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A B S T R A C T   

CO2 injection for enhanced oil recovery (EOR) is widely recognized as an efficient technique for carbon capture, 
utilization, and storage (CCUS). This operation has a significant impact on various technical parameters, 
emphasizing the need to carefully consider and select the optimum approach. Among these factors, the minimum 
miscible pressure (MMP) plays a crucial role in determining the effectiveness and performance of CO2 injection. 
Therefore, this study aims to assess the reliability of machine learning (ML) in predicting the MMP of pure CO2 
and examine the influence of different independent parameters. To achieve this, five ML methods were employed 
to predict the pure CO2 MMP, and the results were compared to statistical evaluations based on empirical cor-
relations. In addition, three types of data with different functional input parameters were used in this research. 
Two types of data were obtained from existing literature, while the third category was collected from the thesis 
and PVT reports for specific Iraqi oil fields. The ML models were constructed by splitting the dataset into 20% for 
testing and 80% for training using Python programming. The significance of this study lies in its ability to 
identify the most efficient approach for forecasting MMP. The results of this work revealed that the K-nearest 
neighbors (KNN) model indicated the best statistical evaluation among the ML learning algorithms for two types 
of data (2) and (3) in predicting the MMP for pure CO2 flooding. This was evidenced by the lowest mean square 
error and the highest coefficient of determination. Additionally, the findings indicated that the support vector 
regression (SVR) method is an effective technique for smaller datasets. Moreover, the sensitivity analysis and 
assessment of the relative impacts of various input parameters revealed that the prediction of MMP is most 
sensitive to the composition of the injected gas and temperature, accounting for 46% and 28.5% of the variation, 
respectively. Finally, the presented ML models indicate exceptional accuracy, speed, adaptability in handling 
diverse conditions, and cost-effectiveness when compared to conventional approaches. These results verify the 
ability of ML models to provide high-quality predictions.   

1. Introduction 

Presently high hydrocarbon demand, enhancing total oil recovery 
from reservoirs is of utmost importance. To achieve this goal, extensive 
research literature and practical implementations discovered a broad 
variety of Enhanced Oil Recovery (EOR) technologies [1,2]. Particularly 
CO2 flooding stands out as one of the most widely employed and highly 
impactful EOR methods for enhancing displacement capacity, sweep 

efficiency, and reservoir pressure [3,4]. Several oil reservoirs have 
extracted upwards of thirty percent of the oil initially in place (OIIP) 
through their primary and secondary production processes [5]. Tech-
nically, the application of the CO2 flooding technique is recommended 
after the primary or secondary production stages [6,7]. There is a pos-
itive environmental impact from using CO2 technology compared with 
other methods since it can be recycled after being injected into the 
reservoir, resulting in fewer CO2 emissions into the atmosphere [8,9] 
and thereby lessening the greenhouse gas (GHG) issue [10,11]. CO2 
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injection is classified into numerous varieties, including immiscible CO2 
flooding, miscible CO2 flooding, near miscible CO2 flooding, huff and 
puff, and so on,[1] each of which has particular implementation 
restrictions. 

During miscible CO2 flooding, the minimum miscible pressure 
(MMP) is an important parameter to identify the mechanism of CO2 
injection operation into the reservoir [12]. Physically, dynamic misci-
bility occurs at MMP, which is the lowest pressure at which CO2 is sol-
uble in the reservoir’s crude oil [13] and at this point, 80% of OIIP can 
be recovered at CO2 breakthrough [14]. Furthermore, the accuracy of 
the MMP prediction for CO2 injection is critical to avoiding process 
failure and ensuring good sweep efficiency [15,16]. Because the CO2 
flooding method is costly, MMP is regarded as one of the most essential 
screening criteria for determining the accuracy of miscible CO2 flooding 
[17]. Due to this, a few experiments have been suggested to detect MMP, 
including the slim-tube experiment, which is the first conventional 
method described by Yellig et al. [18]. The rising bubble test is an 
efficient method suggested by Christiansen & Haines [19] to treat the 
slow rate issue in the slim tube experiment. Vanishing Interfacial Ten-
sion (VIT) is a common experiment introduced by Rao & Lee [20] to 
predict MMP. These experimental methods have a high degree of ac-
curacy [21]. Nevertheless, they require a long time and a high cost. Also, 
they are impacted by different experimental factors [22] and may be 
subject to human error [1]. 

As mentioned in the literature, plenty of empirical correlations have 
been introduced in defining the MMP of pure CO2 flooding. As previ-
ously stated, the estimation of pure CO2 MMP is dependent on several 
major parameters, including the molecular weight of (C5+), reservoir 
temperature, the mole fraction of volatile oil elements, and the mole 
fraction of intermediate oil elements. The oldest MMP correlation pro-
posed by Holm & Josendal [14] depends on the molecular weight of C5+

and the reservoir temperature of the crude oil. Lee [23] suggested a 
correlation between individuals relying on only reservoir temperature to 
estimate the MMP of pure CO2. Yellig et al. [18] modified (L.W. Holm & 
Josendal, 1974)’s empirical relationship for anticipating MMP as a 

variable of reservoir temperature. Cronquist [24] employed three in-
dependent variables of crude oil such as molecular weight (C5+), 
reservoir temperature, and volatile oil components (C1 and N2) as 
functions to predict MMP. Using gas purity, reservoir temperature, and 
pressure, Johnson and Pollin [25] presented a correlation for deter-
mining MMP, which applies to various kinds of stock tank oil and live oil 
[26]. Alston et al. [27] hypothesized a relationship by including extra 
variables such as reservoir temperature, the molecular weight of (C5+), 
the mole fraction of volatile oil components (C1 and N2), and interme-
diate oil components (C1-C4). During the same period, Glaso [28] put 
forward another correlation as a function for three parameters: reservoir 
temperature and molecular weight of (C7+), although it was of limited 
utility for intermediate oil compositions (C2-C6) in the fluid of the 
reservoir. In 1993, Zuo et al. [29] adjusted the relation presented by 
Johnson and Pollin [25] by utilizing two independent parameters: vol-
atile and light components for reservoir oil. Dong et al. [30] contributed 
to enhancing the precision of forecasting MMP and proving the influence 
of the gas solution on CO2, and the findings confirmed that the gas so-
lution should be taken into consideration. Emera & Sarma [31] utilized a 
genetic algorithm to develop the correlation of Alston. Applying the 
alternative conditional expectation (ACE) technique, Shokir [32] and 
Alomair et al. [17] found a different correlation that could be utilized to 
compute the MMP of CO2 injection. Although these correlations and 
mathematic methods have a quicker and less expensive prediction 
method (MMP), they are incapable of being applied to a broad variety of 
conditions and still contain several inadequate, strict assumptions 
[11,33]. 

Simultaneously, based on a computational model using the equation 
of state (EOS), numerical simulation has been employed for MMP pre-
diction of CO2 injection by utilizing commercial software [17]. Abdullah 
and Hasan [6] performed research to estimate the effect of miscible CO2 
injection on the recovery factor, which investigated MMP calculation 
from two equations (Glaso [28] and Alson et al. [27]) versus simulation, 
and the results confirmed that the calculation of MMP from the Glaso 
equation was close to the simulation. However, sometimes this 

Nomenclature 

EOR Enhanced Oil Recovery 
MMP Minimum Miscible Pressure 
ANN Artificial Neural Network 
MLR Multiple linear Regression 
ML Machine learning 
POS Particle swarm optimization 
RF Random forest 
DT Decision Tree 
KNN K-Nearest Neighbors 
SVR Support Vector Regression 
VIT Vanishing Interfacial Tension 
MWC7+ Molecular weight of component C7+
MWC5+ Molecular weight of component C5+
MWC6+ Molecular weight of component C6+
XVOL Volatile oil components, including (C1 &N2) 
XINT Intermediate oil components, including(C2-C4, CO2, and 

H2S) 
EOS Equation of State 
LSSVM Least squares support vector machine 
MAE Mean Absolute Error 
MSE Mean Square Error 
MED Median Absolute Error 
R2 Coefficient of determination 
CMG Computer modelling group 
GHG Greenhouse gases 

OIIP Oil initial in place 
MLP Multilayer perceptron 
ABSVR Adaptive boosting support vector regression 
GMDH Group method of data handling 
Psat Saturation Pressure 
Tr Reservoir Temperature 
API American Petroleum Institute 
sp.gr Oil density 
APRE absolute percent relative error 
PB Bubble point pressure 
Tc Critical temperature 
Pi Reservoir pressure 
RBF Radial Basis Function 
AARD average absolute relative deviation 
ξi,ξ∧i Slack parameters 
RF Relevancy factor 
PVT Pressure, Volume, and Temperature 
MKF Mixed kernel function 
MMC Multiple mixing cell 
RBFN Radial Basis Function Networks 
TLBO Teaching learning-based optimization 
ANFIS Adaptive neuro-fuzzy inference system 
CART Classification and regression tree 
AI Artificial Intelligent 
BIC Akaike Information Criterion (AIC) 
AIC Bayesian Information Criterion (BIC)  
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computational method still takes more time to tune the physical prop-
erties of the fluid, requires more effort to achieve stability [34], and is 
regarded as a costly process due to the necessity to get a license [35]. 
Moreover, computational models are dependent on the amount of pre-
cision for physical characteristics [36]. Nonetheless, plenty of ap-
proaches have been used to estimate MMP, such as experiments, 
simulations, and known empirical correlations, but these techniques are 
affected by various factors and cannot be used in all circumstances. 

