2022), and glacier avalanches (Choubin et al., 2019;
Yariyan et al.,2022). However, many locations are susceptible to
multiple hazards, which may occur simultaneously or as cascading
events. Mitigating one hazard may exacerbate the frequency,
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duration, distribution, or intensity of another hazard, especially in
the mountainous regions (Kappes et al., 2012; Pourghasemi et al.,
2020; Pouyan et al., 2021).

Pakistan is a disaster-prone country in South Asia, having suf-
fered about $18 billion in damage and losses over the past few dec-
ades (Ullah et al., 2020; Ali et al., 2021). Flash floods, debris flows,
and landslides are the most prevalent natural disasters in moun-
tainous Karakoram Hindukush in Pakistan (Wasson, 1978; Shaw,
2015; Ali et al., 2021; Hussain et al., 2021). As a disaster-prone
country with high exposure to hydrometeorological and geological
disasters damages caused by floods, landslides, and debris flows
are increasing due to climate change and uncontrolled develop-
ment (Ullah and Zhang, 2020). Between 1970 and 2010, more than
90,000 people have died due to disasters (Ullah et al., 2020; Ullah
and Zhang, 2020). Disaster-related losses have calculated more
than $20 billion, including $10 billion in losses from the 2010 flood
and $5 billion from the 2005 earthquake and earthquake-induced
landslides (Downton et al., 2005; Bronkhorst, 2012; Khan et al.,
2021). During the monsoon season (July–September), heavy rain-
fall triggered flash floods, landslides, and debris flows in the
Karakorum Hindukush region of Pakistan, resulting in casualties
and property losses. Together, these risks cause serious damage
to the road network and unfavorable environmental conditions,
and endanger human health and well-being (Pourghasemi et al.,
2019; Yousefi et al., 2020). Although it is challenging to prevent
debris flows, flash floods and landslides, the distribution map of
their occurrence can be drawn to identify probabilities and poten-
tial risks (Skilodimou et al., 2019; Liu et al., 2020; Yousefi et al.,
2020; Azareh et al., 2021; Li et al., 2021). In this regard, multi-
hazard probability mapping is a key step to determine the likeli-
hood of potential hazards. Multi-hazard probability mapping is
the first step of comprehensive risk assessment and quantification
(Pourghasemi et al., 2019; Rahmati et al., 2019). In addition, prob-
ability mapping can help disaster managers and other authorities
better prepare for and mitigate losses (Corominas et al., 2014;
Pourghasemi et al., 2019).

The United Nations (UN) has adopted the term of multi-hazard
in the framework of sustainable development goals and agenda 21
to reduce disaster risk (UNEP, 1992; Pourghasemi et al., 2020).
Multi-hazard risk assessment is inseparable from the long-term
sustainable development of society (Uitto and Shaw, 2016). Glob-
ally, the scale and frequency of multi-hazard damage are increas-
ing (Lombardo et al., 2020). Policymakers and engineers require
knowledge on multi-hazard risk zones for site selection to support
socio-economic development and sustainable management of nat-
ural resources (Bathrellos et al., 2017).

Although multi-hazard research has become more and more
common in recent decades (Pourghasemi and Kerle, 2016;
Skilodimou et al., 2019; Sanam et al., 2020), there are still chal-
lenges facing scientists in the 21st century (UN, 2002). Various
methods have been used to assess the probability of multi-
hazards using GIS and RS technologies (Ali et al., 2021; Rahman
et al., 2021; Segoni and Caleca, 2021). In addition, multi-criteria
decision-making (MCDM), machine learning (ML), and hybrid
machine learning approaches are also used to draw multi-hazard
maps in various parts of the world (Furlan et al., 2018; Mafi-
Gholami et al., 2019; Skilodimou et al., 2019; Aksha et al., 2020;
Cao et al., 2020; Lombardo et al., 2020; Mosavi et al., 2020;
Nachappa et al., 2020; Pourghasemi et al., 2020; Yanar et al.,
2020; Pouyan et al., 2021; Rahman et al., 2021). ML methods are
more suitable for finding data relationships between hazard and
causative factors than traditional statistical methods and MCDM
(Huang et al., 2020). However, with rapid advancement in research,
it was found that traditional ML models directly classify the natu-
ral hazard data and fail to recognize hidden relationship that exists
2

in the data, ultimately failing to further improve classification
accuracy (Wang et al., 2019).

To address this problem, another branch of ML known as Deep
Learning (DL) has emerged as one of the best methods because it
can solve the targeted problems more effectively than traditional
ML methods (Wang et al., 2019). Precisely, DL approaches have
advanced dramatically in recent years, particularly in image inter-
pretation (Wang et al., 2020a; Azarafza et al., 2021; Dikshit and
Pradhan, 2021). Besides, these may be useful in understanding
the performance of multi-hazards susceptibility models because
of their more sophisticated algorithmic structure (Dikshit et al.,
2021). However, there is a divergence of opinion regarding the
selection of a suitable method for mapping multi-hazard prone
areas, particularly in data-poor countries like Pakistan. Convolu-
tional Neural Network (CNN) is a popular DL technique which
has demonstrated superior performance in many image processing
tasks (Simard et al., 2003; Wang et al., 2019, 2020a). Compared to
traditional ML algorithms, the CNN framework contains convolu-
tional and subsampling layers. As a result, CNN requires fewer
parameters and allows more efficient mining of latent relation-
ships in data (Yi et al., 2020). Specifically, CNN has achieved out-
standing results in image classification due to convolutional and
subsampling layers, which can effectively extract hidden informa-
tion from an image (Wang et al., 2020a; Yi et al., 2020). In recent
years, CNN has been used for single environmental hazard suscep-
tibility mapping, i.e., floods, landslides, debris flows and forest fire
susceptibility mapping, and has demonstrated higher predictive
capabilities than conventional machine learning algorithms
(Wang et al., 2019, 2020a; Zhang et al., 2019; Chen et al., 2020;
Fang et al., 2020; Youssef et al.,2022a,b). However, DL methods
have not been used to explore the potential of improvements on
multi-hazard susceptibility mapping.

