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Abstract: Air quality has a significant influence on the environment and health. Instruments that 
efficiently and inexpensively detect air quality could be extremely valuable in detecting air quality 
indices. This study presents a robust deep learning model named AQE-Net, for estimating air qual-
ity from mobile images. The algorithm extracts features and patterns from scene photographs col-
lected by the camera device and then classifies the images according to air quality index (AQI) lev-
els. Additionally, an air quality dataset (KARACHI-AQI) of high-quality outdoor images was con-
structed to enable the model’s training and assessment of performance. The sample data were col-
lected from an air quality monitoring station in Karachi City, Pakistan, comprising 1001 hourly da-
tasets, including photographs, PM2.5 levels, and the AQI. This study compares and examines tra-
ditional machine learning algorithms, e.g., a support vector machine (SVM), and deep learning 
models, such as VGG16, InceptionV3, and AQE-Net on the KHI-AQI dataset. The experimental 
findings demonstrate that, compared to other models, AQE-Net achieved more accurate categori-
zation findings for air quality. AQE-Net achieved 70.1% accuracy, while SVM, VGG16, and Incep-
tionV3 achieved 56.2% and 59.2% accuracy, respectively. In addition, MSE, MAE, and MAPE values 
were calculated for our model (1.278, 0.542, 0.310), which indicates the remarkable efficacy of our 
approach. The suggested method shows promise as a fast and accurate way to estimate and classify 
pollutants from only captured photographs. This flexible and scalable method of assessment has 
the potential to fill in significant gaps in the air quality data gathered from costly devices around 
the world. 
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1. Introduction 
Air pollution has worsened over the past few decades; therefore, it has received sig-

nificant attention from scholars and policymakers. An air quality index (AQI), which is 
composed of six pollutants, including particulate matter 10 (PM10), particulate matter 2.5 
(PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone 
(O3), is an overall index that can more objectively depict the levels of air pollution than an 
index that includes a single air contaminant [1,2]. Pakistan has invariably encountered 
severe air pollution issues caused by industrial sources and automobile exhausts, partic-
ularly in Karachi City, located in southern Pakistan [3]. Consequently, air pollution poses 
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a severe threat to health, and prompt monitoring of air quality is vital to control pollution 
and immensely useful for protecting human health. Air pollution has a variety of adverse 
effects, both physiological and psychological, on people’s health. It is a contributor to the 
development of infectious illnesses. In 2012, infectious diseases were responsible for the 
deaths of 9,500,000 people all over the world. Air pollution is a clear warning sign of po-
tential danger to one’s health [4]. Additionally, when breathing polluted air, people 
should consider the possibility that they could catch an illness. Long-term exposure to 
extremely high PM2.5 concentrations has been linked to the onset of cardiovascular dis-
ease and other major health problems, as well as negative effects on the liver and lungs 
[5–7]. 

Currently, air quality data collection is mostly micro-station based. Though, because 
of the expensive material and set-up costs of advanced sensors, such in-situ monitoring is 
less possible in the majority of regions of concern, and this represents a significant finan-
cial burden for developing and emerging nations in the long term [8]. It is possible to use 
image-based systems for air quality monitoring as a backup when gauges are unavailable 
or when they are not operating effectively. Recently, there have been several initiatives to 
build low-cost air pollution monitoring equipment [9–12]. Predictions of air pollution are 
primarily based on deterministic [13–17] and statistical models. The deterministic ap-
proach makes use of a theoretical meteorological emission and a chemical model to sim-
ulate the creation and diffusion process of contaminants. However, because of the ideal 
theory used to determine the model structure and estimate parameters, it falls short of 
explaining the nonlinearity and heterogeneity of many factors connected to pollution gen-
eration. When compared to the deterministic approach, the statistical method’s use of a 
data-driven statistical modeling strategy allows it to sidestep the complexity and hassle 
of modeling while still delivering impressive results. 

