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A B S T R A C T   

Groundwater fluoride is posing a health risk to humans, and analyzing groundwater quality is time-wasting and 
expensive. Statistical methods provide a valuable approach to study the spatial distribution of groundwater 
fluoride. Random Forest (RF), Artificial Neural Network (ANN), and Logistic Regression (LR) were used in this 
study for groundwater fluoride prediction in Datong Basin. The groundwater chemistry of 482 groundwater 
samples was collected and used to figure out the performance of three statistical technologies and extract the 
main factors controlling the enrichment of fluoride in groundwater. The data was separated into two parts for the 
statistical analysis, 80% for training and 20% for testing. The Chi-squared was applied to select the most relevant 
variables, and TDS, Cl− , NO3

− , Na+, HCO3
− , SO4

2− , K+, Zn, Ca2+, and Mg2+ were selected as best inputs for the 
fluoride prediction. Models were evaluated using the confusion matrix and The receiver operating characteristic 
area under the curve ROC (AUC). The results suggest that within ten input variables, the accuracies of RF, ANN, 
and LR were 0.89, 0.85, and 0.76, respectively. The mean decrease in impurity (MDI) and permutation feature 
demonstrates that eight of ten parameters, including TDS, Cl− , NO3

− , Na+, HCO3
− , SO4

2− , Ca2+ and Mg2+ are the 
variables influencing the groundwater fluoride in the study area. RF exhibited the best model with high con-
formity and confidence in predicting groundwater fluoride contamination in the study area.   

1. Introduction 

Groundwater is an essential source of water supply in numerous 
developed and underdeveloped countries such as Germany, the United 
States of America, Bangladesh, and Benin (West Africa) (Houéménou 
et al., 2020; Khosravi et al., 2020; Sutradhar and Mondal, 2021). It is a 
principal resource in arid areas where precipitation and surface water 
are restricted and helps in the development of economic growth (Li 
et al., 2017). In northern China, groundwater is the main water source 
for domestic, agriculture, and industrial purposes (Su et al., 2013). 
However, there is an increasing threat to groundwater due to the pres-
ence of several chemical elements like fluoride (Su et al., 2013). 
Therefore, understanding the groundwater quality is necessary for 

adequate water management sustainability purposes. 
According to the world health organization (WHO), the minimum 

amount of fluoride concentration in groundwater is between 0.5 and 1.0 
mg/L, and the maximum range is 1.5 mg/L, while the Chinese standard 
is 1 mg/L (Su et al., 2013). Fluoride is a necessary element, and it is 
required in small amounts to maintain the development of tooth enamel 
and the health of bones in humans (Rafique et al., 2008; Tripathy et al., 
2006). However, long-term excessive fluoride consumption causes 
numerous human health problems, including dental fluorosis, skeletal 
fluorosis, gastrointestinal disorders, and immune system disorders, 
which have been widely reported in several countries such as India, 
Korea, Pakistan, China, Mexico, and many countries in Africa (Apambire 
et al., 1997; Ayenew, 2008; Kim et al., 2011; Naseem et al., 2010; 
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Rafique et al., 2009). 
The fluoride concentration in the groundwater systems has been 

reported to be influenced by conditions resulting from the natural 
hydrogeochemical processes, such as dissolution of fluoride-containing 
minerals, including fluorite and biotite, precipitation of carbonate 
minerals, Ca–Na exchange on the clay minerals, and intense evapo-
transpiration (Li et al., 2020). Additionally, recent studies showed that 
anthropogenic activities using fertilizers and irrigation processes 
directly affect the groundwater fluoride concentration (Ayenew, 2008; 
Cairncross and Feachem, 1993). Altogether, these factors leave us with 
an unknown regarding the fate of fluoride in the groundwater. There-
fore, the assessment of groundwater quality, monitoring, and modeling 
are necessary for identifying groundwater trends and groundwater 
sustainability. 