This study aims to provide a regional multi-hazard (flash floods,
debris flows, and landslides) susceptibility prediction framework
based on CNN for the mountainous region district Shangla, eastern
Hindukush, Pakistan. To the best of our knowledge, this is the first
attempt to investigate the feasibility of CNNs with powerful pre-
diction performance for multi-hazard susceptibility prediction in
the study area of eastern Hindukush, Pakistan. To date, only a lim-
ited number of studies has been conducted to investigate multi-
hazards, which is extremely evident in developing countries. The
aim of this study is to address the gap in the literature. Therefore,
it is considered beneficial for multi-hazard susceptibility modeling
to implement the proposed method. Moreover, to evaluate the
effectiveness of our CNN-based framework, we compare it with
conventional LR and KNN models using several statistical mea-
sures. Notably, the proposed method can be used for any environ-
mental hazard, not only the aforementioned three hazards. Thus,
this study introduces a tool for the sustainable management of
emergencies in pre-and-post-multi-hazards scenarios.
2. Study area and available data

2.1. Study area

As shown in Fig. 1, the study area is located in Shangla District,
eastern Hindu Kush region of Pakistan, with an area of about
1586 km2, and in the tropical sub-humid zone (Hussain et al.,
2021). The study area’s altitude ranges from 391 m in the south
to more than 4000 m in the north; the highest peaks are Bera
Charai and Chapere Sar, at 2850 m and 3590 m, respectively. Dur-
ing the summer monsoons, there is heavy rainfall and snowfall at
high altitudes, and the average annual precipitation is between
1200 mm and 1600 mm (Atta-Ur-Rahman and Shaw, 2015;



Fig. 1. Location of the study area.
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Hussain et al., 2021). Geologically, the area consists of rocks of var-
ious ages. The topography is the result of the collision of the Indian
and Eurasian plates. The Hindu Kush Mountains and the Pamirs
form most seismically active intermediate-depth seismic zone in
the world. In addition, the area is composed of rocks of different
ages, including Cretaceous rocks composed of granite and gneiss,
Mesozoic rocks composed of mélange and marble green, Phyl
rocks, Precambrian quartzite phyllite and schist, and Paleozoic
rocks composed of schist and marble facies.

For decades, the study area has suffered from earthquakes,
landslides, debris flows, flash floods, and many other environmen-
tal disasters, causing severe casualties and land degradation. Fig. 2
Fig. 2. Field photos of different hazards. (a) L
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illustrates field photos of landslide, flash flood, and debris flow in
the study area.
2.2. Multi-hazard inventories and causative factors

Hazard inventories are important in susceptibility mapping
(Ullah and Zhang, 2020; Rahman et al., 2021), and in establishing
relationships between a hazard and variables that cause it (Song
et al., 2020). Based on the disaster reports of various government
organizations and forest departments and non-governmental orga-
nizations, three types of hazards were considered in this study:
landslides, flash floods, and debris flow. Flood and debris flow sus-
andslide, (b) flash flood, (c) debris flow.



Table 1
Multi-hazard causative factors for each hazard.

Factors Flash flood Landslide Debris flow

Slope angle U U U

Elevation U U U

Plan curvature U U U

Profile curvature – U U

Geology U U U

Distance to faults – U –
Distance to roads U U U

Distance to streams U U U

SPI U – U

STI U – U

TWI U U U

NDVI – U U

Landcover U U U

Mean annual rainfall U U U

Aspect U U U
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ceptibility assessment is very similar to the landslide susceptibility
mapping (LSM) method. In terms of sampling, two sampling strate-
gies have been widely used. The first method is to draw polygons
from prominent steep slopes, and the second method is point sam-
pling, where the sampling points are recorded at the site of the
landslide occurrence (Dou et al., 2020). Although each sampling
strategy has advantages and disadvantages, the main principle is
that the sampling strategy applied should fit to the study area.

This study established a multi-hazard inventory of three haz-
ards based on NDMA data, interpretation of multi-temporal high-
resolution images from 2000 to 2020 using Google Earth, and field
observations. In the Multi-hazard inventory map, sampling points
typically represent areas affected by historical Multi-hazard
(Pourghasemi et al., 2020). It should be noted that the debris flow
and flood-affected areas were identified as sampling points for FSM
in several previous studies (Pourghasemi et al., 2020; Ullah and
Zhang, 2020; Wang et al., 2020a,b). According to the literature,
the inventory was randomly divided into training and testing data-
sets. Among them, 70% of the data were used to train the model,
and the remaining 30% data were used to verify the results.

According to the existing literature and the environmental char-
acteristics of the study region, we selected 15 causative factors for
analysis shown in Fig. 3 and Table 1, of which 12 were used to
assess flash floods, 14 were used for debris flows and 13 were used
for landslides. All topographic factors, namely elevation, slope, dis-
tance to rivers, aspect, plan and profile curvature, topographic wet-
ness index (TWI), stream power index (SPI), and sediment
Fig. 3. Multi-hazard causative fac
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transportation index (STI), were derived from ALOS digital eleva-
tion model (DEM) data and a brief description of all causative fac-
tors is given below.

2.2.1. Elevation
Elevation is one of the most essential factors in assessing natu-

ral hazards (Aksha et al., 2020; Bui et al., 2020; Chen et al., 2020).
Flood, landslide, and debris flow frequency can all be influenced by
elevation. Flood water often inundates at low elevation, although
tors considered in this study.
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debris flow and landslide risk are minimal at low elevation due to
the gentle slope; nevertheless, susceptibility to debris flow and
landslide is significant at medium and high elevation due to the
gentle slope (Fig. 3a).