Machine learning (ML) has recently achieved substantial advancements in numerous 
areas, including speech and image recognition, with improved eminent excellence. The 
convolutional neural network, abbreviated as CNN, has seen extensive use in research in 
the fields of computer vision and image processing, with credible performance in attempt-
ing various inspiring tasks on classification and estimation [18–26]. The use of machine 
learning and deep learning methods in analyzing air quality has grown in popularity in 
recent years [27–29]. Air pollution has been classified or estimated using image processing 
in many studies [12,30–32]. Additionally, an image-based air pollution estimate provides 
a promising future; however, few such studies have been conducted in this context. There-
fore, more investigation into image-based air quality estimates is needed to boost accuracy 
and reliability. Due to the rapid growth of machine learning algorithms and computer 
vision technology, recently, many automatic algorithms have been offered as potent tools 
to address the crack detection difficulties in practice [33]. With the use of deep convolu-
tional neural networks (DCNNs) and an improved chicken swarm algorithm, the authors 
of [34] created a visual method for diagnosing cracks (ECSA). To better forecast and ana-
lyze the air pollution generated by Combined Cycle Power Plants, a novel hybrid intelli-
gence model based on long short-term memory (LSTM) and multi-verse optimization al-
gorithm (MVO) has been created [35,36]. This developed a deep learning model to predict 
PM2.5 atmospheric air pollution using meteorological data, ground-based observations, 
and big data from remote-sensing satellites. To forecast the concentration of air pollutants 
in various areas inside a city, using spatial-temporal correlations, a convolutional neural 
network with a long short-term memory deep neural network (CNN-LSTM) model was 
developed [37]. Using a recurrent neural network deep learning model, the presence of 
SO2 and PM10 in the air of Sakarya city was demonstrated [38]. In order to forecast the 
quality of the air, [39] a spatio-temporal deep learning model called Conv1D-LSTM, which 
integrates a deep convolutional neural network (1D CNN) with a long short-term memory 
(LSTM) to extract spatial and temporal correlation data, was presented [40]. The model 
presented the application of an attention-based convolutional BiLSTM autoencoder model 
for air quality forecasting. 
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This study proposes a deep CNN model (AQE-Net) based on ResNet to classify pho-
tos per air quality level. Previous approaches based on CNN networks concentrate almost 
solely on PM2.5, despite the fact that PM2.5 is just a small component of air pollution and 
does not accurately reflect overall air quality information. Additionally, the existing stud-
ies have estimated air quality in different aspects. Among them, much research focuses 
on particular pollutants. However, this study contributes theoretically and practically and 
takes AQI as an outcome variable to estimate air quality. Moreover, many studies use 
satellite images for air quality estimations. In contrast, this study uses mobile images. 
Therefore, more investigations into image-based air quality estimates are needed to boost 
accuracy and reliability. Our proposed model can measure the AQI directly, more accu-
rately estimating the environment’s air quality. In this context, this study investigates the 
connection between air quality and image characteristics using air quality analysis of 
many fixed-site photographs, builds a prediction model, and calculates air quality every-
where. People can collect pictures easily and quickly using portable terminals such as mo-
bile phones, tablets, and other smart devices and can use this method to estimate the AQI 
in real-time. 

2. Materials and Methods 
2.1. Study Area 

This study focuses on Pakistan’s largest metropolitan city, Karachi, the capital of the 
Sindh province. It is the twelfth-largest city in the world, with a population of over 12 
million people. Karachi comprises seven districts: the Karachi Central, Karachi East, Ka-
rachi South, Karachi West, Korangi, Malir, and Keamari districts. Additionally, Clifton is 
part of the Karachi South district, which is our main research area for this study. Figure 1 
shows the Karachi map with all districts, and the location symbol indicates the Clifton 
area on the map. 

 
Figure 1. Karachi map with its districts and research area. 

