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Abstract
Consumption of high fluoride (F−) and nitrate (NO3

−) containing water may pose serious health hazards. One hundred sixty-
one groundwater samples were collected from drinking wells in Khushab district, Punjab Province, Pakistan, to determine the 
causes of elevated F− and NO3

− concentrations, and to estimate the human health risks posed by groundwater contamination. 
The results showed pH of the groundwater samples ranged from slightly neutral to alkaline, and Na+ and HCO3

− ions 
dominated the groundwater. Piper diagram and bivariate plots indicated that the key factors regulating groundwater 
hydrochemistry were weathering of silicates, dissolution of evaporates, evaporation, cation exchange, and anthropogenic 
activities. The F− content of groundwater ranged from 0.06 to 7.9 mg/L, and 25.46% of groundwater samples contained high-
level fluoride concentration (F−  > 1.5 mg/L), which exceeds the (WHO Guidelines for drinking-water quality: incorporating 
the first and second addenda, WHO, Geneva, 2022) guidelines of drinking-water quality. Inverse geochemical modeling 
indicates that weathering and dissolution of fluoride-rich minerals were the primary causes of F− in groundwater. High F− 
can be attributed to low concentration of calcium-containing minerals along the flow path. The concentrations of NO3

− in 
groundwater varied from 0.1 to 70 mg/L; some samples are slightly exceeding the (WHO Guidelines for drinking-water 
quality: incorporating the first and second addenda, WHO, Geneva, 2022) guidelines for drinking-water quality. Elevated 
NO3

− content was attributed to the anthropogenic activities revealed by PCA analysis. The high levels of nitrates found in 
the study region are a result of various human-caused factors, including leaks from septic systems, the use of nitrogen-rich 
fertilizers, and waste from households, farming operations, and livestock. The hazard quotient (HQ) and total hazard index 
(THI) of F− and NO3

− showed high non-carcinogenic risk (> 1) via groundwater consumption, demonstrating a high potential 
risk to the local population. This study is significant because it is the most comprehensive examination of water quality, 
groundwater hydrogeochemistry, and health risk assessment in the Khushab district to date, and it will serve as a baseline 
for future studies. Some sustainable measures are urgent to reduce the F− and NO3

− content in the groundwater.
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Introduction

Groundwater is an essential source of fresh water in arid 
and semi-arid regions worldwide, but different pathogens 
and chemical contamination frequently challenge water  Responsible Editor: Xianliang Yi
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safety (Jat Baloch et  al. 2022a; Zhang et  al. 2022a, b). 
Almost 2.5 billion people depend heavily on groundwater 
for their daily needs, particularly for drinking (Ghani et al. 
2022; Huq et al. 2020; McDonald et al. 2011; Rashid et al. 
2018). Groundwater demand is increasing daily due to popu-
lation growth and the lack of alternative water sources for 
various utilities (Sajjad et al. 2022; Tariq et al. 2022). Due 
to environmental changes and human activities, groundwater 
quality is drastically declining, which directly affects human 
health and causes serious problems (Dilpazeer et al. 2023; 
Jat Baloch et al. 2022b; Kamruzzaman et al. 2020; Zhang 
et al. 2018). Human use of high levels of F− and NO3

− con-
taining groundwater has been linked to non-carcinogenic 
concerns worldwide (Qasemi et al. 2019; Rao et al. 2021; 
Tran et al. 2021). Long-term ingesting of polluted ground-
water (inorganic or organic) may endanger the local popula-
tion’s health (Baloch et al. 2020; Su et al. 2016, 2021).

For the past two decades, contamination of groundwater 
by F− and NO3

− has been a significant public health concern 
(Qasemi et al. 2023). Many studies on the groundwater qual-
ity related to elevated F− have been conducted in arid and 
semi-arid regions around the world (Alam and Ahmad 2014; 
Khattak et al. 2022; Lanjwani et al. 2022; Mwiathi et al. 
2022; Su et al. 2013, 2015). The World Health Organization 
(WHO 2022) recommends a permissible level of 1.5 mg/L 
of F− in groundwater for human consumption. Prolonged 
consumption of geogenic pollutants, such as F−, can lead to 
fluorosis (a condition affecting the teeth and bones), charac-
terized by symptoms such as stiffness, osteoporosis, calcifi-
cation of ligaments, limps, and arthritis (Aurrecoechea et al. 
2009; Qasemi et al. 2022; Rao et al. 2022b; Subba Rao et al. 
2020). Fluorosis is a highly prevalent condition, affecting 
260 million people in 25 countries around the world, with 
100 million of them in Southeast Asia, including India, Paki-
stan, and Sri Lanka (Mridha et al. 2021; Rasool et al. 2018). 
Human health has been linked to elevated NO3

− levels in 
drinking water (Rao et al. 2022b; Ward et al. 2018). Due 
to the risk of infant methemoglobinemia, the US Environ-
mental Protection Agency established a maximum contami-
nant limit (MCL) of 10 mg/L for NO3

− (Beaver et al. 2014). 
Exceedances of the NO3

− MCL is excessive in water. Epi-
demiological studies have linked NO3

− in drinking water to 
colorectal cancer, childhood central nervous system tumors, 
thyroid disorders, and neural tube defects at levels above the 
MCL (Gugulothu et al. 2022a; Ransom et al. 2022).