2.2.2. Slope
The slope angle significantly impacts on debris flow, flash flood-

ing, and landslides (Wang et al., 2020a,b; Li et al.,2021). Flooding is
common in flat areas due to water inundation, and steep slope
areas are more prone to slope destabilization, resulting in debris
flow and landslides (Fig. 3b).

2.2.3. Profile and plan curvatures
Curvature is used to convey information about the topographi-

cal shape of a region (Oh and Pradhan, 2011; Das, 2019). The pro-
file curvature specified the highest slope, and the plan curvature
defined the contour curvature of a region (Fang et al., 2021)
(Fig. 3c, d).

2.2.4. Distance to streams
Distance to streams is another critical factor in estimating deb-

ris flow, flood and landslide (Khosravi et al., 2016; Chen et al.,
2020; Mandal et al., 2021). Heavy rainfall areas adjacent to rivers
exacerbate flooding due to water accumulation (Das, 2019). Stream
erosion can destabilize the slope and can alter landslide and debris
flow by wetting low low-lying slopes (Chen et al., 2020) (Fig. 3e).

2.2.5. Lithology and distance to faults
Lithological units and distance to faults are essential to define

the debris flows and landslides in each location (Pourghasemi
and Kerle, 2016; Chen et al., 2020; Fang et al., 2021). The litholog-
ical map and fault lines were digitized from the 1:100,000 scale
geological map of Khyber Pakhtunkhwa Province obtained from
the Geological Survey of Pakistan, as shown in (Table 2 and
Fig. 3f, o).

2.2.6. The normalized difference vegetation index (NDVI)
NDVI has been extensively used to assess the degree of vegeta-

tion development on slopes and its impact on runoff, infiltration,
and weathering. Hence, NDVI is always a significant feature to
reflect vegetation characteristics in a landslide, flash flood, and
debris flow susceptibility mapping (Chen et al., 2017; Wang
et al., 2020a; Fang et al., 2021). NDVI was derived from a
sentinel-2 satellite image using the Eq. (1) in ArcGIS v.10.6,

NDVI ¼ B8� B4
B8þ B4

ð1Þ

where B4 is for the red band of the electromagnetic spectrum and
B8 stands for the infrared band (Fig. 3g).

2.2.7. Rainfall
Rainfall is an essential trigger for all three hazards in the study

area, and the summer monsoon has caused landslides, debris flows
Table 2
Geological age and formation of the study area.

Abbreviation Age Unit name

CG Cretaceous Swat and Mansehra G
ISM Mesozoic Indus Suture Melange
KK Cretaceous Kamila amphibolite
MM Mesozoic Kashala, Nikanai ghar
PCB Precambrian Besham and Kotla Com
PCQ Precambrian Tanawal Formation an
PCS Precambrian Korara Complex and G

5

and flash floods in the past few decades. A rainfall map was created
based on the average monthly rainfall of 3-gauge stations located
in the study region from 1981 to 2016 using the inverse distance
weighted interpolation in ArcGIS 10.6 (Ullah and Zhang, 2020)
(Fig. 3h).

2.2.8. Distance to roads
The distance to roads significantly impacts natural hazards in

mountainous areas (Pourghasemi et al., 2019). Road construction
alters the slope conditions in mountainous regions, which may
affect debris flow and landslide susceptibility (Pourghasemi and
Kerle, 2016; Pouyan et al., 2021). Distance to road was calculated
from road network shapefile using Euclidean distance tool ArcGIS
v.10.6 (Fig. 3i).

2.2.9. Stream power index (SPI)
SPI calculates the erosive power of groundwater based on an

anticipated discharge, which causes toe erosion and river cutting
(Wang et al., 2020a). SPI was calculated using Eq. (2).

SPI ¼ As � tanb ð2Þ
where As denotes the specific catchment area in meters and b
denotes the slope in degrees (Fig. 3j).

2.2.10. The sediment transport index (STI)
STI is a method for calculating erosion and sedimentation rates

(Rahman et al., 2021). This is one important factor in assessing
flash floods, debris flow and landslide in areas where erosion and
depositional processes are happening (Pham et al., 2020; Mandal
et al., 2021; Rahman et al., 2021). In our study STI has no impacts
on landslide so this factor was not used in landslide in our study,
and is calculated by Eq. (3) (Fig. 3k).

STI ¼ a
22:13

� �0:6 sinb
0:0896

� �1:3

ð3Þ
2.3. 11 Aspect

In the case of landslides and floods, the aspect has proven to be
a critical element (Chen et al., 2020; Pham et al., 2020; Fang et al.,
2021). Aspects influence hydrological processes (evaporation,
weather, plant, and root development), as well as meteorological
events such as rainfall, sunshine, and dry winds, that influence
landslide, debris flow and flood events (Ullah and Zhang, 2020;
Wang et al., 2020a) (Fig. 3l).

2.3.1. Topographic wetness index (TWI)
The TWI indicates the locations and sizes of water-saturated

zones. This index is crucial for debris flow, landslides and floods
since it can provide details about the humidity of various soil types
(Khosravi et al., 2016; Ullah and Zhang, 2020). Consequently, the
concentration of moisture in the soil affects both infiltration and
runoff. The TWI was calculated using Eq. (4),
Lithological units

ranite Complexes Undivided Granites and gneiss
Mélange and marble green
Calc Alkaline metabasal

and Saidu Formations Undivided Schist, Marble and phyl
plexes Undivided Gneiss
d Manglaur Formations Undivided Quartzite and schists
andaf Formations Undivided phyllite, schist, barbl
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TWI ¼ Inð a
tanb

Þ ð4Þ

where a denotes the accumulation of flow around a point and b
denotes the associated slope (Fig. 3m).