2.2. Dataset 
Due to the lack of a publicly available image library for air quality related to image 

detection, the KHI-AQI image database was created. There are a total of 1001 photographs 
in the library, which are a series of scene images captured at varying levels of air quality. 
To create the dataset, we went through the following stages. 
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We installed a mobile device with a camera in a firm position and orientation nearby 
the US Consulate General’s monitoring station in Karachi to capture surrounding air qual-
ity images. Every hour from 8:00 am to 18:00 pm, the camera collects photographs of the 
sky that are automatically saved. The information about the air quality image collecting 
points is included in Table 1. Further, Figure 2 depicts an example of scene images from 
the air quality image library that correspond to different degrees of air pollution levels. In 
figure 2, Pictures (a), (b), (c), (d) and (e) were taken at 8:00, 9:00, 10:00, 11:00, and 12:00, 
respectively, while pictures (f), (g), (h), (i) and (j) were obtained at 13:00, 14:00, 15:00, 16:00, 
and 17:00. 

Table 1. Information about the image acquisition process. 

Collection Point Clifton Store Karachi 
Photo pixels (Px) 1706 × 1280 

Shooting time period 8:00–18:00 
Collection interval Hourly 
Camera equipment OppoA37 (Mobile) 

Total period 3 months (Aug 2021 to Oct 2021) 

 
Figure 2. Scene image examples from the KHI image library. 

We accessed monitoring station data from the MicroStation for air quality at the 
United States embassies and consulates in Karachi from 1st August, 2021 to 30th October, 
2021 , a total of three months of data [41]. Figure 3 shows the AQI data points for these 
three months. The hourly data were then translated to levels in accordance with the AQI 
classification table, which indicates the concentration of AQI in the atmosphere. We noted 
the file name and capturing time of the photographs captured at each collecting point. 
They comprised the following fields: AQI value, image name, AQI level, capturing time, 
and others. There has been an overall collection of 1001 data points, with the level of AQI 
serving as the picture label. As a result, image collection and observation data related to 
the geographic place and time have been gathered, and the database has been produced 
with higher quality site and air quality images (Table 2). 
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Figure 3. AQI data from the monitoring station for Karachi City. 

Table 2. Information about the dataset of samples. 

Capturing Time Image Name Air Time AQI Classes 
2021/1/6 8:00:00 DSCF0667.JPG 2021/1/6 8:00:00 114 3 
2021/1/6 8:00:00 DSCF0667.JPG 2021/1/6 8:00:00 123 3 
2021/1/6 8:00:00 DSCF0667.JPG 2021/1/6 8:00:00 90 2 
2021/1/6 8:00:00 DSCF0667.JPG 2021/1/6 8:00:00 87 2 

2.3. Convolutional Neural Network (CNN) 
Fukushima and Miyake (1982) [42] proposed a convolutional neural network (CNN) 

in 1980, which was then updated by LeCun et al. (1989) [43]. A number of areas in which 
CNN has succeeded in recent years include synthetic biomedicine [44], catastrophe detec-
tion [45], natural language processing [46], holographic image reconstruction [47], the ar-
tificial intelligence program of Go [48], optical fiber communication [49], and so on. Using 
high-performance computing platforms like high-performance computers, graphics 
workstations, cloud computing platforms, etc., it is now possible to train complicated 
models using large-scale datasets. There have been a wide array of convolution neural 
network models developed in this regard, including ZFNet [50], GoogleNet [51], LeNet 
[52], MobileNets [53], VGGNet [54], Overfeat model [55], DenseNet [56], SPPNet [57], Res-
Net [58], AlexNet [59], and so on. A CNN is a multilayer network with a fundamental 
structure that is mostly composed of the following layers: the input layer, the convolu-
tional layer, the pooling layer, the completely connected layer, and the output layer, as 
illustrated in Figure 4. 

 
Figure 4. CNN’s fundamental structure. 

2.4. AQE-NET Model 
The training set for the model is defined as x , y , x ∈ ℝ × × , y ∈ N. A collec-

tion of air quality evaluation images and a set of labels are referred to as x , and y , respectively. When an image x  is input, it is needed to acquire the air quality level 
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y  that corresponds to the image x , as well as the mapping relationship y =  Ϝ x . Fig-
ure 5 depicts the overall structure of our model. 