Contrarily, artificial neural networks (ANN) have been employed for 
different areas of oil and gas engineering, which has contributed to 
reducing wasted time and using it for broad operational conditions [15]. 
One of these areas of application is forecasting the MMP of CO2 injection. 
In general, the advantage of machine-learning approaches is that they 
tend to sidestep the challenges of conventional problem-solving methods 
and may be used to solve a wide range of issues [37], whereas the first 
attempt has been made for MMP prediction of the CO2 technique by using 
the ANN backpropagation method developed by Huang et al. [33]. 
Numerous studies have proven the efficiency and accuracy of the ML and 
ANN to compute the MMP of pure or impure CO2 injection. Birang et al. 
[38] constructed an original ANN model that includes a multilayer per-
ceptron (MLP) with two-layer back-propagation for predicting MMP 
during hydrocarbon injection based on 52 data points. Through com-
parisons with MMP values obtained from slim-tube experiments and 
correlations, the average error and the correlation coefficient (R2) were 
determined as 18.58% and 0.938, respectively. Dehghani et al. [39] 
employed a genetic algorithm (GA-ANN) for estimating MMP during gas 
injection processes by using experimental data of MMP around 46 points. 
Shokrollahi et al. [40] utilized the least squares support vector machine 
(LSSVM) for the first time to anticipate the MMP of pure or impure CO2, 
achieving an impressive 9.6% overall AARD using 147 experimental da-
tabases. Tatar et al.[41] used the same datasets in another investigation to 
construct another CO2 MMP approach that relies on the kernel function 
radial basis function (RBF). In 2014, the fuzzy logic technique has 
adopted by Ahmadi and Ebadi [42] to define the MMP of gas injection and 
oil reservoirs. At the same time, Sayyad et al. [43] suggested a new 
approach (PSO-ANN) for expecting pure and impure CO2 MMP. In 2016, 
Zhong & Carr [44] advanced a new mixed kernel function of the SVR 
model (MKF-SVR) to anticipate the minimum miscible pressure for CO2 
pure and impure based on three independent parameters with the highest 
R2 (0.93) and the lowest RMSE (1.9151). In 2017, Karkevandi- 
Talkhooncheh et al. [45] employed an adaptive neuro-fuzzy inference 
system (ANFIS) based on large data sets (approximately 270 data points) 
to create multiple intelligent models for forecasting CO2 MMP for pure 
and impure, with a total AARD of 7.53%. Depending on published data 
around 144 points, Saeedi Dehaghani and Soleimani [46] suggested new 
models “a hybrid artificial neural network (ANN) and stochastic gradient 
boosting (SGB)” for CO2 MMP prediction in 2020. At same year, Dargahi- 
Zarandi et al. [47] used 270 points of databank stated by Karkevandi- 
Talkhooncheh et al. creating various smart developed techniques for 
forecasting CO2 MMP using GMDH, MLP, and ABSVR. Ghiasi et al. [48] 
suggested a regression tree and classification improved using AdaBoost 
(AdaBoostCART) with an ANFIS model to predict CO2 MMP. Chen et al. 
[49] assessed the efficacy of numerous ML techniques for forecasting the 
MMP of CO2 injection. More recently, Lv et al. [15] carried out compre-
hensive research in which they employed three models (tree-based, deep 
learning, and thermodynamic) to anticipate the MMP of CO2 by using an 
extensive databank of 310 with an overall AARD of 1.34%, and the 
parameter sensitivity demonstrated that reservoir temperature has a sig-
nificant impact on predicting MMP. 

The wide range of contributions in MMP modeling suggests that the 
task of forecasting MMP for CO2 remains challenging, emphasizing the 
need for more precise and robust predictions. As can be noticed in 
Table 1, the majority of published research has not studied the impact of 
other independent variables on MMP expectations in their AI models. In 
addition, the performance comparison of the computational model and 
machine learning was not addressed. Furthermore, the main distinction 

between the current research and prior studies lies in the utilization of 
novel datasets incorporating several additional parameters. This enables 
a comprehensive evaluation of the impact of these elements on MMP 
prediction. Indeed, the main contribution of this study is to forecast the 
MMP for pure CO2 with various input parameters and investigate the 
performance of machine-learning models for predicting the MMP with a 
wide range of data. Therefore, five machine-learning (ML) methods 
were employed for this objective in several different scenarios to achieve 
optimum prediction. In order to verify the reliability models, a com-
parison between the literature correlations and the computational 
method with ML techniques was performed. Following that, the effec-
tiveness of these approaches is assessed using a range of statistical and 
graphical error evaluations. Finally, sensitivity analysis and influence 
parameters are examined to thoroughly investigate the models’ 
dependability. 

2. Theoretical background and methodology 

2.1. Machine learning techniques 

2.1.1. Multiple linear regression (MLR) 
MLR approach is popular among the most widely used supervised ML 

algorithms for predicting, differentiated by its capacity to analyze data 
quickly and easily through accommodating out over one independent 
parameter, in contrast to other linear regression methods[50–52]. MLR 
is a multivariate linear regression approach used to simulate the linear 
interconnectivity between many independent parameters (input vari-
ables) and one output-dependent parameter (output variable) [53]. 
Nevertheless, this technology has proven to be an efficient and impor-
tant method for detecting data structure patterns. Evidently, the MLR 
technique’s approach depends on the predictions that are the existing 
correlation between the dependent and independent parameters [54]. 
Based on the numerous factors X, a hypothetical dependent variable Y is 
forecast mathematically. Furthermore, the MLR paradigm can be 
expressed using the formula (1) [55]: 

Yi = B0 +B1 X1i +B2 X2i +….+BpXpi + αi (1)  

where Yi indicates the dependent variable (output) and p denotes the 
independent variable (input) (X1, X2…, Xp). B0 represents the intercept 
term, as well as Bi the coefficient value (slope) determines the contri-
bution for every predicted parameter. αi is the model’s random error 
item, and i = (1, 2, 3…, n) denotes the total number of samples. 
Fundamentally, the least square approach is used to create the multiple 
linear regression model, with the goal of reducing the overall percentage 
of error between both the observed and anticipated dependent variables 
[56]. 

2.1.2. Support vector regression (SVR) 
SVR is a common supervised machine learning algorithm that was 

developed to solve challenges in model production and generalization. 
In 1995, Vapnik [57] created and developed an SVR model that quickly 
earned popularity due to its numerous appealing properties. Typically, 
the SVR can be employed to solve both linear and non-linear regression 
issues. The primary goal of SVR is to generate a function f(x) that rep-
resents the maximum deviation ε from the target Yi acquired for all 
training data while remaining as flat as feasible. As a result, the datasets 
fall between the two margin boundaries, preventing the inclusion of 
outliers under proper conditions [22], as illustrating in Fig. 1. 

The nonlinear-support vector regression technique is always con-
ducted by map in an area of high dimensional features (xi, i.e.) there is a 
map (φ : x→φ ∈ R) from which the regression hyperplane is formed as: 

f (x) = ωφ(x)+ b (2)  

where ω and b denote the weight vector of the hyperplane and hyper-
plane bias, respectively. 

H. F. Al-Khafaji et al.                                                                                                                                                                                                                          



Fuel354(2023)129263

4

Table 1 
A summary of the most literature’s proposed models for prediction MMP of CO2-oil.  