2.3.2. Landcover
Land cover directly or indirectly affects evapotranspiration,

infiltration, runoff generation, and sediment dynamics, and signif-
icantly impacts the functions of hydrological and geomorphologi-
cal dynamics (Chen et al., 2020; Ullah and Zhang, 2020; Azarafza
et al., 2021). A landcover map of 2020 with 30-m resolution was
downloaded from www.globallandcover.com (Fig. 3n).

It should be noted that avoiding the uncertainties associated
with different spatial resolutions is very challenging (Fang et al.,
2020). Therefore, to be consistent with other causative factor maps
and improve processing and storage efficiency, all the factors have
been resampled with a spatial resolution of 12.5 m (Mandal et al.,
2021).
3. Methodology

3.1. Factor screening

3.1.1. Multicollinearity analysis
To check the correlations between the causative factors, the

Pearson correlation coefficient (PCC) was used. PCC is a statistical
linear correlation coefficient that is commonly used to determine
the linear relationship between variables (Kalantar et al., 2019).
The PCC between two sets of samples Ai (i = 1, 2, 3,. . ., n) and Bj
(j = 1, 2, 3,. . ., n) can be represented as Eq. (5):

PCC ¼
Pn

i¼1ðai � a
�ÞPn

i¼1ðbj � b
�
ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðai � b

�
Þ
2 Pn
i¼1

ðbj � b
�
Þ
2

s ð5Þ

where ai and bj are variable values for Ai and Bj, a
�
and b

�
are the aver-

age of Ai and Bj, respectively. In general, the higher the absolute
value of the PCC, the greater the risk of multicollinearity between
variables (Jiang and Chen, 2016). The PCC value above 0.70 indicates
multicollinearity, meaning that the input variables have a common
contribution. In this case, the variable should be removed from the
training procedure (Kalantar et al., 2020).

3.1.2. Mean decrease Gini
We used a random forest algorithm using the mean decrease

Gini (MDG) to determine the importance of causative variables in
the incidence of environmental hazards in the study area. This
index is very reliable in assessing the significance of influential fac-
tors, particularly when environmental factors are associated
(Nicodemus, 2011). The MDG is computed as the Gini impurities
decreasing from a particular factor standardized by trees (Calle
and Urrea, 2011; Pouyan et al., 2021).

3.2. Multi-hazard spatial prediction

The selection of the terrain mapping unit (TMU) for studies of
hazard susceptibility is critical (Wang et al., 2019). Four different
terrain mapping units are widely used in the literature, namely
slope terrain unit (STU), geo-hydrological terrain unit (GHTU), cen-
sus terrain unit (CTU), and grid cell terrain unit (GCTU) (Zêzere
et al., 2017). Grid cells are often used to model natural hazards sus-
ceptibility mapping, and GCTUs divide the study area into squared
areas and assigns a value to each causative factor. In this study, we
6

used GCTU as a mapping unit, after defining TMU, all the causative
factors were resampled to the same grid size of 12.5 m � 12.5 m.

Fig. 4 depicts the entire workflow of the proposed framework,
including the following main steps: (i) Preparation of multi-
hazard inventories and causative factors; (ii) standardization and
multicollinearity assessment of multi-hazard causative factors;
(iii) CNN model construction and development of multi-hazard
susceptibility prediction maps; (iv) validation and comparison
and (v) multi-hazard susceptibility map.

3.2.1. Convolutional Neural Network (CNN)
CNN is a well-known DL algorithm that can perform image pro-

cessing (Wang et al., 2020b). It is basically a multi-layer feed-
forward neural network capable of extracting useful information
from relevant data (Wang et al., 2020a). The CNN architecture
comprises of convolutional layers, pooling layers, and fully con-
nected layers (Yamashita et al., 2018). The convolutional layer is
made up of multiple convolution kernels that extract complex
and relevant features from the input data (Canziani et al., 2016;
Mallat, 2016). A nonlinear activation function usually follows each
feature map. To embed nonlinearity into the system, the activation
function of rectified linear unit (ReLU) is considered in the convo-
lutional layer. The convolution process extracts a lot of information
from the input layer and enables weight sharing (Wang et al.,
2019).

The pooling layer is generally used after the convolutional layer,
and the dimension of the feature map is reduced by the down-
sampling algorithm, thereby avoiding over-fitting and reducing
the computational costs. The fully connected layer functions as a
classifier and has the same structure as the traditional fully con-
nected network. They are usually used to generate the final combi-
nation of nonlinear features to predict the end of the network
architecture. Based on these basic layers, various extended CNN
architectures have been proposed and applied in many fields, such
as VGG (Simonyan and Zisserman, 2014), Google Net (Szegedy
et al., 2015), etc. Moreover, the CNN algorithm has been success-
fully used in several environmental hazard studies (Wang et al.,
2019, 2020a; Zhang et al., 2019; Mandal et al., 2021).

To build a suitable CNN algorithm, one should be pay close
attention to hyperparameter tuning (LeCun et al., 2015). In partic-
ular, hyperparameters such as the size of the convolution and pool-
ing layers, activation and loss functions, optimizers and learning
rates require special attention (Fang et al., 2020). The convolution
and pooling functions are defined by the size of the convolution
and pooling layers (Choi et al., 2017). The activation procedure
fully controls the estimation of nonlinear operations (Audebert
et al., 2019). The loss function in the model mainly serves to eval-
uate the degree of dispersion between the actual and predicted
results (Chen et al., 2014; Ranjbar et al., 2018). The optimizer con-
tinuously updates the input variables (Wang et al., 2019). This
study develops a one-dimensional CNN (1D-CNN) to predict
multi-hazards (flash floods, landslides, and debris flow) and the
architecture of the proposed 1D-CNN model was shown in Fig. 5.