Numerical models have been previously applied for groundwater 
quality modeling purposes (Rapantova et al., 2007). However, these 
models have limitations, such as needing a large quantity of data, 
considerable time, and have a complex structure that restricts their use 
(Alagha et al., 2014; Coppola et al., 2005). Thus to solve this issue, it is 
necessary to adopt a potential approach for assessing groundwater 
contamination. 

The application of machine learning models can provide an efficient 
alternative in predicting groundwater contamination which have been 
widely used by many studies (e.g., Mohammadi et al., 2016a; Nadiri 
et al., 2013; Noshad et al., 2019). For example, the artificial neural 
network (ANN) can detect complex non-relationship between predictor 
variables and the dependent variable and has the ability to solve erro-
neous and voluminous problems in a dataset (Mohammadi et al., 2016a; 
Tarasov et al., 2018). The random forest (RF) model can handle 
high-dimensional data, continuous, missing values, and binary data. 
Furthermore, logistic regression (LR) is an efficient algorithm that is fast 
in dataset training and efficiently used to analyze binary classification 
(Stoltzfus, 2011). Many studies employed ANN, RF, and LR to predict 
groundwater contamination. For instance, ANN was applied to predict 
fluoride contamination in groundwater in Khaf (Mohammadi et al., 
2016a). Likewise, it was used to forecast groundwater contaminated by 
nitrate in Iran and predict the concentration of high fluoride ground-
water in the Maku area (Nadiri et al., 2019; Ostad-Ali-Askari et al., 
2017). Similarly, RF was employed to predict groundwater contamina-
tion by uranium in California and predict groundwater pollution by 
nitrate in Southern Spain (Lopez et al., 2020; Rodriguez-Galiano et al., 
2014). In addition, some existing studies used LR for predicting 
groundwater contamination. For example, it was employed in India to 
predict groundwater contamination by Fluoride (Podgorski et al., 2018). 
However, these algorithms were all individually applied to predict 
groundwater contamination, and there is a gap in identifying the best 
machine learning to effectively predict groundwater contamination. In 
this regard, the current study compares three machine learnings, RF, 
ANN, and LR, to predict the fluoride in groundwater using binary clas-
sification analysis. 

The objective of the present work is to identify the most suitable 
predictive model that can be applied to predict fluoride contamination 
in groundwater in the Datong Basin. Therefore, an evaluation and 
comparison of three models, RF, ANN, and LR classifiers, were applied 
using physicochemical water parameters from the study area. Also, the 
determination of the variables influencing the fluoride in the study area 
was considered in this study. This investigation will provide insights into 
using classification models to predict groundwater and enhance 
groundwater prediction in the study area and elsewhere in the world. 

2. Hydrogeological setting 

Datong Basin belongs to the Shanxi rift system with around 6000 km2 

formed by Cenozoic faulted basins (Xing et al., 2013). It is situated in 
East Asia, characterized by a seasonal monsoon region with a semiarid 
climate. According to topography, the area is enclosed by mountains and 

slopes from the northwest to the southeast (Fig. 1). The annual precip-
itation is between 225 mm and 400 mm, and the evapotranspiration is 
over 2000 mm. The annual average air temperature is 6.5 ◦C (Su et al., 
2015). The Sanggan and the Huangshui rivers are the main rivers 
running across the study area. They are used for land irrigation due to 
several agricultural activities developed in the area (Wang and 
Shpeyzer, 2000). 

The outcrops for bedrock are detected in the western, eastern, and 
northern. The outcrops for the north are basalt and Archean gneiss. The 
west is constituted by Carboniferous–Permian–Jurassic sandstone, 
Cambrian–Ordovician limestone, and shale. In the northeast, the basin is 
formed of granite sparsely and Archean gneiss. The sediment in the basin 
is alluvial–pluvial sand and gravel. The central part of the basin is 
formed by Alluvial–pluvial sands, lacustrine and alluvial– lacustrine 
sandy loam soils. Also, silts and silty clay abundant in organic matter are 
reported in the central part of the basin (Guo and Wang, 2005). 