F− is found in groundwater due to anthropogenic 
sources and rock weathering (Brindha and Elango 2011;  
Talpur et al. 2020). During weathering, the fluoride-bear-
ing minerals (e.g., amphiboles, apatite, biotite fluorite, 
muscovite), release F− into the groundwater. Temperature, 
pH, calcium and bicarbonate ion concentration in water, 
and other factors have all impacted the availability and  

solubility of fluorine-bearing minerals. In contrast to the 
anthropogenic degradation of surface water, geogenic pollu-
tion of groundwater is difficult to detect and manage (Iqbal 
et al. 2021; Nabizadehb et al. 2019; Rezaei et al. 2017). 
Phosphate fertilizers, herbicides, sewage and sludge, and 
other agricultural practices have all been linked to increased 
F− concentrations in groundwater (Baloch and Mangi 2019, 
Iqbal et al. 2021, Kundu and Mandal 2009, Talpur et al. 
2020). The main mechanisms that result in F− enrichment in 
groundwater are dissolution and precipitation (Sahin et al. 
2021), adsorption/desorption (Zhang and Selim 2005), ion 
exchange (Nagendra Rao 2003), evaporation (Adimalla et al. 
2018), mixing (Sakram et al. 2019), and anthropogenic activ-
ities (Haji et al. 2021). The increased NO3

− concentrations 
caused by industrial and agricultural activities may impact 
groundwater quality (Liu et al. 2021). Anthropogenic and 
natural activities, such as nitrogen fertilizers, can transfer 
NO3

− into groundwater (Shukla and Saxena 2018). Chemical 
fertilizers, atmospheric precipitation, soil organic nitrogen, 
manure, and sewage are all potential sources of NO3

− (Inyang 
et al. 2012). A thorough understanding of hydrogeochemi-
cal properties and contamination status is required to protect 
groundwater resources in Pakistan and ensure drinking water 
safety (Talib et al. 2019; Ullah et al. 2022).

In semi-arid and arid areas of Pakistan, groundwater is 
the most essential source of domestic water (Abbas et al. 
2018; Jat Baloch et al. 2021a). According to the Pakistan 
Council of Research in Water Resources (PCRWR), pol-
luted groundwater is the leading cause of diseases in Paki-
stan (Al-Rasheed 2013). Numerous studies on F− and 
NO3

− contamination of groundwater in Pakistan have been 
conducted in recent years (Anjum et al. 2013; Farooqi et al. 
2007; Masood et al. 2022; Rafique et al. 2009; Raza et al. 
2016; Tahir and Rasheed 2008). Contamination of ground-
water sources by F− in Pakistan has been reported in various 
regions, including Dargai (Rashid et al. 2020), Negar Parkar 
(Rafique et al. 2009), Sialkot (Ullah et al. 2009), UmarKot 
(Rafique et al. 2015), Swat (Rashid et al. 2018), and Pesha-
war (Ahmad et al. 2020). In twenty-one cities of Pakistan, 
the NO3

− concentrations in groundwater were higher than 
the WHO 2022 recommended drinking water quality limits 
(Gelfand et al. 2011; Rehman et al. 2020; Tahir and Rasheed 
2008). Twenty-five percent of the groundwater of Rawal-
pindi, Pakistan, is nitrate-polluted (Khan et al. 2005; Soomro 
et al. 2017). To date, there has been a lack of research on the 
hydrogeochemistry of groundwater and its potential health 
impacts in the Khushab district. Therefore, a comprehen-
sive study on the hydrogeochemical characteristics and 
potential health risks of groundwater for the local popula-
tion is needed to be conducted. The objectives of this study 
were (1) to identify the geochemical processes that cause 
F− and NO3

− enrichment in groundwater, and (2) to assess 
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the potential health risks of exposure to F− and NO3
− in the 

groundwater.
Materials and methods

Study area

Khushab district is located in Punjab Province, Pakistan, at 
32°01′7.57″ N and 72°12′16.21″ E. It covers a total area of 

Fig. 1   Location and sampling 
sites (a), and hydrogeology map 
(b) of the study area
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6511 km2. The population was 905,711 at the 2017 census, 
with 24.76% living in urban areas (Fig. 1). The district 
comprises four tehsils, namely, Khushab, Quaidabad, Nur-
pur, and Jahurabad. The air temperatures in the summer 
range from 35 to 46 °C, while temperatures in the winter 
vary from 6 to 13 °C, with annual precipitation ranging 
from 150 to 350 mm (Chaudhari et al. 2014).

Khushab is situated in the Salt Range foothills, composed 
of heavily fractured and deformed rocks containing fossils 
from the Precambrian to the Pleistocene. The study area is 
one of the parts of the Indus plains through which the Indus 
River and its tributaries drain. A doab is a flat area in the 
Indus plain that means “a place surrounded by two rivers” 
(Puri et al. 2009). The five doabs of the Indus plains are 
Rechna Doab, Thal Doab, Bari Doab, Chaj Doab, and Bist 
Doab. The Jhelum River runs through the research area in 
Thal Doab’s north-eastern region, separating the Sargodha 
district tehsils of Khushab and Shahpur.

Unconsolidated but extremely permeable alluvium depos-
its can be found up to a depth of more than 300 m throughout 
the research area (Swarzenski 1965). In addition, the Indus 
plain contains discontinuous, low-permeability material. As 
a result, sand accounts for nearly 70% of alluvium and serves 
as a highly transmissive and unconfined aquifers (Cheema 
and Bastiaanssen 2010; Hussain et al. 2017). The research 
area’s permeability coefficients range from 0.05 to 1.2 m/s 
(Greenman et al. 1967). Khushab comprises massive yet 
unconsolidated Quaternary alluvial and eolian deposits on 
top of Precambrian basement rocks. Alluvium deposits con-
tain fine to medium sand, clay, and silt. Coarser concentrated 
sediments can be found at a depth of 180 m near Quaid 
Abad and Bundiyal. The floodplains of the Jhelum River 
are covered in heavy sand deposits with a small amount of 
gravel. Thin silt and clay lenses with limited vertical and 
lateral extension are found in sand deposits (Akram 2014). 
The Jhelum River recharges aquifers through its bed and is 
responsible for flooding on flood plains. Rainwater is another 
critical source of aquifer recharge in the study region.