3.2.2. Logistic regression
Logistic regression (LR) is a sophisticated statistical technique

for assessing dependent and independent variables (Ghosh and
Maiti., 2021). Using this model, the data does not necessarily be
normal and the variables can be either categorical or continuous
(Goyes-Peñafiel and Hernandez-Rojas., 2021). In this technique,
individual susceptibility maps were constructed considering a
dependent variable (e.g., flash floods, landslides, and debris flows)
with 1 indicating hazard locations and 0 indicating non-hazard
locations. Positive and negative coefficients of the LR indicate their
influence on multi-hazards and their role in their formation (Ghosh
and Maiti, 2021; Goyes-Peñafiel and Hernandez-Rojas, 2021). Pre-

http://www.globallandcover.com/
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cisely, a positive coefficient implies that the variable is present in
the area and enhances the likelihood of standalone hazard,
whereas a negative coefficient shows that hazard is adversely asso-
ciated to that variable. In the model-building process, the sig (p)
value of the causative factors is <0.05, indicating they are statisti-
cally significant, whilst the value >0.05 indicates statistically
insignificant (Ghosh and Maiti, 2021). The LR approach is mathe-
matically expressed as Eqs. (6)–(8) (Ahmad et al., 2021).
Fig. 4. Schematic flowc
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p ¼ ln
p

1� p
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ð6Þ

p ¼ 1
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Z ¼ I0 þ I1 � C1 þ I2 � C2 þ I3 � C3 þ � � � þ In � Cn ð8Þ
hart of the study.
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where p is the probability of the presence of the standalone hazard
or non-hazard, Z is the linear combination, n represents the condi-
tioning factors, Ci (i = 0, 1, 2,. . ., n) are the conditioning factors, I0 is
the intercept of LR model, and Ii (i = 0,1,2,. . ., n) are the LR coeffi-
cients for the independent variables.

3.2.3. K-nearest neighbor
K-nearest neighbor (KNN) has been widely used as a benchmark

classifier in the field of artificial intelligence (AI) for quite some
time now (Sun et al., 2022). The KNN is a simple nonparametric
method for classifying (Avand et al., 2019). KNN categorizes data
by comparing a given test set with a set of training data that is sim-
ilar to it (Avand et al., 2019). The simplicity of the nearest-neighbor
classification system is one of its main advantages. Choosing the
number of neighbors, k, and the distance metric to be used are
the only two options available to the user. Further details on the
KNN algorithm can be found in Abraham et al. (2021) and Hou
et al. (2021).

3.3. Evaluation of model performance

Model performance is evaluated to determine the multi-hazard
model’s precision and predictive abilities. We compute the Area
under the curve (AUC) based on receiver operating characteristic
(ROC) curves that have been widely used in several classification
tasks (Fang et al., 2020). In addition, the models are further exam-
ined by other statistical metrics, i.e., OA, R2, MAE, and RMSE by Eqs.
(9)–(12) (Fang et al., 2020; Rahman et al., 2021),

OA ¼ TPþ TN
TPþ FPþ TNþ FN

ð9Þ

where TP, FP, TN and FN mean true positive, false positive, true neg-
ative and false negative, respectively.
Fig.5. Landslide susceptibility mapp
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where N represents the number of observations, P, A and A�repre-
sent the predicted value, the actual value and the mean of the actual
value, respectively.

3.4. Multi-hazard probability mapping

The CNN-based flash flood, landslide and debris flow hazard
maps are combined to construct a multi-hazard map (MHM),
which is grouped into four categories using the jeans natural break
classification method: low, moderate, high and very high. Accord-
ing to a review of the literature, susceptibility classes of low and
moderate were considered low hazard (0) conditions, while sus-
ceptibility classes of high and very high were considered high haz-
ard (1) conditions (Pourghasemi et al., 2020; Yousefi et al., 2020;
Rahman et al., 2021). To make the integration easier, we reassign
the four class maps created for each hazard to two classes: 0 and
1. Class zero is low to moderate, and 1 represents high to very high
susceptibility. Lastly, using ArcGIS (v. 10.6), all three hazards (flash
flood (FF), landslide (LS) and debris flow (DF)) were combined
using the Eq. (13),

MHM ¼ FFþ LSþ DF ð13Þ
ing using the CNN architecture.
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Based on the likelihood of multi-hazard occurrence, the final
multi-hazard susceptibility map is classified into eight categories:
no hazard, flash floods, landslides, debris flows, flash floods and
Fig. 6. Pearson correlation coefficients among multi-hazard causative factors: (a)
flash flood, (b) landslide and (c) debris flow. ASP: aspect, DR: distance to road, DS:
distance to stream, EL: elevation, GEO: geology, LULC: land cover, NDVI: normalized
difference vegetation index, PFC: profile curvature, PC: plan curvature, RF: rainfall,
SL: slope, SPI: stream power index, STI: sediment transport index, TWI: topographic
wetness index, DF: distance to fault.
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debris flows, flash floods and landslides, landslides and debris
flows, and all hazards.

3.5. Contributions of causative factors

Fig. 6 shows the multicollinearity results of different causative
factors in flash flood, landslide and debris flow hazards. According
to the Pearson correlation coefficients (PCC) (<0.70), there was no
multicollinearity in the selected causative factors for multi-
hazard (flash flood, landslide and debris flow).