 
Figure 5. The AQE-Net model architecture for air quality index (AQI). 

The AQE-Net is built from merging a self-supervision module known as the Spatial 
and Context Attention block with a network of other self-supervision modules (SCA); it 
was previously built in conjunction with the original ResNet18 [58] network structure to 
design a feature extraction network for air quality pictures. The residual unit is the unit 
that is most susceptible to changes in weight. The self-monitoring module can continually 
adjust the relevance of feature information, allowing the model to come closer to the over-
all best solution. The third module was expanded to include a module for scene self-su-
pervision, although the original structure was unchanged. The third block consists of two 
residual structures. Each residual structure has an SCA module, and the feature map from 
the input SCA module is utilized in the third module, which has a resolution of 1/16 of 
the initial input image, resulting in a considerable reduction in the amount of computation 
required for matrix multiplication. After three branches, the feature map generates vari-
ous pieces of contextual scene feature information. The first branch determines the corre-
lation amongst each pixel from the air quality image and then matrix-multiplies the 1st 
branch’s output by the 2nd branch’s output to obtain the similarity between distinct chan-
nel maps. The third branch forms feature maps by matrix multiplication with the result to 
disperse relevant feature properties back to the original initial feature map to identify the 
relationship between the complete feature map information. The feature map is then com-
bined by utilizing global average pooling [52] and multiplied with the input feature map 
to get the final output. A recent study [60,61] demonstrated that self-supervised learning 
could significantly increase network performance. Figure 6 shows how the SCA block unit 
is integrated into the network architecture. Using rich relevant information, the SCA mod-
ule re-calibrates the feature mapping throughout channels while concurrently emphasiz-
ing key feature information and hiding information that is not connected to the feature 
mapping. The primary structure of the SCA is divided into two components. Part one 
encodes the overall scene context into local characteristics, examines the similarity across 
channels, and increases the representational capacities of the scene. For each channel, the 
second component integrates spatial context information to strengthen and accurately 
manage the dependence between the scenes. 
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Figure 6. Spatial and context attention block. 

Firstly, the input feature graph X ∈ ℝ × ×  is created first using Φ ∙  and Ψ ∙  op-
erations to form a new feature graph of A ∈ ℝ × ×  and B ∈ ℝ × × , as seen in Figure 
2. The Φ ∙  and Ψ ∙  operations indicate convolutional layers containing batch normali-
zation [62] and ReLu layers [63]. The size of the convolution kernel can be adjusted to 1 × 1 × C  in order to limit the amount of calculation required. Where C = C, the di-
mension of channel can be lowered, as well as reducing the number of matrix multiplica-
tion calculations required. The feature map A to ℝ ×  is resized and then transposed 
to ℝ ×  when the Z reshape is complete. Finally, multiply A and B in matrix fashion 
and apply the softmax function to produce a map of Z ∈ ℝ ×  of the channel’s correla-
tion. The equation is given below: 

𝑍 = ψ 𝑋 ∙ ϕ 𝑋∑ 𝑒𝑥𝑝 ψ 𝑋 ∙ ϕ 𝑋  (1) 

In this case, 𝑋  denotes the number i indexed pixel from the feature vector. j de-
notes the index for total possible locations. The relationship between each remaining pixel 
and i is represented by the letter Z . Simultaneously, once the feature map X is given as 
input to Κ ∙ , the feature map E ∈ ℝ × ×  is formed, and then feature map E is trans-
posed to ℝ × after being reshaped. Κ ∙  has the same function as Φ ∙  and Ψ ∙ . In 
order to redistribute the correlation information to the original feature map, it is matrix-
multiplied to feature map Z. The feature map D ∈ ℝ × × is then obtained by reshaping 
the acquired result into ℝ × × . Given below is the calculation equation. 𝐷 𝑍 Κ 𝑋  (2) 