Sampling and analysis

To assess the quality of groundwater in the Khushab 
district, 161 samples were collected from shallow aquifers 
(< 35 m) between June and August 2020. The samples were 
then filtered through a 0.45-μm filter for further analysis. 
The American Public Health Association’s standard 
methods were followed (APHA et al. 2005) (Jat Baloch 
et al. 2022b). The samples were then stored in 120-mL 
glass bottles that had been thoroughly rinsed and washed. 
These groundwater samples were then tested in the Pakistan 
Council of Research in Water Resources (PCRWR) water 

quality laboratory. The pH, electrical conductivity (EC), 
total dissolved solids (TDS), total hardness (TH), and 
turbidity were evaluated in the study area using the multi-
parameter analyzer (Hanna HI9829). The samples were 
examined for significant anions, such as NO3

−, SO4
2−, and 

PO4
3−, using a UV–VIS spectrophotometer (Germany). The 

concentration of F− was determined using “Mohr’s method 
and fluoride analyzer” ISE (ion-selective electrode) (Rashid 
et al. 2018). Bicarbonate (HCO3

−) and chloride (Cl−) were 
determined using titration. Calcium (Ca2+) and magnesium 
(Mg2+) concentrations were measured by volumetric 
titration with ethylene diamine tetra acetic acid. The 
flame photometer was used to measure sodium (Na+) and 
potassium (K+) concentrations (Zhou et al. 2021). Arsenic 
(As) was determined in the samples using atomic absorption 
spectrophotometer (AAS Vario 6, Analytik Jena, Jena, 
Germany) (Baloch et al. 2022). To check the accuracy of the 
results, the charge balance error (CBE) for each sample was 
calculated using Eq. (1) (ionic concentrations are measured 
in meq/L). Groundwater samples containing ± 5% CBE 
were chosen for further analysis (Jat Baloch et al. 2022a).

Health risk assessment

The F− and NO3
− and have been chosen to assess the risk to 

human health. Estimating the average daily dosage for adults 
and children (ADD) used the oral intake procedure (Gugu-
lothu et al. 2022a; Li and Wu 2019; Selvam et al. 2020; 
Subba Rao 2021). The average daily dosage (ADD), hazard 
quotient (HQ), and total health index (THI) were computed 
using Eqs. 2, 3, and 4 (USEPA 2005).

ADD denotes F− and NO3
− and ingestion (mg/kg/day), 

CPW denotes the specific groundwater pollutant (mg/L), and 
the ingestion rate is signified by IR, which is 2.5 L/day for 
adults and 0.78 L/day for children (Narsimha and Rajitha 
2018). The ED stands for exposure duration (64 years for 
adults, 12 years for children, and 1 year for infants) (Ahada 
and Suthar 2019). An adult’s average body weight (ABW) is 
57.5 kg, while children’s ABW is 18.7 kg, and infants’ ABW 
is 16.9 kg; adults have an average exposure time (AET) of 
23,360 days, children have an AET of 4380 days, and the 
AET of 365 days for infants.

(1)CBE =
[Σcations − Σanions]

[Σcations + Σanions]
× 100

(2)ADD =
CPW × IR × Ed × EF

ABW × AET
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where HQ stands for hazards quotient and RfD also known 
as the F− and NO3

− and exposure dosages of 0.06 and 
1.6 mg/kg/day, respectively. The THI was used to estimate 
the health risk posed by the ingestion exposure pathway. 
THI ≤ 1 values are considered to indicate no significant 
non-carcinogenic risk. THI > 1 values are defined to indi-
cate the occurrence of non-carcinogenic risk in the exposed 
population.

Numerical methods

Statistical analysis helps in the interpretation of data 
sets by identifying various acts (Rahman et  al. 2022; 
Ravindra et al. 2022; Xue-Jie et al. 2013). Hydrochemical 
processes were described using the statistical multivariate 
analysis method, which involved decreasing the amount 
of information and grouping the data (Uddin et al. 2018). 
The principal component analysis is a multivariate 
approach for reducing many connected variables into a 
manageable number of unrelated variables. It is based 
on covariance, which shows how groundwater variables 
interact with each other (Purushotham et al. 2011). This 
technique extensively extracts valuable information from 
groundwater hydrochemical datasets (Singh et al. 2020). 
Principal components were extracted using the varimax  

(3)HQ =
ADD

RfD

(4)Total Hazard Index(THI) = ΣHQ

rotation Kaiser normalization method (PCs). The PCA was 
calculated using XLSTAT 2022.

The spatial maps were created using the IDW interpo-
lation method. ArcGIS 10.3 was used to create maps of 
geographic location and spatial distribution. The hydro-
chemistry software PHREEQC 3.4 was used to calculate 
the saturation indices of minerals and geochemical inverse 
modeling.

Results

Groundwater chemistry and spatial distribution

Statistical summaries of the measured physicochemical 
parameters for the groundwater samples are depicted in 
Table 1 and compared to the WHO 2022 guideline limits 
for drinking water (WHO 2022). The pH of the groundwater 
varied from 6.7 to 8.5, with a mean of 7.7. The turbidity 
levels ranged from 0.3 to 4600 NTU, with a mean of 23.85 
NTU. The EC is a measurement of the capability of water to 
transmit an electric current between dissolved salts, which 
ranges from 200 to 14,120 μS/cm. The hydrochemical 
analysis showed that TDS concentration ranged from 112 
to 8051 mg/L, with a mean of 1070 mg/L. The total hardness 
varied between 90 and 4600  mg/L, with an average of 
457.7 mg/L.