We used the random forest model to assess the significance of
causative factors of multi-hazards (flash flood, debris flow and
landslide). The results demonstrate that the factors of the slope,
elevation, rainfall, distance to road, distance to stream, and TWI
were the most important factors for predicting debris flow, as
shown in Fig. 7a. For landslide hazard, MDG shows that slope,
TWI, rainfall, elevation, distance to fault, and plan curvature were
the most influential factors in predicting landslides, as shown in
Fig. 7b. Finally, the most critical causative factors in flash flood haz-
ard were slope, distance to stream, TWI, distance to roads, SPI, and
elevation, as shown in Fig. 7c.

3.6. Single hazard maps

In this subsection, Convolutional Neural Network (CNN) was
used to produce flash flood, landslide, and debris flow hazard sus-
ceptibility maps individually, as shown in Fig. 8. To construct the
CNNs, all the hyperparameters were optimized using the trial-
and-error process for flash floods, landslides, and debris flow, as
demonstrated in Table 3. For the spatial pattern of risk estimation,
it is important to classify the risk indices of landslides, flash floods,
and debris flows into different categories (Tehrany et al., 2015). In
this study, the Jenk’s natural break method (Ullah and Zhang,
2020; Wang et al., 2020a,b) was used to classify the risk levels into
low, moderate, high, and very high. In the case of landslide hazard,
it can be easily observed from Figs. 8a and 9a that approximately
5.32%, 13.16%, 14.56%, and 36.97% of the study area had low, mod-
erate, high, and very high susceptibility, respectively. Flash flood
hazard map shows that about 35.32%, 13.16%, 14.56%, and
36.97% of the study area had low, moderate, high, and very high
susceptibility, respectively (Figs. 8b and 9a). In debris flow hazard,
approximately 46.77%, 18.11%, 13.97%, and 21.15% of the study
area had low, moderate, high, and very high susceptibility, respec-
tively (Figs. 8c and 9a).

3.7. Multi-hazard susceptibility mapping

To generate a multi-hazard susceptibility map, all three suscep-
tibility maps of selected hazards generated by CNN were combined
using Eq. (13), as shown in Fig. 10. We can observe from Fig. 9b
that 37.64% of the study area was safe and had not suffered any
hazard. In contrast, 16.18 % of the total area was vulnerable to flash
flood hazards, 4.88% of the area was vulnerable to debris flow haz-
ards and 30.68% of the total area was vulnerable to landslide haz-
ards in the study area, as shown in Fig. 9b. Meanwhile, 0.27%,
7.05%, and 3.13% of the study area were susceptible to at least
two types of hazards: flash floods and debris flows, debris flows
and landslides, and flash floods and landslides, respectively
(Figs. 9b and 10). Finally, a total of 0.17% of the study area were
determined to be prone to all hazards, i.e., landslides, flash floods,
and debris flows (Figs. 9b and 10).

3.8. Validation and comparison

To check the accuracy of our CNN models, we used several sta-
tistical indices and compared CNN models with conventional mod-



Fig.7. Multi-hazard variable importance by RF: (a) debris flow, (b) landslide and (c) flash flood.
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els LR and KNN, as shown in Table 4. The CNN model outperformed
the conventional LR and KNN in predicting all three hazards. The
CNN model used for predicting flash floods has the highest overall
accuracy of 96%, followed by LR and KNN with 94% and 84%,
respectively. Also, the CNN model used for predicting debris flows
has the highest overall accuracy of 94%, followed by LR and KNN
with 90% and 87%, respectively. The CNN and LR models used for
predicting landslides have the same overall accuracy of 90%, which
is 10% higher than that of KNN.

Similarly, we notice that similar trends in all other evaluation
indices and the CNN model can demonstrate the best performance
in susceptibility prediction, followed by LR and KNN. Fig. 11
depicts the ROC curves of the three models. In all three hazards,
CNN is superior to the conventional machine learning models of
LR and KNN. Specifically, CNN achieved the highest AUC value for
flash floods (0.98) (Fig. 11a), landslides (0.94) (Fig. 11b), and debris
flows (0.98) (Fig. 11c).
10
4. Discussion

Over the past few years, multi-hazard assessments of environ-
mental hazards have become increasingly important, underscoring
the need for a more comprehensive framework (Pourghasemi and
Kerle, 2016; Sanam et al., 2020). Despite the increased interest in
multi-hazard susceptibility modeling, independent assessments
are still conducted by communities concerned with the topic. To
achieve this, various methods have been used to analyze multi-
hazards globally (Javidan et al., 2021). Specifically, we propose a
method that makes it easier to identify areas that are simultane-
ously threatened by multiple hazards (e.g., flash floods, landslides,
and debris flows) in the context of this study. We achieve this goal
by combining deep learning with GIS.

Initially, the multi-collinearity of multi-hazard causative factors
was assessed through PCC. In addition, a random forest algorithm
was used considering the MDG method to determine the impor-



Fig. 8. Single hazard susceptibility maps. (a) LSM_CNN: landslide susceptibility map by CNN, (b) FFSM_CNN: flash flood susceptibility map by CNN and (c) DFSM_CNN: debris
flow susceptibility map by CNN.

Table 3
Hypermeters settings of the CNN models.