Furthermore, three aquifers are beneath the flat alluvial–lacustrine 
plain in the basin center, the upper, middle, and lower aquifers. The 
upper aquifer is formed by sands, and gravel usually occurs between 5 
and 60 m under the land surface with 2–10 m thick. The middle aquifer 
is molded by sandy gravel and sand from 60 to 160 m beneath the land 
surface. Finally, the lower aquifer consists of silt and fine sand observed 
at depths bigger than 160 m beneath the land surface (Xie et al., 2009). 

The groundwater recharge is by infiltration of the basins meteoric 
water vertically, irrigation return flow, and bedrock fractures in the 
mountain front, accompanied by an outflow from non-perennial rivers 
laterally (Guo and Wang, 2005). Evaporation and abstraction are the 
two major causes of the groundwater discharged in the study area. 

3. Methodology 

3.1. Sampling and analytical methods 

The details on the groundwater sampling and chemistry analysis can 
be obtained from our previous work (Li et al., 2012). Briefly, 482 sam-
ples were collected from different wells in August 2011 (Fig. 1). Quality 
assurance and quality control were maintained in the sampling and all 
analytical procedures (Li et al, 2012, 2020). All the chemical measure-
ments were accomplished at the State Key Laboratory of Biogeology and 
Environmental Geology, China University of Geosciences, Wuhan. 

3.2. Data preprocessing 

The data comprised 16 input variables, including TDS, Cl− , NO3
− , 

Na+, K+, HCO3
− , SO4

2− , Ca2+, Mg2+, pH, Ba, Li, Mn, Pb, Sr, Zn, and the 
dependent variable. The data was converted into high and low classes by 
allocating zero (0) to all fluoride concentrations lower than 1 mg/L and 
assigning by one (1) for the fluoride concentrations higher than 1 mg/L. 
The independent variables were then scaled between 0 and 1 for the 
three algorithms to enhance the model speed and accuracy. The data 
was then randomly divided into two sections 80% for training and 20% 
for testing. 

3.3. Selection of the relevant input 

Discarding significant variables or maintaining irrelevant variables 
affects machine learning model performance (Gheyas and Smith, 2010). 
For selecting the relevant inputs, filter methods were applied in this 
study. These methods are rapid compared to the wrapper methods as 
they do not involve model training. Moreover, they can determine the 
relationship between the independent and the dependent variables 
(Hendrawan and Murase, 2011; Sánchez-Marono et al., 2007). 

In the filter methods, the Chi-squared was implemented in this study 
as a feature selection method. The Chi-squared compares the observed 
distribution between various variables in the dataset and the dependent 
variable. It summarizes squared differences among observed and ex-
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pected values divided by expected values to determine the most relevant 
independent variables in the prediction (Lee et al., 2011). The variables 
are independent when the observed count is close to the expected count, 
and these variables will have a small Chi-squared value. Thus, a high 
Chi-Squared value indicates that the variable is more dependent on the 
output, and it can be chosen for model training. The variables were 
selected using the sklearn library in python using the “SelecktBest,” 
which retained the first k (The degree of freedom which is the number of 
samples being summed) input variables with the highest scores 
(Table 1). Therefore, ten (10) variables such as TDS, Cl− , NO3

− , Na+, K+, 
HCO3

− , SO4
2− , Ca2+, Mg2+, Zn are reported with a high Chi-squared 

value and were selected as relevant inputs for groundwater fluoride 
prediction. 

The Chi − squared is defined as: X2
c =

∑ (Oi − Ei)2

Ei
(1)   

C = degree of freedom (Degree of freedom refers to the maximum 
number of independent values, which have the freedom to vary in 
the data sample). 
O = Observed value(s) (They are the values that are observed in the 
dataset). 

E = Expected value(s) (The expected value is based on the row and 
column totals. It is the multiplication of row total by the column total 
and then dividing by the total, and gives the expected value for each 
cell). 