The spatial attention mechanism is used to aggregate the scene context mapping in 
order to create the feature map D, and the connected channels benefit from each other 
(Equation (2)). In order to appropriately optimize the correlation between every channel 
in the feature map X and other channels, the channel of the feature map D is weighted 
by applying the channel-wise module. First, a channel-wise statistic V ∈ ℝ  is calculated 
using the global average pooling to aggregate the spatial dimension W × H of the feature 
map D, where the number i item in V is determined as follows: 𝑉 = 1𝑊 × 𝐻 𝐷 𝑛, 𝑚  (3) 

The feature map X includes C channels. To alter the dimension from w to ℝ , a 
new, fully connected layer is added. The method for calculation is as follows:  
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𝑍 = 𝐹 𝑣, 𝑊 = 𝜎 𝑊𝑣  (4) 

where the Sigmoid activation function W ∈ ℝ ×  is represented by σ. Finally, the SCA 
module’s final output complies with the updated feature map G: 𝑔 = 𝐹 𝑋 , 𝑍 = 𝑋 ∙ 𝑍  (5) 

where the feature map X ∈ ℝ ×  multiplied by the weight z  is represented by the G = ⌊g  , g  , g ⌋ and F X , Z  variables, respectively. 

2.5. Model Training 
The deep learning framework PyTorch [64] was used to implement the model pre-

sented in this paper. The following server setup was used to train the model: Intel (R) 
Xeon (R) E5-2620 v3 2.40 GHz CPU, Tesla K80 GPU, and Ubuntu64 as the OS. Stochastic 
gradient descent (SGD) was used to optimize parameters during training, and the mo-
mentum β was set to 0.9. The mini-batch was set to 32 to lessen the random gradient’s 
instability. The beginning learning rate was 10  and then a 10 times reduction in learn-
ing rates every 90 cycles, with a 10  weight attenuation. Using the approach found in 
[65], the weights were initialized. Training for all models began at zero and lasted for 270 
iterations. For the model training, 70% of the photos were chosen at random, with the 
remaining 30% being the testing set. To avoid the model from overfitting and to increase 
the model’s accuracy and resilience, we improved the method of training datasets as fol-
lows. The following approaches were used to sample each image: a [0, 360°] random ro-
tation of the picture and a random coefficient range of [0.8, 1] were used to scale the image. 
A cropping ratio of 3/4 or 4/3 of the original size was applied to the photograph. Finally, 
each sampling region was normalized to the range of [0, 1] after the preceding processes. 

Moreover, the categorical cross-entropy loss function, which is employed in multi-
class classification applications, was implemented to minimize the loss between the pre-
dicted and actual value. An optimizer such as the stochastic gradient descent (SGD) opti-
mizer was used in our proposed model to improve the accuracy; the stochastic gradient 
descent is known as the “classical” optimization algorithm. When using SGD, we calcu-
lated the loss function gradient with regard to each node’s weights. 

2.6. Model Selection Criteria 
The confusion matrix was used for each model to evaluate its predictive performance 

during testing. The confusion matrix is primarily used to evaluate predicted performance 
for classification problems. For the purpose of determining the proportion of properly 
identified samples, the predicted values were compared to the actual values. The model 
prediction was evaluated using the accuracy, sensitivity, F1 score, and error rate. The met-
ric equations are as follows: Accuracy = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒  (6) 

Sensivity = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (7) 

Precision = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (8) 

Recall = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (9) 

F1 Score = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙  (10) 
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Error Rate = 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (11) 

3. Results 
In this study, the standard machine learning technique SVM and the deep learning 

methods VGG16, InceptionV3, and AQE-Net were contrasted and examined on the KHI-
AQI dataset. Furthermore, the accuracy, sensitivity, F1 score, and error rate metrics have 
been employed for evaluating the performance of deep learning models for classification 
problems. 