CNNs Parameters

Convolutional kernel size Max pooling kernel size Number of epochs Activation function Loss function optimizer Learning rate

CNN 3 � 1 2 � 1 200 ReLu Categorical cross entropy AdaGrad 0.01
LSM

CNN 3 � 1 2 � 1 150 ReLu Categorical cross entropy AdaGrad 0.05
FFSM

CNN 3 � 1 2 � 1 50 ReLu Categorical cross entropy AdaGrad 0.009
DFSM
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tance of the hazard-related causative factors. As shown in Fig. 6,
there is no multicollinearity in the causative factors of flash floods,
landslides, and debris flow. Meanwhile, the MDG results demon-
strate that slope angle, distance to stream, and TWI were the most
important factors in predicting flash floods, as shown in Fig. 7. Pre-
vious studies (Pourghasemi et al., 2020; Wang et al., 2020a) can
support these observations because flooding is more likely to occur
in flat areas, with greater accumulation of discharge and less runoff
(Ullah and Zhang, 2020; Rahman et al., 2021). The heavy down-
pours significantly increased the flow and sediment deposition in
the areas near the river basin and increased the possibility of flood-
ing in these areas (Pourghasemi et al., 2019; Yousefi et al., 2020). In
addition, TWI measures flow accumulation and a higher TWI value
11
means a higher risk of flooding (Khosravi et al., 2016; Das, 2019;
Costache et al., 2020). The areas most prone to flooding are close
to rivers, with lower elevations and less slopes, and are usually
used for agricultural or residential purposes (Khosravi et al.,
2019). As for landslides, the most important factors were slope,
elevation, rainfall, and distance to roads. The occurrence of land-
slides increases as the elevation and the slope are increased
(Pourghasemi et al., 2019). Rainfall is also the main landslide trig-
gering factor and sudden and intense rainfall or snowmelt can
cause movement (Wang et al., 2019). TWI measures the dryness
and wetting of soil moisture, which is a main cause of landslides
(Fang et al., 2020). The most important factors affecting debris flow
risk were slope, elevation, rainfall, and distance to roads. Kritikos



Fig. 9. (a) Individual hazard distribution based on CNN and (b) proportion of the study area vulnerable to single and multi-hazard.

Fig. 10. Multi-hazard susceptibility map.
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and Davies (Kritikos et al., 2015) pointed out in 2015 that on steep
slopes, the downslope factor of gravity is greater, resulting in an
increase in the shear stress of the slope and makes the surface
material of the slope more susceptible to damage, and provides a
favorable environment for the occurrence of debris flow. Rainfall
is also an important trigger of debris flow. Debris flows are usually
associated with heavy precipitation or snowmelt periods and will
exacerbate the flooding effects that often accompany such events
(Marra et al., 2017; Wu et al., 2019). More precisely, according to
Chousianitis et al. (2016), the effects of earthquakes and rainfall
on slope stability vary by season. Precipitation may increase the
risk of landslides in summer season as soils become saturated,
Table 4
Validation of model results using different statistical measures.

Disaster type Model Validation using test dat

R2

Flash CNN 0.85
Flood LR 0.83

KNN 0.69

Landslide CNN 0.65
LR 0.6
KNN 0.38

Debris CNN 0.78
flow LR 0.63

KNN 0.61
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thereby reducing slope stability. Also, flooding is more likely when
natural or man-made drainage systems are overwhelmed by pro-
longed or heavy rainfall.

Understanding the interrelationships between different hazards
is a significant challenge (Kappes et al., 2010). To the best of our
knowledge, there is no research on using CNN, a deep learning
model to carry out multi-hazard susceptibility mapping in the pre-
sent test site. The practicality of CNN was validated in this study
for multi-hazard susceptibility prediction compared to conven-
tional LR and KNN models. Several accuracy indices were used to
evaluate CNN multi-hazard models (flash floods, landslides, debris
flow) effectiveness and predictive capacity. The experimental
results demonstrate that CNN revealed the highest accuracy in
mapping the susceptibility of flash floods, landslides, and debris
flows at the test site (Table 4). CNN model was superior to the con-
ventional machine learning LR and KNN models in predicting flash
floods, debris flows, and landslides. The CNN model is considered
an excellent natural hazard modeling tool around the world
(Chen et al., 2014; Wang et al., 2019, 2020a; Zhang et al., 2019;
Bui et al., 2020) due to its excellent results and higher prediction
accuracy for spatial prediction of natural hazards. Machine learn-
ing methods such as LR and KNN still cannot be ignored, though
CNN provides an accurate spatial prediction of flash floods, land-
slides, and debris flows. It is known that CNN and machine learning
methods have achieved high accuracy in remote sensing, geo-
science, and natural hazards research on a global scale (Avand
et al., 2019; Roy and Saha, 2019; Wang et al., 2019). However, spe-
cial consideration must be given to the interpretation of their
results. The performance of a CNN model is governed by its archi-
tecture, including the structure of training data, the amount of the
input data, activation function, and convolutional and pooling lay-
ers (Wang et al., 2019; Zhao et al., 2020). Using trial and error to
optimize the parameters of CNN, it is possible to improve the accu-
racy of the algorithm.
a set

MAE RMSE OA AUC

0.05 0.19 0.96 0.98
0.1 0.21 0.94 0.97
0.2 0.28 0.84 0.95

0.15 0.3 0.9 0.94
0.23 0.32 0.9 0.94
0.32 0.39 0.8 0.86

0.11 0.23 0.94 0.98
0.19 0.3 0.9 0.93
0.23 0.31 0.87 0.95



Fig. 11. ROC curve for (a) flash flood, (b) landslide and (c) debris flow by CNN, LR and KNN, respectively.
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Recently, Wang et al. (2019, 2020a) used different CNN struc-
tures of 1D-CNN, 2D-CNN and 3D-CNN to perform landslide and
flood susceptibility and compared the results with machine learn-
ing methods. The results confirmed that CNN is better than con-
ventional machine learning models. They also proposed that
integrating CNN with other conventional machine learning classi-
fiers can improve prediction results than the CNN model alone.
Mandal et al. (2021) conducted a study on landslide susceptibility
in India and stated that performance of CNN is more effective than
machine learning methods (such as ANN, RF and bagging). Pham
et al., (2020) used CNN and RF Random subspace to generate a
landslide susceptibility map in the mountainous region of Vietnam,
and CNN demonstrated a prediction accuracy of 0.88%. In this
study, CNN has achieved a prediction accuracy of 0.98%, 0.97%,
and 0.94% using the validation data sets of flash floods, landslides
and debris flow, respectively (Table 4), indicating that the highly
accurate multi-hazard susceptibility map of district Shangla, east-
ern Hindu Kush Pakistan can be obtained. Our results are consis-
tent with previous studies that CNN performs better prediction
in environmental hazard susceptibility prediction (Pham et al.,
2020; Mandal et al., 2021).