Author Model Independent parameters Limitations 

Holm & Josendal 1974 [14] A graphical model that depends on two variables (MWC5+, reservoir temperature) Tr, MWC5+ -Temperature range limit (32.2 ◦C to 
82.2 ◦C) 
-Pressure range limit (9.65 MPa to 22 MPa). 
− 180 < MWC5+<240 

Cronquist 1978 [24] MMP = 0.11027× (1.8Tr + 32)B Tr, MWC5+, Xvol -Oil API gravity range from 23.7◦ to 44◦, 
-Tr range from 21.67 to 120 ◦C, 
-MMP range from 7.4 to 34.5 MPa.  

whereB = 744206× 10− 6 + (11.038× 10− 4 × MWC5+) + (15.279× 10− 4 × XVOL)

Yelling and Mectalfe 1980 [18] MMP = 126472 × 10-4 + 1.5531 × 10-2 × (1.8 Tr + 32) + 1.24192 × 10-4 (1.8 Tr + 32)2 – 
(716.94 /32 + 1.8Tr) 

Tr − 35 ◦C < TR < 88.9 ◦C 

Glaso 1985 [28] MMP = 810 − 3.4MWC7+ (0.017× 10− 7 (MWC7+ )
1.2785e(786.8MWC7+

− 1.058))Tr Tr, MWC7+ -The range of intermediate components 
(C2– C6) 
-Specific gravity 

Alston et al. 1985 [27] MMP = 6056 × 10-9 × (1.8 Tr + 32)1.06 ×(MWC5+) × (XVOL/XINT)0.136 Tr, MWC5+, Xvol, Xint Bubble point pressure 
Zuo et al 1993. [29] Developed models based on previous models and equation of state. Tr, average molecular weight, ◦API, Xvol, Xint -Composition of gas drive 

-Crude oil composition 
-Binary interaction coefficient 

Dong et al. [30] 2000 Experimental study to investigate the effect of gas composition on prediction MMP of CO2. / / 
Huang et al 2003 [12]. Developed ANN model to predict CO2-MMP for pure and impure Tr, MWC5+, Xvol, Xint, -Temperature unit 
Emera & Sarma 2005 [31] Proposed several equations to predict CO2- Oil MMP based on a genetic algorithm with special 

limitations for each equation. 
Tr, MWC5+, Xvol, Xint -Bubble point pressure 

- Percentage of the volatile and 
intermediate oil fractions. 

Shokir [32] Developed an advanced equation based on the alternating conditional expectation (ACE) 
algorithm. 

Tr, MWC5+, Xvol, Xint, composition of injected gas  

Birang et al 2007 [40] ANN-backpropagation network model to forecast CO2-MMP. Tr, MW of C2-C5 and MWC7+ component, Xvol, XC1-C5, 
composition of injected gas. 

- Hidden neurons 

Dehghani et al. 2007 [39] A hybrid neural genetic model to predict MMP of CO2. Tr, reservoir fluid composition, and injected gas 
composition 

-Number of hidden layers 
-learning and momentum coefficients 

Shokrollahi et al. 2013 [40] Evolved Model by utilizing LSSVM Tr, MWC5+, (Xvol/Xint), composition of injected gas -Hyper-parameters of LSSVM method 
Tatar et al. 2013 [41] Intelligent developed model based on RBFN Tr, MWC5+, (Xvol/Xint), composition of injected gas -Objective function 
Sayyad et al. 2013 [43] Hybrid ANN model by using neural (POS) algorithm for forecasting MMP Tr, reservoir fluid composition, and injected gas  

Composition 
-Number of hidden layers 
-Number of neurons 
-Weight 

Ahmadi and Ebadi 2014 [42] Fuzzy Model for prediction of CO2-MMP. Tr, MWC5+, (Xvol/Xint), Tc -Membership functions setting 
Zhong & Carr 2016 [44] Developed mixed new model based on SVR and POS algorithm Tr, MWC5+, (Xvol/Xint), average Tc -Objective function 

-Hyperparameters setting 
Karkevandi-Talkhooncheh et al. 

2017 [45] 
Evolved ANFIS model for prediction MMP of CO2-oil. Tr, MWC5+, Xvol, Xint, Tc -Membership functions setting 

- Hyperparameters selection 
Saeedi Dehaghani and Soleimani 

2020 [46] 
Four developed models (ANN, POS-ANN, ANN-TLBO, and SGB) Tr, MWC5+, Xvol, Xint, composition of injected gas -Number of neurons in hidden layers 

-Transfer function 
-Learning rate 
-Trees number 

Dargahi-Zarandi et al. 2020 [47] Three developed models (GMDH, MLP, and ABSVR) Tr, MWC5+, Xvol, Xint, composition of injected gas -Kernal function 
-Parameters optimization 
-Transfer function 
-Training algorithm 

Ghiasi et al. 2021 [48] Two developed models (hybrid-ANFIS and AdaBoost-CART) Tr, MWC5+, (Xvol/ Xint), composition of injected gas, Tc -Membership functions setting 
- Epoch number 
- Number of trees 

Chen et al. [49] Eight ML models Tr, reservoir fluid composition, and injected gas 
Composition 

-Hyperparameters selection 
-Cross validation 

Lv et al. [15] Eight intelligent evolved models Tr, MWC5+, Xvol, Xint -Data range 
-Parameter optimization 

Present work Five developed ML models for prediction MMP of pure CO2. A number of different parameters as listed in Table 2. - Hyperparameters selection 
- Random state setting  
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Afterward, adopting a loss function as being unaffected by the in-
fluence of ε, its objective function and minimum restrictions can be 
described as follows: 

1
2
||ω||2 + C

∑I

i=1

(
ξi + ξ∧i

)
(3)  

where C is a hyperparameter that determines the trade-off between 
maximizing the margin and minimizing the classification error that 
needs to be carefully tuned to achieve the right balance between model 
complexity and generalization performance [58]. 

As a result, the SVM model mentioned above is constrained by the 
following constraints: 
⎧
⎪⎪⎨

⎪⎪⎩

Yi − ωφ(xi) − b < ε + ξ∧i
φ(xi) + b − Yi < ε + ξi

ξi, ξ∧i > 0
(4)  

where, {ξi,ξ∧i } represents the slack parameters that measure the output 
characteristics’ divergence from the positive as well as negative classes. 

By utilizing the Lagrange function as the SVR’s linear situation and 
picking partial derivatives with regard to the main variables, they 

employed it to solve Eq. 3. Then, it can set the resultant derivatives to 
zero [59]. The answer is given by: 

MAX = −
1
2
∑I

i,j=1

(
αi − α∧

i

)(
αj − α∧

j

)
K
(
xi, xj

)
− ε

∑I

i=1

(
αi − α∧

i

)
+

∑I

i=1

(
αi

− α∧
i

)
Yi

(5)  

where, K(xi,xj) represents the Kernel Function that describes of the inner 
product 〈φ(xi)

⃒
⃒φ(xj)〉. The- Gaussian kernel is regarded as the most 

proper function of the kernel, which is also called the radial basis 
function [60]. It is described as: 

K(xi, xj) = (φ(xi)φ
(
xj
)
) = exp

(
− γ||xi − xj||

2
)

(6)  

where ||xi − xj||
2 is expressed as the square of the Euclidean distance that 

separates both feature vectors, and the Gaussian kernel width variable is 
denoted by γ. The regression function is generated by solving 3 with the 
constraint equation: 

f (x) =
∑I

j=1

(
αi − α∧

i

)
K(xi, x)+ b (7)  

where the calculation of b can be simply omitted by pretreatment and 
centralization of the data, eventually resulting in a bias of zero [61]. 

2.1.3. Decision trees (DT) 
DTs is an effective algorithm that applies to solving classification and 

regression problems based on data set splitting and was proposed by 
Breiman et al in 1984 [62]. DTs have been widely utilized in variable 
selection, data manipulation, missing value management, and predic-
tion because of their simplicity, explainability, capability to provide 
visual analysis, and low processing cost [61,63]. The DTs algorithm 
consists of roots, internals, and leaves or nodes connected by branches 
[64]. Each terminal node, or leaf, has a basic regression model linked to 
it that only applies to that node. After the induction process is complete, 
pruning may be used to improve the tree’s generalization capability by 

Fig. 1. The principle of the hyper-plane and margin boundaries in SVR.  

Table 2 
Statistical data for all dependent and independent parameters for three data types.  

DATASETS INPUT PARAMETERS MIN MAX MEAN STD 

TYPE 1 Temperature (◦C) 32.2 137.22 71.26585 26.37 
Mwc+5 136.17 391 208.2946 41.91 
XVOL/XINT 0.14 13.61 2.062827 2.46 
MMP (MPa) 6.89 42.5 17.50536 7.47 

TYPE 2  Temperature (◦C) 8.95 130 84.74073 25.97 
Composition of injected gas(Mol%) HXN2 0 80.1 3.361 14.44 

HXCO2 0.59 100 54.049 40.604 
HXH2S 0 50 4.196 10.113 
HXC1 0 85.34 22.584 25.605 
HXC2~C6 0 58.442 15.77165 17.95 
HXC7+ 0 0.98 0.020394 0.096 

Component of crude oil (Mol%) XVOL 4.405 54.98 19.77289 11.61 
XINT 2.63 58.15 26.012 13.107 
XC5~C6 1.909 11.19 6.755 2.30 
XC7+ 19.59 80.75 47.45 21.31 
MWC7+ 153.9 402.7 227.93 46.94 
MMP (MPa) 6.55 41.47 21.11 8.083 

TYPE 3 Temperature (◦C) 73.88 148.8 102.95 15.53 
XVOL 17 49 32.42 6.67 
XINT 18 37 24.96 3.83 
Mwc+6 156 450 271.95 77.86 
XC6+ 21.9 54.4 38.5 7.5 
API 18.5 45.9 27.73 6.667 
Sp.gr 0.8 0.94 0.889 0.034 
Pb (MPa) 7.49  24.15  16.84  4.24 

MMP (MPa) 22.56 58.94 33.74 9.753  
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eliminating structural complexity. The pruning criterion might be the 
number of cases in nodes [61]. Typically, the processes of DTs begin at 
the root node, which is placed at the top of the tree. The root node 
carries out operations on the input data, while the leaf is responsible for 
delivering the output data. Data begins to flow from the root node to 
internal nodes, then to leaf nodes. As a result, the model resembles an 
upside-down tree [34]. 