3.4. Random forest modeling 

RF is an algorithm that can be used for regression and classification 
analysis. In this study, random forest classification was used in pre-
dicting groundwater fluoride contamination. The RF combined many 
decision trees to limit overfitting, formulates a robust model, and gives 
high accuracy. In the random forest, the random is presented in two 
ways in the trees growing. First, a random selection with the substitute 
of all data rows results from one-third of the data and “out-of-bag” 
(OBB), which are not randomly selected for a decision tree. The second is 
the restricted number of randomly selected variables available at each 
node. In the RF, the number of trees and the number of predictor vari-
ables chosen at each node are the tuning parameters determining the RF 
overall fit. In this work, one hundred (100) trees were grown to generate 
the RF model. 

In addition, RF can identify significant predictor variables and effi-
ciently describe how they affect contaminant existence in aquifers. In 
this study, to assess the essential variables, the mean decrease in 

Fig. 1. Location map of the study area showing the sampling location.  

Table 1 
Selection of Relevant Inputs by using the Chi-Squared Analysis.  

Variables TDS Na+ HCO3
− NO3

− SO4
2- Cl− Ca2+ Mg2+ K+ Zn 

score 20668.6 8967.3 8515.7 5226.4 2131.2 1583.5 1001.9 459.9 59.2 7.3  
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impurity (MDI) was applied, a measure utilized for relative importance 
in RF sub-nodes to create splitting on a given variable (Bylander, 2002; 
Han et al., 2016). In impurity, a split with a considerable decrease is 
considered essential. Then the higher the mean decrease in impurity, the 
more important the variable is. 

3.5. Neural network 

ANN is a model intended to simulate biological ‘neurons’ behavior 
(Ostad-Ali-Askari et al., 2017). In this study, the ANN applied is the 
multilayer perceptron (MLP) feedforward. The MLP is a type of neural 
network in which each neuron is associated with above-layer neurons 
(Nevtipilova, 2014). The MLP neural network used in this study was 
composed of three different layers (Fig. 2). It was composed of input, 
hidden, and output layers. The input layers were formed of 10 neurons, 
which are the number of predictor variables. The hidden layer where 
data is processed was composed of two layers, and an output layer 
produces the results. Each layer comprises a fundamental element 
named neuron, which has a threshold and an activation function 
essential to the training process (Dreyfus, 2008; Mohammadi et al., 
2016b). In this study, the “adam” optimizer was used to update the 
weight in the network. The mathematical expression of the MLP defines 
as: 

Xnm =
∑

i
WnmXn + Wm (2) 

Xn represents the output of nodes, i located for any of the previous 
layers, Wnm the weight associated with the link connecting nodes n and 
m, and Wm the bias of node m. 

In this study, the activation function used to the hidden layer is relu 
and is defined by: 

f (x) = max(0, x = )f (x) =
{

xi if xi > 0
0, if xi < 0 (3) 

In the output layer, the activation function depends on the prediction 
of the model. For this analysis, the sigmoid activation is applied in the 
output layer, and it defines as 

f (x) =
1

1 + ex (4) 

Furthermore, the permutation feature was used to determine the 
essential variables between the predictors and the dependent variables. 
It demonstrates whether eliminating a variable would affect the network 
accuracy. 

3.6. Logistic regression 

Logistic regression (LR) is mostly used for binary classification (Qian 
et al., 2020). It is a conversion of linear regression using the sigmoid 
function. In this work, LR is applied to predict the fluoride in ground-
water. LR equation describes as: 

F(x) =
1

1 + e− (β0+β1x) (5)  

where β0 and β1 are the estimated parameters. 

3.7. Model evaluation criteria 

The models predictive capability in the testing stage was evaluated 
using the confusion matrix for each model. The accuracy, sensitivity, 
specificity, and error were calculated to assess the model prediction. The 
receiver operating characteristic area under the curve ROC (AUC) was 
also considered to evaluate the LR. 