The SVM classifier’s basic premise is to turn image classification problems into high-
dimensional feature classification spaces, with difficult-to-classify problems becoming lin-
early separable due to the transformation. A kernel is utilized to construct a hyperplane 
in the high-dimensional feature classification space, which is then used to discriminate 
between different air quality levels. An RBF radial basis kernel is employed because the 
picture classification issue exhibits linear inseparability. SVM achieved 56.2% accuracy 
after training on the KHI dataset, but for predicting a single image for classification, the 
process typically takes 0.0532 s. For the SVM model, the sensitivity, the F1 score, and the 
error rate were all determined (0.77, 0.87, 0.16). Following the application of the SVM 
model to the KHI dataset, we then utilized the VGG16 model on the same dataset in order 
to compare the outcomes. By increasing the depth of the network and making use of tiny 
convolution kernels rather than large convolution kernels, VGG improves the accuracy of 
the model, which in turn provides good performance for image classification. The VGG16 
algorithm obtained an accuracy of 59.2% when predicting the air quality index based on 
photographs, which is 3% higher than the SVM model’s performance. It was found that 
the VGG16 model had an error rate of 0.14%, a sensitivity of 0.79, and an F1 score of 0.88, 
and the error rate was calculated as 0.14. With this model, we see a decrease in errors of 
0.02% of points compared to the SVM model. On the KHI dataset, the InceptionV3 model 
was used for testing after the VGG16 model. The accuracy of InceptionV3 was measured 
at 64.6%, which is 5.4% better than VGG16’s performance. The calculated sensitivity for 
InceptionV3 was 0.85, while the F1 score and error rate for InceptionV3 were 0.96 and 0.05, 
respectively. These values are significantly lower than those for VGG16. Following the 
use of the three earlier models, SVM, VGG16, and InceptionV3, we then applied our newly 
proposed model, AQE-Net, on the same dataset in order to test it and compare the results. 
When compared to VGG16, the accuracy of identifying air quality levels from photos us-
ing the AQE-Net model increased by 5.5%. The AQE-Net model that we have proposed 
has an accuracy of 70.1%. The values for sensitivity, F1 score, and error rate were calcu-
lated to be 0.92, 0.96, and 0.03, respectively. Following the application of the SVM, VGG16, 
and InceptionV3 models to the KHI dataset, it was observed that the AQE-Net model 
achieved the greatest accuracy compared to the other models in terms of classifying im-
ages. Table 3 demonstrates the prediction time, accuracy, sensitivity, F1 score, and error 
rate values for all of the models that have been utilized in this research. 

Table 3. Models’ performance on the KHI-AQI dataset. 

Method P-Times(s) Accuracy Sensitivity F1 Score Error Rate 
SVM 0.0532 56.2% 0.77 0.87 0.16 

VGG16 0.0085 59.2% 0.79 0.88 0.14 
InceptionV3 0.0072 64.6% 0.85 0.92 0.05 

AQE-Net 0.0053 70.1% 0.92 0.96 0.03 

The testing dataset contains a total of 201 photos relating to the first five air pollution 
level classes such as good, unhealthy, poor, severe, and dangerous. These levels are rep-
resented in the classification problem by the numbers 1, 2, 3, 4, and 5. On the basis of the 
classification results provided by models, a confusion matrix was computed, which is also 
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known as a summary of the results of the predictions made on a classification task or 
model classification accuracy. 