Major cation abundance was found to be in the 
following order: Na+  > Ca2+  > Mg2+  > K+. Na+ is the 
dominating cation in the study region, ranging from 

Table 1   Statistical 
physicochemical parameters of 
groundwater samples (n = 161) 
collected from the Khanewal 
district

Parameters Minimum Maximum Mean Standard deviation WHO 
(2022) 
standard

pH 6.77 8.55 7.72 0.3464 6.5–8.5
EC (μS/cm) 200 14,120 1849 2114 1000
TDS (mg/L) 112 8051 1070 1197 1000
Turbidity 0.3 4600 457.7 440.9 5
TH (mg/L) 90 530 215.7 97.13 300
Na+ (mg/L) 5.0 2460 208.6 315.1 200
Mg2+ (mg/L) 5.0 513 54.6 54.77 150
K+ (mg/L) 1.0 440 11.3 40.5 12
F− (mg/L) 0.06 7.9 1.06 0.9315 1.5
Ca2+ (mg/L) 10 992 92.7 94.49 200
Fe2+ (mg/L) 0.01 1.21 0.11 0.1897 0.3
PO4

3− (mg/L) 0.01 0.13 0.04 0.0304 0.1
Cl− (mg/L) 10 3212 263.7 502.1 250
SO4

2− (mg/L) 15 2100 254.7 312.5 250
NO3

− (mg/L) 0.1 70 8.88 14.31 50
HCO3 − (mg/L) 83 817 309.3 126.7 250
As (µg/L) 5 15 2.73 4.03 10
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5.00 to 2460 mg/L, with an average of 440.0 mg/L. Ca2+ 
concentrations vary from 10.0 to 992.0 mg/L, with a mean 
of 99.2 mg/L. In the study region, anions are abundant in 
the following order: HCO3

−  > Cl−  > SO4
2−  > F−  > PO4

3−. 
HCO3

− concentrations ranged from 83.0 to 817  mg/L, 
with a mean of 309.3 mg/L, making it the most prevalent 
anion in groundwater. Cl− concentrations are from 10.0 to 
3212 mg/L, with a mean of 263.7 mg/L. The concentrations 
of SO4

2− and PO4
3− varied from 15.0 to 2100  mg/L 

and 0.01–0.13 mg/L, with a mean of 254.74 mg/L and 
0.04  mg/L, accordingly. The average NO3

− content in 
groundwater was 8.89 mg/L, ranging from 0.1 to 70 mg/L. 
In 23.60% of groundwater samples, the NO3

− concentration 
exceeded the WHO 2022 permissible 10 mg/L limits.

The F− concentration ranged from 0.06 to 7.9 mg/L, 
with a mean of 1.06 mg/L. According to WHO guidelines, 
F− concentrations in 25.46% of the groundwater samples 
surpassed the allowable limit of 1.5 mg/L for drinking 
purposes (WHO 2022). High F− groundwater occurred 
widespread in the study region. High F− groundwater 
concentrations were found primarily in the southeastern 
and the sporadic parts in the north of the study area (Fig. 3). 
Hydrogeochemical faces of the groundwater varied greatly, 
from fresh HCO3-Ca to saline Cl-Na, mixed HCO3-Na-Ca 
and mixed Cl-Mg-Ca type and followed by HCO3-Ca, 
HCO3-Na, and Cl-Ca type (Fig. 2). The hydrochemical faces 
of high F− groundwaters are categorized as HCO3

− type 
and Na+ type as shown in the Piper diagram (Fig.  2).  

Furthermore, groundwaters with elevated F− contained 
elevated Na+ and HCO3

−. This is in accordance with 
the hydrogeochemical characteristics of high-fluoride 
groundwater reported in other regions (Chen et al. 2020; 
Li et al. 2019).

Spatial distribution of hydrochemical components

The spatial distribution of groundwater physicochemical 
analysis reveals an anomalous groundwater quality zone 
(Rao et al. 2022c) (Fig. 3). The concentration of TDS in 
groundwater exceeds its permissible limit for drinking in 
38.5% of the study area. The greater the value, the higher 
the quantity of salt leaching, sewage infiltration, and the 
effect of nearby saline sources in our study region (Khan 
et al. 2018). The central part of the study area had elevated 
Na+ concentrations. In contrast, Mg2+ and Ca2+ concentra-
tions were relatively low in the study area except for a few 
sporadic sampling points (Fig. 3). Groundwater alkalinity 
is caused by HCO3

− (Adams et al. 2001). The ground-
water quality in a large portion of the study area is alka-
line, indicating that the dissolved carbonates are mostly 
bicarbonates. Cl− levels are slightly elevated in a larger 
patch, particularly in central and western regions of the 
study area, which pose a health risk. This is due to poor 
fluxing and the presence of the mineral halite. It is worth 
noting that SO4

2− content was significantly higher in the 
study area, particularly in the central and northwestern  

Fig. 2   Geochemical evolution of groundwater types with fluoride (a) and nitrate (b) concentrations indicated as bubbles
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Fig. 3   Spatial distribution pattern of TDS (mg/L), Na+ (mg/L), Ca2+ (mg/L), Mg2+ (mg/L), HCO3
− (mg/L), Cl− (mg/L), SO4

2− (mg/L), NO3
− 

(mg/L), and F.− (mg/L)
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regions. Mineral dissolution, atmospheric deposition, and 
other anthropogenic sources contribute to groundwater 
sulfate. High NO3

− levels in the groundwater were found 
in the central and northern portions of the study region, 
as shown in the spatial distribution map, which is due to 
domestic waste and agricultural activities.

Discussion

Source appointment by principal component 
analysis (PCA)

The PCA can be used to determine the critical ion sources 
and geochemical processes that influence groundwater qual-
ity (Herczeg et al. 2001). A factor loading value of one or 
more shows a strong correlation between the factors and 
the variables. In contrast, values greater than 0.5 are con-
sidered significant. The four principal components account 
for 68.60% of the total variance for log-transformed data. 
PC1 has the highest data variance, followed by PC2, PC3, 
and PC4 (Table 2 and Fig. 4). PC1 had strong positive 
loadings, particularly for EC, TDS, hardness, Cl−, SO4

2−, 
Ca2+, Mg2+, and Na+, which explained 42.61% of the total 
variance. PC1 is mainly made up of essential cations and 
anions from anthropogenic and natural sources. Mineral 
weathering and water–rock interaction are two natural pro-
cesses in the aquifer (Rashid et al. 2022), and anthropogenic 
sources include domestic sewage in the study. This factor 
identifies agricultural activities as the other contributing 
process due to NO3