As elaborated by Breiman[62], The major acts in a DT’s development 
phase are splitting, pausing, and pruning. The first operation of DT is 
splitting, which attempts to supply the optimal splitting for the depen-
dent properties. The advancement phase begins by splitting the training 
data at the root node. The- splitting progresses to internal nodes. The 
dividing procedure will continue until the set halting requirements are 
met. In addition, the pruning strategy tries to reduce the intricacy of the 
tree, and prevent overfitting [34]. In DT, the goal of optimal splitting is 
to maximize purity while minimizing impurities. 

Δi(s, t) = i(t) − pli(tL) − − pri(tr) (8)  

where, s denote the nominee split at node t, and the node t is split by s 
into the left of the child node tl with a ratio of pl, and the right of the child 
node tr with a ratio of pr.i(t) is the measurement of the impurity before 
splitting, i(tl) and i(tr) are the measurement of the impurity after split-
ting, and Δi(s,t) is the measurement of the reduction in impurity from 
split s. 

The most prevlant approximations for computing the impurity is Gini 
index for measuring i(t), which can be described it by the following Eq. 
(9) [62]: 

GI

(
tX(xi)

)
= 1 −

∑n

j=1
f
(

tX(xi)
, j
)2

(9)  

where f(tX(xi )
, j) is the fraction of datasets with the value xi that belong to 

leave j as node t. The criterion of decision tree splitting is depending on 
selecting the feature with the minimum Gini impurity index. 

2.1.4. Random forest (RF) 
After 17 years of introducing the decision tree approach, Breiman 

presented an RF as a more powerful model in 2001[65]. RF is a super-
vised machine learning technique that is commonly utilized in re-
gression and classification issues that incorporates the performance of 
many DT algorithms to generate classification or prediction models 
[65,66]. When the RF gets the input vector (S), containing the values of 
the various evidentiary characteristics examined for a specific training 
region, it generates N regression trees and mean values of the findings. 
After growing N such trees {T(S)}, the predictor of the RF regression is 
expressed by Eq. (10): 

f̂
N
rf (S) =

1
N

∑N

n=1
T(S) (10) 

RF algorithm theory is constructed on two concepts: random feature 
selection and bagging[67]. To prevent the links between the various 
trees, there is an important approach to carry out this process called 
bagging, which assists in the construction of diverse training data sub-
sets and leads them to develop depending on the original training data. 
Bagging is a process for creating training data that involves randomized 
resampling of the existing dataset by replacing without deleting the data 
picked from the input data set for producing the next subset “{h (x,ΘN), 
n = 1,…,N}”, where {ΘN} represents the random variable vectors with 
the same distribution [61]. As a result, some of the data might be used 
several times throughout the training, whereas others might never be 
utilized. Consequently, higher stability is gained, since it renders it more 
durable in the face of minor deviations in input data, while also 
increasing forecast accuracy. Another interesting feature is that RF 
classifier trees develop without pruning, rendering them computation-
ally light [61,65]. To reduce the generalization error and the relation 

between the trees, the RF chooses input data at random rather than 
selecting the best data set. 

The establishment of the forest tree requires choosing the sub-feature 
from the original feature haphazardly. Afterward, different splitting 
ways are carried out selecting the best feature at the root node, and the 
inside node tests are picked using the same splitting strategy till the 
leaves are reached. “Out of Bag” (OOB) means the part of the dataset 
that is excluded from the training, but these data have another function 
and are utilized to assess the model’s performance. Therefore, the pos-
itive thing about the RF is that it doesn’t require a validation assessment 
[15,68]. Furthermore, the predicted OOB output for data S is provided 
below: 

HOOB(S) = argmax
∑N

n=1
I(h(S) ) = y (11) 

And the following equation is used to compute the error of the OOB 
dataset: 

βOOB(S) =
1
|D|

∑

s,y∊D
I
(
HOOB(S) ∕= y

)
(12) 

Finally, the RF algorithm’s randomness operation is governed by the 
variable q, which is defined as q = log2 d. The following formula is 
employed to compute the feature importance of the variable Si: 

I(Si) =
1
N

∑N

t
OBBERRti

− OBBERRt (13)  

where Si represents the ith factor of the vector S, N describes the number 
of trees in the model, OBBERRti 

signifies the estimated error of the 
permuted Si sample’s OOB samples in tree t, and the first OOB samples 
are displayed as the OBBERRt , which includes the subset parameters. The 
permutation importance procedure demonstrates how much a feature is 
beneficial for the prediction. As a result, a trivial practical characteristic 
has no or little effect on network forecasting. 

2.1.5. K-Nearest Neighbors (KNN) 
The KNN approach is known as one of the most basic and non- 

parametric supervised machine learning techniques, which can be 
employed for both regression and classification [69]. The input variables 
in regression and classification comprise the positive integer k nearest 
training datasets inside a feature space. Typically, the forecasted data 
sample’s output value is calculated by taking the mean of its k closest 
neighbors[69–71]. 

Y =
1
k

∑k

i=1
Yi (14)  

where Yi is the ith instance in the sample of examples and Y is the query 
point’s expectation (output). However, compared to regression, KNN 
predictions in classification problems are dependent on a voting me-
chanism, with the winner used to classify the query. Euclidean distance 
measuring is widely used in this technique to predict. Therefore, 
Euclidean distance between the sample instances and the query point 
must be specified in order to make predictions with KNN, which may be 
computed as follows [69,72]: 

D(x, y) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Si(xi − yi)
2

√

(15) 

Significantly, the primary advantages of the KKN method are its 
simplicity in tackling complicated tasks, efficacy, intuitiveness, and a 
wide variety of applications. Additionally, it is effective with large 
amounts of training data and can cope with noisy training datasets 
efficiently [70,71]. 
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2.2. Concept of computational approach 

Real pressure, volume, and temperature PVT is crucially required 
during reservoir modelling. Equations of state (EOS) are considered 
important techniques for thermodynamic and mathematical modeling of 
fluid-phase behavior, and PVT results are utilized to tune these equa-
tions. Typically, Cubic equation of state is one of the most widely used 
techniques for determining the fluid-phase behavior of reservoir oil that 
was developed by Van der Waals in 1873 [26,73,74]. Several equations 
of state have been proposed by many authors. As stated in the literature, 
one of the most effective and accurate equations is Peng-Robinson[75], 
which agrees well with the experimental findings [76], as specified 
below: 

1- The general formulation of cubic EOS can be expressed as follow: 

f (P, V, T) = 0 

2- The equation of Peng-Robinson can be described as follow: 

P =
RT

V − b
−

a(T)
V(V + b) + b(V − b)

(16)  

a(T) = acα(T) (17)  

ac =
0.45724R2T2

c

PC
(18)  

α(T) =
(

1 + m
(

1 −

̅̅̅̅̅
T
Tc

√ ))2

(19)  

b =
0.07780RTC

PC
(20)  

m = 0.37464+ 1.54226ω − 0.26992ω2 (21)  

where T, P and V indicate temperature, pressure, and volume, respec-
tively. R, Tc, Pc and denote standard gas constant, critical temperature, 
and pressure, respectively. 

Frequently, the variables of the equation of state (EOS) must be 
adjusted (tuned) prior to producing useful reservoir predictions. During 
calibration, the variables of the EOS adjust to ensure that the forecasts 
correspond to a wide range of experimental data. Furthermore, WinProp 
is one of the common software components in the CMG program that 
will be used to construct a PVT model by using EOS and thermody-
namics in order to predict MMP after achieving optimal matching. Based 
on that, the most common techniques for calculating MMP are mixing- 
cell approaches, which are employed in a variety of commercial prod-
ucts[15,77]. In this study, three-parameter Peng-Robinson (PR) 
employed to estimate MMP by using multiple mixing cell approaches. 