The confusion matrix is presented in Figures 7–10 for the four machine learning mod-
els SVM, VGG16, InceptionV3, and AQE-net that have been deployed in this study. The 
numbers 1 to 5 on the horizontal axis reflect the values that were predicted for the test 
samples, and the values 1 to 5 on the vertical axis represent the actual values of the test 
samples, respectively. In Figures 7–10, the values that are on-diagonal show the number 
of correctly classified photos, whereas the values that are off-diagonal reflect the number 
of images with incorrect classifications that vary from the diagonal. After applying the 
SVM model to the KHI-AQI testing dataset, the confusion matrix is displayed in Figure 7 
below. In accordance with the findings, the SVM model successfully classified 113 out of 
201 samples, whereas it mistakenly classified 88 samples. In total, there were 201 samples 
included in the study. The confusion matrix for the KHI-AQI testing dataset using VGG16 
is depicted in Figure 8. It was found that 119 of the samples were correctly categorized 
across all classes, whereas 82 of the samples were misclassified. When compared to the 
SVM model, the VGG16 algorithm provided six more results that were correctly catego-
rized. After running VGG16 on the same testing dataset, the InceptionV3 algorithm was 
then applied; the confusion matrix for the InceptionV3 model can be seen in Figure 9. The 
findings show that out of 201 samples, only 130 were correctly identified using the Incep-
tionV3 model, while 71 samples were incorrectly classified. InceptionV3 had 11 more cor-
rectly classified results than VGG16. After first attempting to use the SVM, VGG16, and 
InceptionV3 models, we finally attempted to validate our proposed model, AQE-Net, by 
applying it to a testing dataset. Figure 10 presents the classification results using the con-
fusion matrix generated by the AQE-Net model after it was applied to the testing dataset. 
Out of 201 possible classifications, there were a total of 144 accurate classifications, while 
there were 57 wrong classifications. AQE-Net was found to have delivered 14 more correct 
classifications than InceptionV3, according to the findings. When it comes to the categori-
zation of images with AQI levels, the overall confusion matrices on classification results 
obtained by models indicate that AQE-Net is more superior than other models. 

 
Figure 7. Confusion matrix (SVM). 
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Figure 8. Confusion matrix (VGG16). 

 
Figure 9. Confusion matrix (InceptionV3). 

In addition, we evaluated the predictive performance of the SVM, VGG16, Incep-
tionV3, and AQE-Net models with the help of three statistical error metrics known as 
mean squared error (MSE), mean absolute error (MAE), and mean absolute percentage 
error (MAPE). Table 4 shows the MSE, MAE, and MAPE values. When applied to the 
testing dataset, the SVM model achieved values of 1.915 MSE, 0.830 MAE, and 0.473 
MAPE, respectively. The MSE was found to be 1.910, the MAE was 0.796, and the MAPE 
was found to be 0.465 using the VGG16 model. When compared to the SVM model, the 
VGG16 model produced fewer errors than the SMV model. Following the application of 
the VGG16 model, we next applied the InceptionV3 model, and the results of MSE, MAE, 
and MAPE were 1.373, 0.626, 0.326, respectively, which also reflects fewer errors than 
were produced by the earlier models, SVM and VGG16. In overall, the AQE-Net model 
that we proposed had a lower error rate than the other models that were employed in this 
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research. AQE-Net generated estimates of 1.278 MSE, 0.542 MAE, and 0.310 MAPE, re-
spectively, which is quite less than all other models. This shows that the AQE-Net model 
that we proposed is superior than other models. 

 
Figure 10. Confusion matrix (AQE-Net). 

Table 4. MSE, MAE, and MAPE metrics for SVM, VGG16, InceptionV3, and AQE-Net models. 

Indicator SVM VGG16 InceptionV3 AQE-NET 
MSE 1.915 1.910 1.373 1.278 
MAE 0.830 0.796 0.626 0.542 