−, Mg2+, and SO4
2−. The PC2 accounts 

for 9.91% and consisting high positive loadings of pH and 
F−, indicating that pH controls F− in groundwater. Fluo-
ride minerals cause elevated F− concentration in the study 
area. The PC3, which accounts for 8.43% of the total vari-
ance, indicates a high positive loading turbidity and Fe2+. 
Poorly designed and shallowly constructed wells contribute 
to turbidity (Azis 2015; Jat Baloch et al. 2021b), and higher 
Fe2+ concentrations in groundwater are caused by ferrugi-
nous minerals on the surface of the earth (Raju 2006). With 
a total variance of 7.66%, PC4 shows moderate loadings  

Table 2   Principal component analysis of selected groundwater 
parameters for Khushab district

Bold values are the main contributors to PCA

Parameters PC1 PC2 PC3 PC4

pH  − 0.33 0.63 0.11  − 0.28
EC 0.97 0.17 0.08 0.02
TDS 0.98 0.17 0.07 0.01
Turbidity  − 0.03  − 0.20 0.70  − 0.15
Hardness 0.90  − 0.29  − 0.01 0.11
F− 0.47 0.51  − 0.22  − 0.35
Cl− 0.90 0.22 0.18 0.14
NO3

− 0.40  − 0.50  − 0.27  − 0.23
HCO3

− 0.28  − 0.20  − 0.52  − 0.39
SO4

2− 0.91 0.12 0.06  − 0.04
PO4

3− 0.01 0.11  − 0.11 0.70
Ca2+ 0.80  − 0.42  − 0.01 0.15
Mg2+ 0.93  − 0.13  − 0.02 0.05
Na+ 0.83 0.43 0.12  − 0.02
K+ 0.37  − 0.13  − 0.10  − 0.31
Fe2+ 0.00  − 0.26 0.54  − 0.45
As  − 0.05 0.12  − 0.40  − 0.17
Eigenvalues 7.24 1.68 1.43 1.30
Variance (%) 42.61 9.91 8.43 7.66
Cumulative (%) 42.61 52.52 60.94 68.60
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with phosphate. Fertilizers and animal or waste product 
decomposition can add phosphate to groundwater (Liu et al. 
2020).

Correlation analysis

The Pearson correlation statistical method is used to under-
stand the geochemical modeling of chemical characteristics 
(Bhardwaj et al. 2010). The correlation matrix of the phys-
icochemical parameters for groundwater samples is exhib-
ited in Table 3. With a statistical significance level of 0.05, 
the correlation matrix revealed a good to moderate positive 
correlation of TDS with major ions Cl−, SO4

2−, Ca2+, EC, 
Mg2+, Na+, and hardness, revealing that these ions influ-
ence the chemistry of the groundwater (Appelo and Postma 
2005). NO3

− had a moderate correlation with HCO3
−, 

SO4
2−, K+, Ca2+, and Mg2+, showing anthropogenic input 

in the groundwater aquifer, possibly due to fertilizer leach-
ing from agricultural lands during farming activities. TDS 
showed a slight positive correlation with F− in the current 
study. Many studies have found that high F− concentrations 
are associated with high TDS levels. Evaporation functions 
as a precursor in F− release in groundwater because it can 
restrict Ca2+ ions by precipitating CaCO3. As a result, the 
fluorite mineral’s solubility in water is reduced (Younas 
et al. 2019). With a correlation coefficient of 0.5, Na+ had 
a moderate correlation with F− in this study (Table 3). The 
presence of F− due to rock weathering has been confirmed. 
High Na+ concentrations can improve the solubility of min-
erals containing F−. Furthermore, there was no significant 
correlation between F− and Ca2+ (Table 3). Fluorite dissolu-
tion could be caused by low Ca2+ and Mg2+ ion concentra-
tions caused by precipitation such as calcite and dolomite. 
The weak correlation between F− and Ca2+ indicates that 
F− contamination is primarily caused by mineral fluorite 
CaF2 and the subsequent cation exchange reactions (Na+ is 
exchanged for Ca ion), which govern groundwater F− chem-
istry (Bhattacharya et al. 2020).

Major factors controlling hydrogeochemical 
processes

Various variables greatly influence hydrogeochemical 
processes, such as groundwater regime, aquifer lithology, 
and climatic conditions. The Gibbs diagram can determine 
the lithology-hydrochemistry relationship in aquifers (Jat 
Baloch et al. 2021a). Figure 5a depicts that most of the 
groundwater samples are found in the rock-dominance 
and evaporation-dominance regions, indicating that these 
processes primarily regulate groundwater hydrochemistry. In 
the study region, the input of soluble ions from atmospheric 
precipitation is negligible because of the arid climate and 
rare rainfall. The hydrochemical components of groundwater  

mainly come from the weathering hydrolysis of minerals 
(Fig. 5a). High F− in groundwater is more strongly affected 
by evaporation compared to low F− groundwater (Fig. 5a), 
which could be demonstrated by the local arid climate. 
The relationship between γ(Ca2+/Na+) and γ(HCO3

−/Na+) 
can be used to determine the source of major ions in the 
groundwater (Li et al. 2015). It is seen from Fig. 5b, the 
groundwater samples are mainly distributed near the 
end members of silicate minerals and close to the end 
members of evaporites, indicating that the hydrochemical 
compositions of groundwater mainly originated from the 
dissolution of evaporites and the weathering hydrolysis 
of silicate minerals, and relatively less affected by the 
weathering of carbonate rocks. Thus, the abundance of 
F− in the groundwater of our study area may have resulted 
from the release of fluoride-containing minerals, including 
silicates.