2.2.1. Cell-to-cell (multiple mixing cell) concept 
This technique suggested by Ahmadi and Johns [78] for MMP pre-

diction is based on the concept of separating the fluid system into many 
mixing cells, each reflecting a distinct step of the miscibility process, 
which depends on one of the EOS types. Typically, in this method two 
cells employes at first calculation of MMP for CO2. The fluid is consid-
ered to flow successively through these cells, with mass transfer occur-
ring between them to achieve phase equilibrium. Generally, each cell’s 
fluid composition is estimated using mass balance and phase equilib-
rium formula Z = Xo + α(YG − Xo). Iterations are performed till a spe-
cific convergence threshold is fulfilled. The pressure and composition of 
the fluid in the initial cell are modified to represent the injection of CO2 
into the reservoir. Once the fluid composition and pressure in the first 
cell are known, they can be used to determine the pressure and fluid 
composition in the next cell. By comparing the fluid composition at the 
final stage of the steps to the starting composition, the miscibility of the 
oil and injection gas is calculated. The fluids are deemed miscible when 
the variance between their beginning and final compositions is less than 
a particular threshold, and their corresponding pressure represents the 
minimum miscible pressure, as implied in Fig. 2. In this work, CMG 
software has been employed to estimate the minimum miscible pressure 
for CO2 injection. 

Fig. 2. Demonstration of the stages of MMP calculation by the multiple mixing method.  
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2.3. Model assessment techniques 

Various mathematical parameters were employed to evaluate the 
competency and accuracy of the created models. To assess the perfor-
mance of the established models, the most important variables have 
been utilized to evaluate the models of prediction MMP, such as absolute 
percent relative error, mean absolute error, mean square error, coeffi-
cient of determination (R2), and median. In order to achieve further 
evaluation, kernal density estimation (KDE), Akaike Information Crite-
rion (AIC) and Bayesian Information Criterion (BIC) have been used to 
provide a trade-off between model complexity and goodness of fit, 
which are shown below in the following equations [61,70,79]:  

▪ Absolute Percent Relative Error (APRE) 

APRE =
1
V

∑v

i=1

⃒
⃒
⃒
⃒

(
MMPi,EXP − MMPi,PRED

MMPi,EXP

)⃒
⃒
⃒
⃒× 100 (22)    

▪ Mean Absolute Error (MAE) 

MAE =
1
V

∑v

i=1
|MMPi, EXP − MMPi, PRED| (23)    

▪ Root Mean Square Error (RMSE) 

RMSE =
̅̅̅̅̅̅̅̅̅̅
MSE

√
=

1
V

∑v

i=1
(MMPi,EXP − MMPi,PRED)

2 (24)    

▪ Coefficient of determination (R2) 

R2 = 1 −
∑V

i=1(MMPi,EXP − MMPi,PRED)
2

∑v
i=1(MMPi,EXP − M̂MP)2 (25)    

▪ Median (MED) 

MED = median(|MMPi,EXP − MMPi,PRED| (26)    

▪ Akaike Information Criterion (AIC) 

AIC = − 2 ln(likelihood)+ 2LN (27)    

▪ Bayesian Information Criterion (BIC) 

BIC = − 2 ln(likelihood)+ [ln(n) ]LN (28)    

▪ Kernal density estimation 

KDE is a non-parametric method of estimating the probability den-
sity that may be used to both analyze data and draw conclusions about a 
sample or larger population. [80]. 

Where MMPi,EXP and MMPi,PRED represent experiment and predicted 
values of MMP, respectively, M̂MP represents the average of MMP, 
while V signifies the total number of points in data. Likelihood is a 
measure of how well the model fits the data in both AIC and BIC, with LN 
indicates the number of free parameters in the model, which often in-
cludes coefficients, intercepts, and other model-specific factors, and n is 
the number of samples in the dataset. 

2.4. Data normalization 

As stated in literature [44,81,82], appropriate normalization of input 
database before training process may minimize error rates and training 
durian. As a result, database normalization is a necessary stage in pre-
paring data. In this investigation, an absolute scale is employed. The 

following is the normalized formula: 

Xnorm
i =

[
Xoriginal

i − Xmin

Xmax − Xmin

]

(29)  

where Xnorm
i represents normalized input values, Xmax and Xmin describe 

the maximum and minimum for input database, Xoriginal
i indicates to the 

original input database. The value of normalized input data is ranging 
from 0 to 1. The goal of normalization is to reduce the divergence of the 
data, which leads to reduce error estimation. 

3. Database processing 

According to previous studies, the MMP of CO2 injection is controlled 
by some major parameters. The most important effect parameters that 
have been discussed in the literature include the molecular weight of the 
C5+ component, the light oil components (XVOL are composed of C1 and 
N2), and the intermediate oil components (XINT are composed of C2~4, 
CO2, and H2S). Whereas this study is an extension of past research in this 
field. In this work, three various sorts of data were employed to execute 
the pure CO2 MMP prediction utilizing certain machine-learning tech-
niques. Two kinds of data with experimental MMP values have been 
gathered from the literature, containing around 147 and 197 points, 
respectively [18,22,79,83]. The third category has been collected from 
different Iraqi fields to detect the influence of other parameters on 
forecasting MMP. The first type of data includes three independent 
variables (molecular weight of the C5+ component, the ratio of light oil 
components (XVOL are comprising of C1 and N2) to intermediate oil 
components (XINT are comprising of C2~4, CO2, and H2S) as input data, 
as documented in Table.1 the distribution of the data, which contains 
around 147 points. The second kind of data includes the composition of 
gas injection, light oil components, intermediate oil components, and 
the molecular weight of C7+. The reason behind using the second 
category of data is to reveal the impact of the composition of the injected 
gas on predicting MMP. The third sort of data, with a total of 28 points 
and containing other new independent parameters (input parameters) 
such as API, specific gravity, and molecular weight of C6+, and bubble 
point pressure (Pb), was gathered from reports of certain Iraqi fields and 
some theses by Hameed A. and Jani G. [84,85], that were published in 
the libraries of the University of Baghdad and the University of Tech-
nology, Iraq. Typically, 26 points have MMP values that were computed 
by Hameed A. and Jani G. [84,85] using computational software 
(Eclipse- PVTi) because these data don’t have experiment MMP values. 
However, two points of the report data don’t have MMP values, which 
these were determined by creating a PVT model for each report by 
choosing the equation of state (“EOS-Peng-Robinson 1978”) and using 
computational software from Computer Modelling Group Ltd. (CMG) 
(WINPROP) [86]. The significance of including this type of data and 
taking plenty of variables into account is to figure out the influence of 
these factors on the prediction of MMP, as well as to compare the per-
formance estimation of MMP from the computational model with ma-
chine learning techniques. As shown in Figs. 3 and 4, the relationship 
coefficient evaluation between the independent parameters and the 
output parameter (MMP). Obviously, Fig. 5, Fig. S1, and Fig. S2 display 
the more correlated parameter with output (MMP) for each database. 

As a matter of fact, the objective of using multiple kinds of data is to 
investigate a broad spectrum of effect features on prediction MMP and 
compare the accuracy of ML with diverse methodologies such as ex-
periments, empirical correlations, and computational modeling. After 
data gathering, five reliable machine learning algorithms were applied 
to the MMP estimation of pure CO2. Finally, this work has been imple-
mented by Python Language Programming V3.11.1 by using the Spyder 
Platform. Additionally, a sensitivity study has been performed to iden-
tify the factors that influence MMP expectations. 
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4. Results and discussion 

In this study, five machine-learning techniques were employed with 
several types of data to reveal the performance of ML techniques 
compared with other approaches and to investigate the mechanism 
impact of important parameters on MMP estimation. Moreover, the 
assessment of these models was carried out by comparing them with 
various results of correlation and either computational model, and the 
major goal of these models is to have the lowest mean square error 
(MSE), AIC, BIC and mean absolute error (MAE) as well as the highest 
(R2). The input parameters of each data type have different independent 
parameters (functional parameters), as listed in Table 3. The MMP was 
projected as a function of all input factors of the data. Consequently, 
numerous runs with different hyperparameters were tested in order to 
achieve optimal results for SVR, KNN, DT, and RF. 