The evaluation of predictive performance for binary classification is 
mainly based on the confusion matrix. It shows how the model classified 
the actual values compared to predicted values (Bowes et al., 2012). The 
prediction was compared to observed concentrations to identify the 
percentages of observations that were correctly classified. The per-
centage of fluoride correctly classified is known as the sensitivity, and 
the non-fluoride that was correctly classified is known as the specificity. 
The three models were carried out using the Python3.7 programming 
language. 

The metrics equation for the confusion matrix are described as: 

Fig. 2. Structure of Artificial Neural Network with the Inputs variables of the study area.  
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Accuracy =
TP + TN

TP + FP + TN + FN
(6)  

Sensitivity =
TP

TP + FN
(7)  

Specificity =
TN

TN + FP
(8)  

Error rate =
FP + FN

TP + TN + FP + FN
(9)   

TP: The true positive is when an item is predicted as fluoride, and it is 
correct is fluoride. 
TN: The true negative is when an item is predicted as non-fluoride, 
and it is correct is non-fluoride. 
FP: False positive when an item is predicted as fluoride, and it is not 
fluoride (It presents the error in binary classification). 
FN: False-negative when an item is predicted as non-fluoride, and it 
is fluoride (It is the opposite error in binary classification). 
Error rate: Number of instances misclassified over the whole set of 
instances (FP and FN). 

4. Results and discussion 

4.1. Hydrochemical characteristics 

Understanding groundwater hydrochemistry is indispensable for 
knowing the different chemical compositions related to the various 
aquifer. The mean fluoride concentration is up to 1.7 mg/L in ground-
water and ranges from 0.01 to 66.7 mg/L (Table 2). Thus, 294 out of 482 
groundwater samples were detected as high fluoride groundwater in the 
study area. The total dissolved solids (TDS) ranges from 289.3 to 20588 
mg/L. The concentration of HCO3

− is between 159.2 and 1786 mg/L 
with an average of 476.2 mg/L. The concentration of Ca2+ is varied from 
3.2 to 716.6 mg/L with a mean value of 55.7 mg/L. Cl− , NO3

− , SO4
2− , 

K+, Na+, Mg2+, and Zn were also identified in groundwater samples 
(Table 2). 

Fluoride concentration in groundwater is mainly controlled by 
different processes from natural to anthropogenic activities. A previous 
study proposed that at the Datong Basin, the main geochemical pro-
cesses influencing the mobilization of groundwater fluoride include the 
precipitation and dissolution of carbonate, gypsum, halite, silicate 
weathering, hydrolysis, and evapotranspiration (Su et al., 2015). 

4.2. Model evaluation and comparison 

After model building and training, the models received test pre-
dictors data to evaluate their performance in predicting the fluoride in 
groundwater. The evaluation metrics for RF, ANN, and LR were 
extracted from their confusion matrix, and details are described in 
Table S1, S2, and S3 in the supporting material section. The Metrics 
employed for evaluating the three models (Table 3) revealed that the 
accuracy, sensitivity, specificity, and error rate for the RF model were 
0.89, 0.98, 0.76, and 0.10, respectively. The high sensitivity above 
specificity in binary classification demonstrates a less false negative, 
suggesting a good prediction model. The ability of RF in predicting 

water blooms contamination and groundwater contamination by nitrate 
has been previously explored with reported accuracies of 0.87, and 0.77 
respectively, which are slightly lower than the accuracy in our study (Liu 
and Wu, 2018; Tesoriero et al., 2017). The performance accuracy for RF 
in this study is enhanced by selecting the relevant inputs and applying 
many trees leading to a good performance model. 