The milligram equivalent ratio of Cl− to Na+ in most 
samples was less than 1 (Fig. 6a), indicating that the mil-
ligram equivalent concentration of Na+ is much higher than 
that of Cl−. In addition to the dissolution of halite, the Na+ 
in groundwater may also originate from the dissolution of 
silicate and Na+-Ca2+ exchange (Gugulothu et al. 2022b). 
Silicate rock weathering is a major contributor to high levels 
of sodium (Na+) in groundwater. The alternating adsorption 
of cations may influence it.

(Ca2+  + Mg 2+)/(HCO3
−  + SO4

2−) milligram equivalent 
ratio can speculate the source of Ca2+, Mg2+, and SO4

2− (Li 
et al. 2015). As depicted in Fig. 6b, the ratios of most sam-
ples below the 1:1 relation line indicate that Ca2+, Mg2+, and 
SO4

2− are primarily derived from the weathering and filtra-
tion control of evaporite and silicate minerals. Most samples 
were distributed above the 1:1 line (Fig. 6c), confirming 
groundwater chemical formation. The controlling factor is 
the dissolution of evaporite minerals, and the sample points 
distributed below the 1:1 line may be accompanied by car-
bonate dissolution.

The plot of (Ca2+  + Mg2+-HCO3
−-SO4

2−) versus 
(Na+-Cl−) demonstrates the involvement of Na+, Ca2+, 
and Mg2+ in the ion exchange reaction (Fig. 6d). Ca2+ or 
Mg2+ added or removed from the groundwater system 
due to carbonate or gypsum dissolution is represented by 
(Ca2+  + Mg2+-HCO3

−-SO4
2−). In contrast, the amount of 

Na+ added or lost due to halite dissolution is represented 
by Na-Cl (Rao et al. 2022a). According to the slope, Ca2+, 
Na+, and Mg2+ are involved in the reverse ion exchange 
process derived from interaction with the aquifer material 
(Gugulothu et al. 2022b).

Genesis of fluoride and nitrate in groundwater

F− in the groundwater of the research region originates from 
fluoride-bearing minerals (fluorite), which will be mobilized 
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in the groundwater under ideal alkalinity and temperature 
conditions. The solubility of fluorite is pH dependent; the 
pH of groundwater varied from 6.7 to 8.55, with a mean 
of 7.72, indicating favorable weak alkaline conditions for 
F− enrichment in the study region (Fig. 7a). As shown in 
Fig. 7b, F− concentration increases with the increase of 
HCO3

− concentration in groundwater. Due to increased 
OH− content, CaF2 dissolves in alkaline or slightly alkaline 
groundwater (Chen et al. 2017). HCO3

− in groundwater can 
promote fluorinated mineral dissolution (Eq. 5) and increase 
the level of F− in groundwater.

Schoeller (1965) demonstrated the possibility of cation 
exchange using two indexes, CAI-1 and CAI-2 (Xu et al. 
2022), and their calculation methods were shown in Eqs. 6 
and 7, respectively. CAI-1 and CAI-2 will be positive when 
Na+ and K+ in water exchange Ca2+ and Mg2+. When Ca2+ 
and Mg2+ exchange adsorbed Na+ and K+ in the water, the 
values of CAI-1 and CAI-2 are negative, and the effect of 
cation exchange is more pronounced when the absolute value 
of CAI-1 and CAI-2 is larger. Figure 7c shows that approxi-
mately half of the two indexes, F− are negative, confirm-
ing the presence of cation exchange of Na+ and K+ in the 
adsorbed state of Ca2+ and Mg2+ in the elevated F− ground-
water in the study area. The decreased Ca2+ concentration 
in groundwater caused by cation exchange promotes fluoride 
enrichment in groundwater.

(5)CaF
2
+ 2HCO

3

−
= CaCO

3
+ 2F− + H

2
O + CO

2

(6)CAI-1 =
Cl− −

(

Na+ + K+
)

Cl
−

Furthermore, as shown in Fig.  7d, the correlation 
between F− and Ca2+, groundwater with a high Ca2+ content 
preferred low F− concentrations (Narsimha and Sudarshan 
2017). These results indicated that Ca2+ could inhibit F−. 
Because Ca2+ has a strong affinity with HCO3

−, CaCO3 
precipitates, which reduces Ca2+ in groundwater and speeds 
up the fluorite dissolution (Eq. 5), thus increasing the level 
of F− in the groundwater.

Positive relationships between F− and pH and HCO3
− and 

a negative relationship between F− and Ca2+ often accelerate 
F− content in groundwater, indicating fluorite-saturated 
groundwater concentrations (Ayoob and Gupta 2006; Rao 
et al. 2021; Xiao et al. 2022a). As shown in Fig. 8a, the 
groundwater was supersaturated for calcite and dolomite 
and unsaturated for fluorite and gypsum in the study 
area. Calcite and dolomite precipitation reduces Ca2+ in 
groundwater, which promotes fluorite dissolution and 
increases F− concentration in groundwater. The unsaturation 
of gypsum encourages the precipitation of calcite and, thus, 
the dissolution of fluorite. Fluorite weathering is the critical 
source of F− in the aquifers, as evidenced by their significant 
positive correlation.

The fluorite dissolution equilibrium shifts toward pre-
cipitation when the activity of Ca2+ and F− in solution 
exceeds the fluorite dissolution equilibrium constant (Yan 
et al. 2020). Groundwater samples are concentrated below 
the fluorite dissolution equilibrium line (pKfluorite = 10.6) 
(Fig. 8b), implying that fluorite content in the groundwater 
is controlled by fluorite solubility in the study region. When 

(7)CAI-2 =
Cl− −

(

Na+ + K+
)

HCO
−

3
+ SO

2−

4
+ CO

2−

3
+ NO

−

3

Fig. 5   Na+/(Na+  + Ca2+) mg/L versus Log TDS (a) and Na-normalized HCO3
− versus Na-normalized Ca.2+ (mM/mM) (b)
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only fluorite was dissolved, F− and Ca2+ activity increased 
along trend line 1; most samples were found to the right 
of trend line 1, revealing that the Ca2+ in the groundwater 
came from sources other than fluorite. When only fluorite 
was dissolved, F− and Ca2+ activity increased along trend 
line 1; most samples were found to the right of trend line 1, 
revealing that Ca2+ in the groundwater came from sources 
other than fluorite (Li et al. 2018). Given that groundwater 
contains large amounts of HCO3

− and SO4
2−, this Ca2+ may 

come from dissolved calcite, dolomite, and gypsum. When 
calcite and fluorite were dissolved in a 200:1 mass ratio, the 
activity of F− and Ca2+ increased along trend line 2, and the 
majority of water samples were located between trend lines 1 
and 2, indicating that the concentration of F− was controlled 
by Ca2+ from dissolved sources of fluorite, calcite, gypsum, 
and other minerals (Luo et al. 2018).