4.1. Models development 

In this work, there are two kinds of MMP in the data values that have 
been employed: the first is an experiment value, and the second is 
computed by a computational model, as illustrated in the following: 

4.1.1. ML and PVT model development 
Typically, several kinds of Equation of state (EOS) proposed by some 

authors that used to make a PVT model [26]. In this work, Equation of 
state (PR-EOS- “Peng-Robsonin”[75]) was employed to compute MMP 
for two points by using computational program (CMG-WINPRONP[86]) 
for data type (3), which the aim to perform this section is to compare the 
effectiveness of ML with computational methods, as demonstrated in 
Fig. 6. After importing the required data from the differential liberation 
(DL) laboratory and other fluid physical properties to software, 
numerous trials have been carried out in order to discover an appro-
priate fit with the observed vales of the DL by modifying and tuning 
some important main parameters of PR-EOS, such as Pc,Vc, Tc, acentric 
factor, Volume shift, and molecular weight as well as changing the 
weight percent of some parameters to fulfill optimal matching. Figs. 7 
and 8 shows the difference of calculated results before and after 
regression processes for PVT experiments data. Fig. 9 demonstrates how 
the MMP is calculated through the utilization of the multiple mixing cell 
technique. This method indicates the point at which CO2 becomes 
miscible with oil, causing the calculation process to halt, and providing 
the value of the MMP at that stage. In reality, the process of adjusting 
variables during regression in EOS takes a long time to yield satisfactory 
results. In comparison to computational approaches, ML needs a short 
time (around 15 s) to anticipate MMP. 

4.1.2. ML development processes 

4.1.2.1. Data normalization and splitting. Data normalization and split-
ting are crucial processes before carrying out ML calculations. In this 
study, before carrying out the model run, data normalization has been 
utilized to eliminate the divergence values within the data and make all 
the values converge on each other’s in order to reduce the error esti-
mation and avoid overfitting during model training. Consequently, 
splitting the data is necessary before running the model to confirm its 
accuracy, and the data was divided into 20% for testing and 80% for 
training, as implied in Fig. 6. 

Fig. 4. Heat map implying the correlation between input and output variables for datasets (2) and (3).  

Fig. 3. Heat map implying the correlation between input and output variables 
for dataset type (1). 
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4.1.3. Hyperparameters setting 
During carrying out the run of ML models, several trials have been 

executed to acquire the optimal choice of hyperparameters. As high-
lighted in Table 4, the hyperparameter settings change for each data set, 
implying that they are not identical for each data set. As is clearly noted, 
the accuracy of SVR technique outcomes is largely dependent on the 
appropriate selection of hyperparameters such as C, gamma (ɤ), and 
epsilon (ε). Significantly, the most popular sort of kernel function in SVR 
that produced superior results was the radial basis function (RBF). 

4.2. Models comparison 

4.2.1. Case 1: Comparison of ML models with (Experimental and empirical 
correlations) 

In this part, data types (1) and (2) have been taken to contrast the 
performance approaches for the prediction MMP of pure CO2. In order to 
compare the results of ML with other approaches, two existed 

correlations [18,31] were employed to estimate the MMP for pure CO2 
injection. The visual graphs, as shown in Fig. 10, exhibit the assessment 
of the anticipated MMP findings for each ML approach and two existing 
correlations for each data types. Based on these figures, the proposed 
models can be evaluated visually by observing the scatter points that are 
closest to a 450 (X = Y) line. Furthermore, the closer scatter points for 
any approach to line 450 indicate the robustness of the MMP predictive 
model. Visibly, Fig. 10 a and b depict the cross plots of training and 
testing between projected ML models and experiments for data type (1), 
demonstrating that the DT and SVR techniques are the most two effec-
tive methods for obtaining closer points and meeting satisfactory out-
comes. At the same data type, Fig. 10 c displays the cross plot for the 
whole data points between two empirical correlations and experiments, 
where the majority of the points are not aggregated around line 450. For 
data type (2) with different input parameters, Fig. 10 d and e imply cross 
plots of training and testing between anticipated ML models and ex-
periments, and the results show that RF and KNN were the top two 
approaches among ML methods that generated closer points to line 450. 
Simultaneously, the outcomes of prediction MMP by literature correla-
tions demonstrate that a large number of the points are located distant 
from the diagonal line, as implied in Fig. 10 f Based on the graphical 
plots aforementioned, it is possible to infer that all ML techniques 
perform proficiently with low error accuracy for estimating MMP when 
compared to various correlations. 

Fig. 5. A pair plot showing the clear regression correlation between input and output variables for dataset (1).  

Table 3 
Independent parameters for each data type for predicting MMP.  

Data type Independent variables (input parameters) 

TYPE 1 T, MWC5+, XVOL/XINT 

TYPE 2 Injected gas composition, T, MWC7+, C7+, XVOL, XINT 

TYPE 3 T, XVOL, XINT, MWC6+, Sp.gr, API, Pb  
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4.2.2. Case 2: Comparison of ML models with (Computational and 
empirical correlations) 

This part was included in this research to compare the efficacy of ML 
methods for MMP prediction with a computational methodology. 
Furthermore, data type (3) lacks experiment values for MMP because the 
experiment test is costly; consequently, it is preferable to execute a 
computational model because it might represent a real fluids condition 
rather than an experiment. Even though the computational processes 
might require a long time to obtain the matching, it is necessary to 

examine the effectiveness of ML for forecasting MMP and compare it 
with the computational method because ML processes require a short 
time, thus it can be argued that it is not expensive. Fig. 11 highlights a 
comparison between predicted ML models and computational model. As 
implied in Fig. 11 a and b, the two highest-ranking ML algorithms to 
anticipate MMP for testing and training data that has accumulating 
points on the diagonal line are KNN and SVR. Nonetheless, Fig. 11 c 
depicts forecasting MMP using correlations against a computational 
model, where the vast majority of the points are far from the diagonal 

Fig. 6. Shows the flowchart of ML and computational model processes.  

Fig. 7. Shows the tuning regression between observed and calculated values.  
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line, indicating that correlations may have poor accuracy in predicting 
CO2-oil MMP in certain circumstances. Regarding these findings, it is 
reasonable to state that ML techniques are particularly appropriate for 
estimating MMP at low cost and in a short period of time. 

4.3. Performance of ML models 

Following the completion of the training operations, the anticipated 
regression models were created. The well-trained models will be eval-
uated with the testing data set (20% of the data) that was not included 
during the training procedures in order to validate the model’s potential 
generalization and reliability. For further clear assessment, the histo-
gram of error distribution was used to explore the range of precision of 
testing ML- models to determine MMP of pure CO2. Based on that, 
Fig. 12 presents the error distributions of data type (1), which indicate 
that DT, RF and SVR have the best distributions because the majority of 
their values are closer to zero and their lowest error margin range is 
around (-0.2–0.3). For data type (2), Fig. 13 represents the accepted 
error of ML algorithms for three methods, including SVR, RF, and KNN. 
The best ML technique was SVR because virtually all of its points are 
centered around zero with an error margin of (-0.2–0.25), whereas RF 
and KNN have error margins of approximately (-0.4–0.25). As can be 
observed in Fig. 14, KNN and SVR are the most efficient ML approaches 
for data type (3) that fulfill the error distribution conditions that were 
mentioned before. 

Fig. 8. Implies the error reduction after performing regression processes.  

Fig. 9. MMP calculation via using multiple mixing cell (MMC) by CMG- WinProp software.  

Table 4 
Optimal Hyperparameters for some ML methods of each datasets.  

Data Type Method Optimal setting Hyperparameters 

DATA 
TYPE 1 

RF N - estimators Random state N -jobs 
1000 20 − 1 

DT Max depth Random state 
150 80 

SVR Kernel Function Gamma (ɤ) Epsilon (ε) C 
RBF 0.1 0.21 250 

DATA 
TYPE 2 

DT Max depth Random state 
130 80 

SVR Kernel Function Gamma (ɤ) Epsilon (ε) C 
RBF 0.00001 0.1 212.14 

DATA 
TYPE 3 

DT Max depth Random state 
90 20 

SVR Kernel Function Gamma (ɤ) Epsilon (ε) C 
RBF 0.1 0.09 780  
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4.4. Statistical evaluation 

Numerous ML algorithms were used in this research to anticipate the 
MMP for pure CO2 injection based on experimentation data in order to 
examine the reliability of ML approaches for MMP prediction with 
different conditions. Additionally, the existing correlations were used to 
validate or compare the competence of ML models with other tech-
niques. Moreover, to further assess and compare the efficacy of various 
MMP forecasting techniques for three groups of data, a number of sta-
tistical evaluation variables have been utilized. According to the results 
in Table 5, the findings of the average statistical assessment parameters 
indicate that the best two approaches to ML with an ideal value of 

regression evaluation for data type (1) are DT and SVR, which have the 
highest coefficient of determination (R2) of 0.95 and 0.94 respectively, 
and the lowest MSE of 3.12 and 3.53 respectively. For data type (1), the 
following order shows that MLR provides the lowest accuracy values 
among ML methods: DT > SVR > RF > KNN > MLR. Based on functional 
group for data type (2), the top two techniques of ML that provide the 
best precision are KNN and RF with highest coefficient of determination 
(R2) of 0.93 and 0.92 respectively, and the lowest MSE of 3.36 and 3.91 
respectively as shown in the following arrangement: KNN > RF > SVR >
DT > MLR. The KNN and SVR have the best statistical characteristics for 
data type (3), as demonstrated in the following sequence: KNN > SVR >
MLR > RF > DT. The KNN and SVR also have the greatest coefficient of 

Fig. 10. Shows the results of prediction MMP for (a) ML models vs. measured as function of data type (1) for training, (b) ML models vs. measured as function of data 
type (1) for testing, (c) Empirical correlation vs. measured as function of data type (1), (d) ML models vs. measured as function of data type (2) for training, (e) ML 
models vs. measured as function of data type (2) for testing, (f) Empirical correlation vs. measured as function of data type (2). 
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determination (R2) of 0.99 and 0.95, respectively, and the lowest MSE of 
0.09 and 0.62, respectively. Nevertheless, for data type (3), the accuracy 
assessment for training data was greatest and the testing was lowest, 
leading to a low total accuracy evaluation, suggesting that the values are 
not enough to generate the best regression, despite DT having the 
highest degree of accuracy appraisal based on the functional groupings 
for data type (1). It has been observed that SVR was creating an 
acceptable level of precision for data type (3) on account of its effec-
tiveness for small data, as is mentioned in the literature [87]. 