MAPE 0.473 0.465 0.326 0.310 

4. Discussion 
In this study, all of the sample images were taken from fixed-point images, which 

means the image is acquired at an angle to the sky and that about one-third of the image 
is taken up by land shared with a building. The goal is to emulate a more frequent and 
simpler shooting perspective. For monitoring purposes, at least 50% of the frames taken 
are of the sky. The photographs in this experiment depict scenarios that occur throughout 
the day (between 7:00 and 19:00). In the evenings, vision is quite poor due to the poor 
imaging quality. This experimental model is only appropriate for daytime air quality 
monitoring and is not suitable for nighttime monitoring. Because the model training data 
is gathered in Karachi, the model’s controllability, dependability, and efficiency are all 
pretty good in the local region, and the model’s prediction speed and accuracy are all 
relatively consistent. However, owing to regional climatic and atmospheric variances, the 
model may not be able to attain the requisite precision in other areas. Our model must be 
trained and tweaked again with local picture data before it can be used elsewhere. Due to 
various restrictions, this model will not be able to match the precision of air quality mon-
itoring stations, but it can serve as a complementing tool. The model’s benefit is that indi-
viduals can utilize portable image acquisition equipment to get real-time air quality met-
rics, especially in rural and suburban regions, where the monitoring stations are located 
far from population centers. Future studies should focus on several areas that can be im-
proved. Different weather conditions significantly impact the brightness or blackness of 
air quality photographs. The model can be used to directly extract the brightness proper-
ties of the picture from the data. Humidity, however, has no discernible influence on pho-
tos of air pollution, even though it may impact air quality. Future studies can take into 
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account these considerations to increase model accuracy. Finally, we concentrated our in-
vestigation on the AQI, a complete indication of air quality. Future studies could focus on 
PM2.5 if they wanted to do so. 

The dataset size, the initial learning rate, and the number of layers are three training 
network characteristics that have an impact on the results. This section discusses the im-
pact of the MiniBatchsize training parameter. MiniBatchsize or Batch training involves 
backpropagating the error of classification via groups of pictures [66]. We propose train-
ing the model for various MiniBatchsize values in order to see how this parameter affects 
the model. Tables 5 and 6 give the findings for the values of 60 and 10. 

Table 5. MiniBatchsize training results for the value of 60. 

No. of Epochs Number of Iterations Training Times (s) Accuracy 
3 Epochs 9 12,091.69 0.4866 
4 Epochs 12 17,611.09 0.5089 
5 Epochs 15 39,255.33 0.5816 
6 Epochs 18 42,324.30 0.6514 

Classification rates during a major training period that ranged between 0.4866 and 
0.6541 were obtained by training for various numbers of epochs and a big MiniBatchsize 
of 60. When compared to the results from Table 5, the decline in rate helps to explain the 
memorization issue depicted in Figure 11, where unhealthy has been misclassified to the 
poor category. Images (a), (b), (c), and (d) in Figure 11 are all unhealthy which were mis-
labeled. 

 
Figure 11. Test samples from testing dataset, (a–d) images are unhealthy category. 

The training for various numbers of epochs results in significant values of the classi-
fication rate, as shown in Table 6. These values, which range from 0.5866 to 0.7014, are 
computed over a training period of 25,934.44 s. Precision in performing the categorization 
operation is made possible by MiniBatchsize’s low value. 
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Table 6. MiniBatchsize training results for the value of 10. 

No. of Epochs Number of Iterations Training Times (s) Accuracy 
3 Epochs 54 11,589.23 0.5866 
4 Epochs 72 15,173.47 0.6089 
5 Epochs 90 222.349 0.6816 
6 Epochs 108 25,934.44 0.7014 

5. Conclusions 
In recent decades, air pollution has posed major hazards to human health, prompting 

widespread public concern. However, ambient pollution measures are expensive, so the 
geographic coverage of air quality monitoring stations is limited. A low-cost, high-effi-
ciency air quality sensor system benefits human health and air pollution prevention. The 
AQE-Net air quality assessment model, which is based on deep learning, is proposed in 
this article. Specifically, deep convolutional neural networks are used to extract feature 
representational information relating to air quality from scene photos, with the infor-
mation used to identify air quality levels. A comparative examination of our developed 
model with traditional and deep learning models, such as SVM, VGG16, and InceptionV3, 
was also carried out on the KHI-AQI dataset. The experimental findings indicated that the 
AQE-Net model is superior to other models in classifying photos with AQI levels. 

This study has certain limitations. The study used a small sample size and focused 
only on the Karachi region. Future research should add more datasets and multiple re-
gions to compare the findings with our study. Future studies should take in to account 
different pollutants, such as PM2.5, PM10, and carbon monoxide (CO2). Additionally, it is 
also important to examine seasonal weather conditions and estimate air quality, particu-
larly when visibility is affected due to a foggy environment. 
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