The pattern of groundwater flow is based on quaternary 
topography. As a result, groundwater chemistry differs in 
each of the three groundwater flow paths (I, II, and III), 
including EC, pH, TDS, turbidity, TH, Na+, PO4

3−, K+, 
Mg2+, Cl−, HCO3

−, SO4
2−, F−, and Ca2+ are presented in 

Table S1. It indicates that the F− content in groundwater 
generally decreases along the groundwater flow path, 
reaching up to 2.64  mg/L from path I to path II. The 
decreasing trend investigated is due to an increase in Ca2+ 
from the path I to the central path (II), whereas groundwater 
Mg2+ shows a decreasing trend from path I to the central 
path (II). It may be related to the continental salinization 
that occurred in the central zones of the flow-path II, and 
the dissolution of evaporate minerals causes an increase in 
salinity in groundwater (Li et al. 2020). Geochemical inverse 
modeling was utilized to better understand the effects of 
hydrogeochemical evolution along groundwater flow paths 

Fig. 6   Ionic ratio plots
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Fig. 7   Cross plots of fluoride versus other parameters and CAI-1 vs. CAI-2

Fig. 8   SI of calcite, dolomite, gypsum, and fluorite in groundwater (a) logF− (activity) vs. LogCa.2+ (activity) (b)
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on F− mobilization, and the solid phase was established 
based on the sediment mineralogy of the research location 
(Haji et  al. 2018). It is primarily comprised of four 
hydrogeochemical processes: (1) fluorite dissolution, which 
is the primary source of fluoride in the groundwater of the 
study area, (2) calcite and dolomite dissolution precipitation, 
(3) cation exchange between Na+ and Ca/Mg on the clay, and 
(4) chemical weathering.

NO3
− concentrations ranged from 0.1 to 70 mg/L, with 

an average of 8.89 mg/L. The permissible limit of 50 mg/L 
(WHO 2022) was exceeded in approximately 3.74% of 
the groundwater samples (Fig. 3). Agrochemicals damage 
soil and cause increased nitrate leaching, causing NO3

− to 
accumulate in the groundwater. Fertilizer use is common in 
the area, resulting in high NO3

− levels in the groundwater 
(Nemčić-Jurec and Jazbec 2017). Nitrogen-rich sediments, 
organic nitrogen inputs into soil, groundwater contamination 
with nitrogen-rich wastes, biological denitrogenating fixa-
tion by microorganisms, animal and human waste, water in 
unutilized dug wells, nitrogenous inorganic fertilizers, and 
stagnant water are the common sources of NO3

− in ground-
water (Rezaei et al. 2017). Agriculture is also one of the pri-
mary activities in the research region, and it is predicted that 
many applied agrochemicals will permeate the soil and reach 
groundwater. As a result, the amount of NO3

− in groundwa-
ter is likely to rise (Rao et al. 2022a). The high NO3

− level 
in the groundwater is caused by agricultural activities in the 
study area’s southern, northern, eastern, and central regions, 
according to a spatial distribution map of NO3

− (Fig. 3).
The similar spatial distribution of K+, Cl−, and NO3

− was 
used to identify anthropogenic activities (Rezaei et  al. 
2017; Wang et al. 2021; Yadav et al. 2018). In Fig. 9a, 
most of the samples were distributed near the end members  

of domestic sewage and tended to be close to the end mem-
bers of agricultural pollution. Results indicated that domes-
tic sewage and agricultural fertilizer pollution significantly 
impacted nitrate contamination of groundwater in the study 
region. A few samples are close to evaporite endmembers, 
indicating that NO3

− enrichment in groundwater is also 
influenced by geological factors to a certain extent.

Since there is a strong correlation between NO3
− from 

fertilizer and K+, to find the important cause of the ele-
vated nitrate in the groundwater (Kom et al. 2022; Xiao 
et al. 2022b), the relationship diagram of NO3

− and K+ 
(Fig.  9b) shows that there is no significant correlation 
between NO3

− and K+ in most groundwater samples. When 
NO3

− concentration is low, the content of K+ is low and 
high; only a small number of groundwater samples have a 
positive correlation between NO3

− and K+. The discharge 
of domestic sewage is the critical source of NO3

− pollution 
in the groundwater of the study area and is also affected by 
agricultural fertilizers. In addition, it can be seen that most 
of the high nitrate groundwaters (nitrate content > 50 mg/L) 
were plotted in the mixed Cl-Mg-Ca, Cl-Na, and mixed 
HCO3-Na-Ca dominance (Fig. 2b). Therefore, it can be 
concluded that high NO3

− contamination typically comes 
from external sources. These external sources also introduce 
major ions into aquifers, leading to the evolution of ground-
water with a salty hydrochemical composition.