Depending on the overall visualization for absolute percent relative 
error (APRE), as shown in Fig. 15, the evaluation outcomes showed the 
effectiveness of three advanced ML methods: KNN, SVR, and DT for 
prediction MMP. As illustrated in Fig. 16, the kernel density estimation 
of all used models, of which most produce satisfactory outcomes when 
compared to the real test data. Practically, SVR and KNN achieve a 
better match with the KDE of the real data set for all three types of 
databases. For further evaluation, AIC and BIC have been employed in 
this study to investigate the compatibility of the models, with lower 
values implying better model fit and lesser complexity. Furthermore, 
Fig. 17 a and b demonstrate that KNN has the lowest AIC and BIC for all 
datasets, indicating KNN has an appropriate fit and is less complex 
compared with other models. 

On the other hand, the findings of statistical assessment for MMP 
estimation using empirical correlations demonstrated the poor effi-
ciency of some correlations to compute MMP due to their impact on 
specific variables and their incapacity to compute under a wide range 
condition, as noted in Table 6. Based on that, it can be observed that the 
parameter assessment for Yelling and Mectalfe’s [18] correlation pro-
vided adequate MAE, MSE, MED, and R2 values for data type (1). 
However, the appraisal variables for data type (2) demonstrated the 
inefficiency of Yelling and Mectalfe’s [18] correlation to estimate MMP 

for a broad range of circumstances. Therefore, it might be concluded 
that the most significant correlations can only be applied to specific 
instances and not to various situations. In general, all graphical analyses 
and statistical evaluations confirmed the efficiency of some ML methods 
without limitations in comparison to other methods. Thus, it can be 
argued that ML approaches are appropriate for anticipating MMP with 
acceptable accuracy and without restrictions. 

4.5. Predictability of models 

To evaluate the predictability of machine learning (ML) models for 
MMP prediction across a wide pressure range, dataset type (2) was 
selected. This dataset consists of a broad pressure range, which was 
further divided into three pressure intervals: (6–15) MPa, (15–25) MPa, 
and (25–41) MPa. The root mean square error (RMSE) was employed as 
a metric for comparison. According to the results in Fig. 18, the ML 
models showed the lowest average RMSE within the pressure range of 
6–15 MPa. This finding suggests that as MMP increases, the accuracy of 
ML models tends to slightly decline. On the other hand, as remarked in 
certain literature, it has been observed that there may be variations in 
findings when utilizing temperatures in Celsius and Fahrenheit mea-
surements. However, it is crucial to emphasize that this possible vari-
ance was carefully explored in the research. Consequently, the results 
have confirmed that there is no significant difference between the ob-
tained outcomes. 

4.6. Sensitivity analysis 

4.6.1. Relevancy factor 
To analyze the effect of each input parameter on the projected MMP 

value, a variable impact study was performed using the relevance factor 

Fig. 11. Shows the results of prediction MMP for (a) ML models vs. computational model as function of data type (3) for training, (b) ML models vs. computational 
model as function of data type (3) for testing (c) Empirical correlation vs. computational model as function of data type (3). 
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Fig. 12. Error distribution of the ML approaches as function of data type (1) for testing.  

Fig. 13. Error distribution the ML approaches as function of data type (2) for testing.  
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(RF). The following equation [15,88] computes the relevance factor for 
every parameter: 

RF(XJ , Y) =
∑n

i=1

(
XJ,i − XJ

)
(Yi − Y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(XJ,i − XJ)

2∑n

i=1
(Yi − Y)2

√ (30)  

where XJ,iand XJ signify the i-th and average number of input J, 
respectively, while Yi and Y indicate the i-th and average number of 
MMP output, respectively. For any input parameter, this method pro-

duces a value ranging from − 1 to 1. Negative and positive numbers 
represent the inverse and direct connections between the input and 
output variables, respectively. The maximum absolute value indicates 
the greatest importance of an input parameter. A sensitivity study was 
performed to further detect the relation between the independent fac-
tors and the prediction of MMP. Throughout this investigation, the 
impact of independent parameters on forecasting MMP by using ML 
techniques has been verified. The findings of sensitivity analysis of 
dependent variables for each type of data are implied in Figs. 18-20. As 
demonstrated in Fig. 19, for data types (1), reservoir temperature, mo-
lecular weight of C5+, and the ratio of volatile and intermediate com-
ponents have an obvious correlation with MMP, and among other 
factors, temperature has a significant influence on model predictions, 

Fig. 14. Error distribution the ML approaches as function of data type (3) for testing.  

Table 5 
Statistical assessment of developed ML models for predicting MMP with various 
data.  

DATASET METHOD Average Statistical Parameters between (Training set and 
Testing set) 

MAE MSE MED R2 

TYPE 1 MLR 2.35 11.20 1.69 0.81 
DT 0.47 3.12 0.005 0.95 
SVR 0.72 3.53 0.21 0.94 
RF 1.15 3.88 0.602 0.93 
KNN 0.55 4.71 0.005 0.92  

TYPE 2 MLR 1.80 6.58 1.25 0.88 
DT 1.15 5.82 0.65 0.89 
SVR 1.55 5.36 1.10 0.90 
RF 1.11 3.91 0.69 0.92 
KNN 0.93 3.36 0.55 0.93  

TYPE 3 MLR 0.57 0.53 0.44 0.78 
DT 0.59 0.92 0.76 0.64 
SVR 0.29 0.12 0.28 0.95 
RF 0.62 0.56 0.67 0.76 
KNN 0.09 0.02 0.11 0.99  

Fig. 15. Total comparison between ML methods for each data type.  
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with a relevance value of 0.74. 
Consequently, as shown in Fig. 20 for database (2), all compositions 

(HXN2, HXH2S, HXC1, HXC2~C6, HXC7+) in injected gas, temperature, 
MWC7+, volatile components (XVOL) and intermediate components 
(XINT) in crude oil have a positive relationship with MMP, while XC5~C6 
and XC7+ in crude oil have a negative relationship with MMP. Among 
these parameters, some compositions of injected gas, HXC1 and HXC2~C6 
have the greatest effect on MMP, followed by the impact of temperature, 
and the influence of HXN2 and HXH2S is small. For additional clarifica-
tion, the effects of MWC7+, volatile fraction (XVOL) and intermediate 
components (XINT) in crude are less significant than the gas injection’s 
chemical composition. In the parameter interval, every impacting fac-
tor’s level of effect on MMP is listed in descending sequence: HXC1 >

HXC2~C6 > temperature > XVOL > MWC7+ >HXC7+ > XINT > HXH2S >

HXN2. 
Another sensitivity analysis for database type (3) included new 

functional parameter groups such as sp.gr, Pb, API, viscosity, C6+, and 
MWC6+, as illustrated in Fig. 21, which demonstrates these factors 
(temperature, sp.gr, viscosity, XVOL, XC6+, and MWC6+) have a positive 
effect on prediction of MMP. In contrast, API, Pb, XVOL, and XINT have a 
negative impact on MMP estimation. The following descending order 
shows the importance degree for independent parameters: Temperature 

Fig. 16. Comparison of all models’ kernel density estimation performance between real data and expected outcomes for each dataset.  

Fig. 17. Illustration of the performance of ML models depending on (a) AIC and (b) BIC.  

Table 6 
Statistical assessment of empirical correlations for predicting MMP with various 
datasets.  

DATASET METHOD MAE MSE MED R2 

TYPE 1 Alston et al.[27]  3.75  43.1  1.61  0.73 
Emera et al.[31]  2.48  17.19  1.28  0.78 
Yelling and Mectalfe [18]  4.32  46.77  2.09  0.91  

TYPE 2 Glaso[28]  5.2  45.57  4.32  0.92 
Yelling and Mectalfe  6.19  70.51  4.61  0.65  

TYPE 3 Alston et al.  13.09  382.71  8.39  0.67 
Emera et al.  9.58  173.87  7.05  0.76 
Cronquist[24]  10.26  266.77  5.31  0.63  

Fig. 18. Performance comparison for the ML models between different ranges 
of MMP. 
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> sp.gr > MWC6+ > viscosity > XVOL > XC6+ > Pb > XINT > API. 