The CNN prediction maps for flash floods, landslides and debris
flows were combined to produce a multi-hazard susceptibility map
shown in Fig. 9. The multi-hazard susceptibility map shows that
about 37.57% of the study area is not vulnerable to any hazard.
The remaining 62.43% of the study area is susceptible to one or
more hazards of which 0.18% of the total area was exposed to all
three hazards, as shown in Fig. 10b.

Most studies are inconsistent in spatial resolution of multi-
hazard dependent variables (Catani et al., 2013; Costache et al.,
2019; Rahman et al., 2021), which is the main limitation of the pre-
sent study. To avoid the uncertainties associated with different
spatial resolutions and to improve processing and storage effi-
13
ciency, all factors have been resampled (Fang et al., 2020). DL with
high-resolution environmental factors may extract more sophisti-
cated information about the hazard and its surroundings (Ma
et al., 2019), which could be very useful in understanding the
multi-hazard situation. However, high spatial resolution factors
like DEM and its derivatives may not improve the performance of
natural hazard susceptibility mapping, and finding the optimal res-
olution needs a series of experiments (Merghadi et al., 2020). The
second limitation of this study is that we only selected landslide,
debris flow, and flash flood hazards in the study area based on data
availability and disaster information. Other hazards like glacier
avalanches and forest fires are also present in the study area. A
comprehensive multi-hazard susceptibility should account for
each hazard present in the study area, but a lack of data restricts
us to the subset of hazards.

Furthermore, we only selected static causative factors for multi-
hazard susceptibility prediction and they perform well in describ-
ing historical hazards in the region but unplanned urbanization
and climate change significantly changing the environment in
Hindu Kush Pakistan which may reshape the distribution of future
hazards (Eckstein et al., 2021). Especially, Pakistan is one of the
most affected countries affected by climate change (Eckstein
et al., 2021) and it is expected to increase the appearance of mul-
tiple hazards in mountain areas of Hindukush Pakistan (Allan
et al., 2021; Eckstein et al., 2021). As a result, future studies will
focus on the potential impact of climate and land use/land cover
change on multi-hazard using different deep learning models like
CNN 2D, CNN 3D, RNN and DNN etc.

Despite the limitations, our study presented a robust frame-
work for multi-hazard susceptibility prediction in complex topo-
graphic and climatic regions of eastern Hindukush, district
Shangla, Pakistan. We believe our findings will help in multi-
hazard risk management. Specifically, authorities can use our
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multi-hazard susceptibility map by the CNN model to identify and
rank susceptible areas.

Finally, the proposed method is also applicable to other envi-
ronmental hazards, such as glacier avalanches, land subsidence,
and forest fire susceptibility. Based on the observations, policy-
makers can develop effective interventions to mitigate the impact
of multi-hazards on people, particularly those living in disasters.

Even though individual hazard susceptibility maps are impor-
tant, multi-hazard susceptibility maps allow for spatial and quan-
titative analysis of commodified information occurring within a
site (Pourghasemi et al., 2019). Indeed, it offers authorities and pol-
icymakers estimates of where to focus and respond after disasters,
allowing them to gain a more complete perspective of how multi-
hazards are likely to occur (Marin et al., 2021). Besides, the
obtained multi-hazard map can help emergency response agencies
conduct their operations more efficiently in the pre-disaster and
post- disaster phases. We should emphasize the relevance of haz-
ard communication with stakeholders outside academia (Graham
et al., 2022). Geoscientists, hydrologists, and related researchers
may be able to conclude that multi-hazard maps are more com-
plex. However, they can be challenging for policymakers, emer-
gency personnel, and others who make decisions to comprehend
information (Rahman et al., 2021). To effectively convey multi-
hazard information to non-experts, maps should be constructed
as simply as possible to avoid misunderstanding and help individ-
uals quickly identify the locations of different levels of potential
hazards provided on the map (Javidan et al., 2021). This can be
done by providing accompanying documents that provide a brief
description of the processes that may lead to the appearance of
things considered vulnerable, as well as pictures and videos of
the damage caused by these things, so that people can get a general
idea about what they can do (Graham et al.,2022). We therefore
stress the importance of multi-hazard psychology (e.g., using pho-
tographs of past disasters), information presentation (e.g., accessi-
ble to non-technical and non-experts), and appropriate
presentation schemes for multi-hazard countermeasures
(Karpouza et al., 2021).
5. Conclusions

Flash floods, debris flows, and landslides frequently occurred in
the Hindukush area, which is vulnerable to multiple hazards.
Therefore, a comprehensive method is needed to consider multiple
hazards and their individual and combined causative factors. In
this regard, this study aims to present a deep learning framework
to predict the susceptibility of multi-hazard in the Shangla district,
eastern Hindukush, Pakistan. The resultant multi-hazard map
shows that approximately 37.57% of the study area can avoid the
possibility of all the three hazards, while about 62.43% of the study
area is prone to multi-hazards (one or more hazards). Nevertheless,
the proposed algorithm is feasible and applicable in mapping
multi-hazards. The CNN-based algorithm can improve the ability
to predict the risk of multi-hazards and increase the awareness
of multiple disasters. Local authorities can use the multi-hazard
maps constructed in this study to establish multi-hazard mitiga-
tion and emergency evacuation management plans, and serve as
insurance requirements for any property. In addition, it can be
applied to similar geo-environments, especially in mountainous
areas with sparse data.
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