Non‑carcinogenic health risk assessment

The EDI, HQ, and THI values for adults and children 
were calculated through drinking water ingestion and are 
summarized in Table 4. The mean EDI values of F− and 
NO3

− were < 1 for the adults and children, respectively. The 

Fig. 9   Plots of Cl−/Na + vs. NO3
−/Na+ (a) and NO3

− vs. K.+ for groundwater samples (b)
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HQ values of F− ranged from 9.52E − 03 to 3.76E + 00, 
1.98E − 02 to 7.81E + 00, and the average values of 
5.14E − 01 and 1.07E + 00 for the adults and children, 
respectively. In contrast, the HQ values of NO3

− varied from 
2.23E − 03 to 1.56E + 00 and 4.17E − 03 to 2.92E + 00 with 
average values of 1.98E − 01 and 3.70E − 01, respectively. 
High HQ values of F− were observed (> 1) for the adults 
and children of the local population in the sub-regions, 
including Nari Zone-B, Pindi Waheer, Chak no 5, Rukhla, 
Katha Sagral, Mangowal, Diawal, Jassowal, Kund DeraJat, 
Waracha, Fateh Pur Maira, Golay Wali Dera Jat, Muham-
mdkhel, Chak, Jalalpur, Katha Misseral, Ochala, Dhadhar 
Dera, Ghatti, and Badli Wala. In contrast, the NO3

− had high 
HQ values (> 1) for adults and children in sub-regions. Pindi 
Waheer, Kund Dera Jat, Mitha Twana, Chak, Nomi Wali, 
Khair Pur, Ochala, Kuffari, Jahlar, and Khottaka indicate a 
high risk of F− and NO3

− contamination. In contrast, it was 
observed that the risk involved in the remaining regions is 
low and negligible for the local population.

The THI mean values of F− were 8.18E + 01 and 
1.70E + 02, while the mean values of NO3

− for the adults 
and children were 3.19E + 01 and 5.96E + 01, respectively. 
The results showed that 40% of the samples exceeded the 

THI > 1 for adults and children as shown in Table 4, indicat-
ing high non-carcinogenic risk (THI > 1) for the local popu-
lation in the study area. Based on the non-carcinogenic risk 
of HQ and THI results, adults and children are at greater 
risk. Consequently, F− exhibits a high non-carcinogenic risk 
(> 1) as compared to NO3

− based on the elevated concen-
tration, which is prone to cause health problems, such as 
skeletal fluorosis and dental issues in infants (Magne et al. 
2020). Moreover, high F− concentration causes fluorosis, 
spinal disorders, and teeth and bone diseases by continu-
ously ingesting contaminated groundwater (Yousefi et al. 
2018). The high non-carcinogenic risk of NO3

− (> 1) via 
drinking water consumption resulted in colorectal cancer, 
childhood central nervous system tumors, thyroid disorders, 
and neural tube defects (Ransom et al. 2022). The dental and 
skeletal fluorosis cases were observed in the study area as 
shown in Fig. 10. Consequently, elevated concentrations of 
F− and NO3

− pose a health risk to the population in the study 
region, as the total number of water samples in sub-regions 
represents the entire Khushab district.

Table 4   Results of the non-carcinogenic risks of fluoride and nitrate via ingestion of drinking water

F NO3

EDI HQing EDI HQing

Adults Children Adults Children Adults Children Adults Children

Min 5.71E − 04 1.19E − 03 9.52E − 03 1.98E − 02 3.57E − 03 6.67E − 03 2.23E − 03 4.17E − 03
Max 2.26E − 01 4.69E − 01 3.76E + 00 7.81E + 00 2.50E + 00 4.67E + 00 1.56E + 00 2.92E + 00
Average 3.09E − 02 6.41E − 02 5.14E − 01 1.07E + 00 3.17E − 01 5.93E − 01 1.98E − 01 3.70E − 01
THI – – 8.18E + 01 1.70E + 02 – – 3.19E + 01 5.96E + 01

Fig. 10   Symptoms of dental and 
skeletal due to fluoride exposure 
in the study area
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Conclusion

Elevated F− and NO3
− concentrations in groundwater 

and the associated non-carcinogenic health risk for chil-
dren and adults were investigated in the Khushab region 
using hydrogeochemical, (geo)statistical, and multivariate 
approaches. The groundwater is neutral to alkaline. Most 
of the major ions were found within the allowable drink-
ing water limits in most groundwater samples, but F− and 
NO3

− contaminants were found beyond the acceptable 
drinking water limits in 25.46% and 3.73% of the sam-
pled groundwater, respectively. The hydrochemical com-
positions of groundwater are primarily the result of sili-
cate weathering, carbonate dissolution, cation exchange, 
dissolution of evaporites, and anthropogenic activities. 
Evaporation plays a crucial role in the formation of high 
F− shallow groundwater. Mixing with shallow ground-
water provides additional F− into deep groundwater. The 
dissolution of fluorine-containing minerals and naturally 
HCO3-Na type groundwater resulted in high F− groundwa-
ter. The NO3

− concentration is highest in mixed Cl-Mg-Ca 
and mixed HCO3-Na-Ca type water. The NO3

− contami-
nant usually originates from external inputs. Domestic 
sewage discharge is the primary source of NO3

− pollu-
tion in the study area, exacerbated by agricultural ferti-
lizer pollution. As a result, external sources of NO3

− con-
tamination introduce major ions into aquifers, causing the 
evolution of groundwater toward a salty hydrochemical 
composition. F− and NO3

− exhibited high non-carcino-
genic risk (HQ > 1) and (THI > 1) for adults and children, 
indicating an increased health risk to the local population. 
The study suggests taking practical measures to enhance 
safe drinking water management, such as denitrification, 
defluoridation, implementing methods for harvesting rain-
water, providing sanitary facilities, and limiting the use 
of chemical fertilizers, to protect groundwater resources 
from pollution and enhance the health of the residents. 
To reduce health risks, proper preventive measures must 
be implemented, including enhancing sanitation facilities 
and limiting the use of agricultural chemicals to prevent 
NO3

− pollution of the aquifer system, and filters to remove 
F− to improve human health. The findings of this study 
will assist decision-makers in the Khushab district of 
Pakistan in developing long-term plans for groundwater 
resource development.
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