4.6.2. Shapely explanation plot (SHAP) 
The Shapley graph is one of the most valuable tools to define or 

interpret the influence of each attribute parameter on the output of a 
machine learning model. The plot’s y-axis displays the relevance of each 
feature; the features at the top have the most effect on the output, while 
those at the bottom have less influence. Each characteristic is repre-
sented in the plot by a horizontal bar. The length of the bar represents 
the amount of the feature’s influence on the model’s output. Positive 
Shapley values (red) imply that the feature enhances output, while 
negative Shapley values (blue) indicate that the feature reduces output. 
Features of importance are listed on the y-axis of the plot. This can 
reveal which properties contribute the most impact to the model’s 
predictions. Because the KNN approach involves a parametric algorithm 
that is unable to apply in a shape plot, the SVR model was selected in this 
part to analyze the influence of parameters on the model’s predicting. 

Based on that, it can be observed in Fig. 22, Fig. 23, and Fig. 24 that the 
most important parameter that has a direct impact on the model’s 
output for all datasets is temperature. 

4.6.3. Physical parameter analysis 
In this section, dataset type (3) has been used to detect the behavior 

of independent parameters during the training of the model to predict 
MMP because this dataset has new parameters that are included in the 

Fig. 19. Sensitivity analysis for the impact of independent variables on MMP 
prediction for data type (1). 

Fig. 20. Sensitivity analysis for the impact of independent variables on MMP 
prediction for data type (2). 

Fig. 21. Sensitivity analysis for the impact of independent variables on MMP 
prediction for data type (3). 

Fig. 22. Shapely plot shows the summary of the input features on output of 
SVR model for dataset (1). 

Fig. 23. Shapely plot shows the summary of the input features on output of 
SVR model for dataset (2). 
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developed models. According to the pre-evaluation of the models, a KNN 
model has efficient reliability and good compatibility; hence, it was 
chosen for this purpose. As can be seen in Fig. 25, the majority of the 
physical parameters of the created model correspond to the actual data. 
For deep analysis, during CO2 injection for increased oil recovery, MMP 
increases when some parameters (reservoir temperature, molecular 
weight of hexane plus, volatile percentage and specific gravity) increase. 
Particularly, crude oil specific gravity has an impact on MMP; denser oils 
have greater MMPs, whereas less dense oils with lower specific gravity 
values have lower MMPs. In contrast, raising API, XINT, and C6 plus lead 
to a decrease in MMP. Typically, greater API values tend to achieve 
miscibility easily between oil and gas easily because higher API crude 
oils have lower viscosities. These tendencies are supported by the 
experimental trends of data points, which are shown for each figure. In 
addition, the findings are matched the concept of physical analysis in the 
literature [12,30,40,44,45,48]. 

For further analysis, the SHAP dependence plot was also utilized to 
investigate the physical trends and interactions between each parameter 
and the MMP using the SVR model based on dataset (3). As depicted in 
Fig. 26, it is observed that all the physical parameters in the SVR model 
show a similar trend as those in the KNN method. Moreover, these pa-
rameters effectively capture the well-documented physical trends 
observed in the literature. Fig. 27 clearly implies the mean absolute 
significant impact of each variable, highlighting temperature as the 
parameter with the highest effect on predicting MMP. 

4.6.4. Screening main impact factors 
This procedure involves progressively excluding one of the variables 

while maintaining the other parameters without modifying them during 
implementing the run and investigating the effect of this parameter on 
the accuracy of MMP prediction using ML. The coefficient of determi-
nation (R2) is used for evaluating the effect degree of the important 
parameters in estimating MMP. The following formulas determine the 
percentage of impact: 

Parameter Impact = R2 without removing − R2 af ter removing (31)  

Inf luencing Percentage(%) =
Parameter Impact

Total Parameter Impact
× 100% (32) 

The essential objective of this part is to detect the amount of influ-
ence of each main parameter on the precision of MMP prediction for all 
data sets. As can be observed in Fig. 28, The composition of the injected 
gas has the strongest influence among the independent factors on the 
prediction of MMP, at approximately 46%, followed by reservoir tem-
perature, molecular weight of C6+, molecular weight of C5+, molecular 
weight of C7+, and the volatile and intermediate components. Simulta-
neously, specific gravity factor was having a little positive effect on 
predicting MMP. 

5. Conclusion 

The determination of the minimum miscible pressure (MMP) is 
crucial for understanding the complex mechanics involved in CO2 in-
jection. Therefore, the primary objective of this study is to assess the 
effectiveness and reliability of machine learning (ML) approaches in 
predicting MMP for pure CO2 using a wide range of datasets and various 
parameters. To accurately address this issue, five ML models have been 
developed. The main contribution of this work is to investigate the 
impact of other parameters on the developed ML models and utilize 
unique evaluation methods for comparison. Based on the comprehensive 
evaluation, the study’s conclusions can be briefly described as follows:  

1. The research investigation showed that the DT model produced the 
optimum paradigm for estimating MMP with the lowest error metrics 
and highest determination coefficient (MSE = 3.12 and R2 = 0.95), 
followed by SVR, RF, and KNN models based on the dataset (1).  

2. Based on dataset (2), the KNN model provided efficient accuracy for 
forecasting MMP relying on the statistical evaluation with MSE =
3.36 and R2 = 0.93. In addition, the KNN model demonstrated strong 

Fig. 24. Shapely plot shows the summary of the input features on output of 
SVR model for dataset (3). 

Fig. 25. Physical analysis for all input parameter with actual and predicted MMP by KNN for dataset (3).  
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prediction as a function of the dataset (3) with MSE = 0.02 and R2 =

0.99.  
3. Depending on the findings of AIC, BIC, and KDE, the KNN model has 

the lowest values among ML methods, indicating KNN has low 
complexity and is an efficient fit for all trained models.  

4. To assess the predictability of ML models, the dataset was divided 
into multiple pressure ranges. The results of this analysis revealed 
that MLR (Multiple Linear Regression) technique showed lower ac-
curacy for the high-pressure range.  

5. The results of the physical sensitivity parameters illustrated that the 
ML model has captured the- physical standard compared with real 
data. As shown in the Shapely plot, the most impactful parameter 
that has a direct effect on MMP prediction for three datasets is 
temperature. 

6. The influence of relevant parameters on MMP prediction was veri-
fied, focusing on the entire composition of the injected gas, tem-
perature, molecular weight of C6+, and molecular weight of C5+. 
The investigation revealed that the gas composition parameters had 
the most significant impact, accounting for approximately 46% of 
the total effect on MMP prediction. However, further analysis indi-
cated that the inclusion of new components, namely Pb and API, as 
independent input parameters, had a negative impact on the pre-
diction efficiency of MMP. These results indicate that the gas 
composition parameters play a significant role; however, the addi-
tion of Pb and API as independent parameters does not improve the 
accuracy of MMP prediction.  

7. Hyper-parameters of each developed ML model are typically 
considered the limitations of these models to achieve the optimum 
accuracy, whereas tuning these parameters before training the 
models can have a significant impact on their performance and 
optimization.  

8. Overall, predictive models for precisely assessing MMP have the 
potential to significantly aid reservoir engineers and EOR practi-
tioners in improving CO2 injection operations. Moreover, future 
studies may focus on integrating additional features and using 
ensemble approaches to improve the accuracy and generalization 
capabilities of machine learning-based MMP prediction models. 
Particularly, the computing time needed to train all kinds of ML 
models stays under 15 s, making them more efficient than other 
conventional approaches that take longer to complete the same 
operation. 

Fig. 26. SHAP dependence plot for each input parameter for the SVR model based on dataset (3).  

Fig. 27. The mean absolute SHAP values for dataset (3)’s input variables.  

Fig. 28. Screening of main effect parameters on prediction MMP.  
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Appendix A 

Model application 

To make any developed model an accessible database for any new or developer user, in this study, five models of ML have been saved as digital 
models with the PKL extension that can be downloaded by any user. These models will improve the accuracy of the newly developed model based on 
the saved database, whereas the pre-evolved models will not need to be trained again; it is just a sequential step. The following steps are illustrated the 
procedure for using the currently developed model for any new user with new data sets: 

1. Download the PKL extension. 
2. Make sure to import the joblib module from scikit-learn. 
3. Load the stored model using the joblib. load (pre-developed model.pkl) method.

4 Once imported, the loaded_model can be used to make predictions on new data.

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.fuel.2023.129263. 
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