For the ANN accuracy, sensitivity, specificity, and error rate were 
0.85, 0.89, 0.80, and 0.14, respectively. This result is consistent with the 
finding of a previous study in predicting water quality using different 
physicochemical water parameters (Ahmed et al., 2019). Similarly, the 
performance of the ANN was also demonstrated in a previous study in 
the prediction of water pollution with an accuracy of 0.80 (Keskin et al., 
2015). The ANN performance in this study was improved by the number 
of hidden layers in the network training. The selection of more than one 
hidden layer to improve accuracy was also suggested in previous studies 
(Awan et al., 2018; Uzair and Jamil, 2020). In the ANN, an adequate 
number for training the network can be achieved with a maximum of 
two hidden layers. 

For the LR, the accuracy, sensitivity, specificity, and error rate were 
0.76, 0.82, 0.67, and 0.23, respectively. The LR was further evaluated 
using the ROC (AUC) to determine the ability of the model (Fig. 3). The 
result revealed that the LR performed with an AUC of 0.83, slightly 
higher than the performances reported in previous studies to predict 
groundwater spring and groundwater fluoride with reported AUC of 
0.82 and 0.78, respectively (Ozdemir, 2011; Podgorski et al., 2018). 

The statistical evaluations revealed that the three models used in this 
study to predict groundwater fluoride yielded satisfactory results with 
high sensitivity and specificity, which means a lower error in predicting 
groundwater fluoride. The better performance accuracies observed in 
this study for three models might be attributed to the relevant param-
eters selected by using the Chi-squared analysis. 

Amongst the three algorithms, the results suggested that RF has 
shown a high performance for predicting fluoride in groundwater in the 
study area, which outperforms the performance of ANN and LR 
(Table 3). The dissimilarity in predictive ability can be attributed to 
variations in the algorithm structure. The high performance of the RF is 
attributed to the fact that the model does not consider an easy inter-
pretation of a single independent variable. However, a random subset of 
the independent variables is used for each tree at each node. In this 
regard, it avoids the overfitting problem and enhances the prediction 
accuracy (Al-Mukhtar, 2019; Francke et al., 2008). 

The lower performance observed for the ANN compared with the RF 
model can be attributed to the fact that ANN models are incapable of 
extrapolating beyond the data used for training. Therefore, overfitting is 
a complex problem in the training data for the ANN (Al-Mukhtar, 2019; 
Minns and Hall, 1996). These problems can yield a lower performance 
for the ANN since the RF model does not suffer from overfitting but 

Table 2 
Statistical Analysis of Physico-Chemical Parameters for Groundwater samples for the study area.  

Variables TDS Cl− NO3
− SO4

2- HCO3
− K+ Na+ Ca2+ Mg2+ Zn F−

Minimum 289.3 5.3 0.01 0.01 159.2 0.01 5.8 3.2 4.3 0.01 0.01 
Maximum 20588 8032 3855 6688 1786 326.7 2895 716.6 1913 18.2 66.7 
Mean 1458 250.4 65.9 274.9 476.2 6.9 251.2 55.7 74.1 0.7 1.7 
Standard deviation 1880 608.7 212.9 553.7 264.1 25 391.2 59.8 128.5 0.8 3.4 

(unit: mg/L). 

Table 3 
Statistical metrics for the Models Evaluation using Physico-Chemical Water 
Parameters for the three algorithms Random Forest, Neural Networks, and Lo-
gistic Regression.  

Metrics RF ANN LR 

Accuracy 0.89 0.85 0.76 
Sensitivity 0.98 0.89 0.82 
Error rate 0.10 0.14 0.23  

M.B. Nafouanti et al.                                                                                                                                                                                                                          



Applied Geochemistry 132 (2021) 105054

6

instead combine many trees to produce the prediction that increases the 
model performance. 

The LR demonstrated the lowest performance amongst the three 
models regarding accuracy, sensitivity, and specificity (Table 3). The 
lower performance of LR can occur in high dimensional data in the 
training data set, and the model may overfit and might not be accurate 
on the test data set. Despite the weak performance of ANN and LR in the 
current study, they are advantages in using them in other studies to 
predict groundwater contamination. 

The process of groundwater contamination is complicated to un-
derstand due to the presence of several fluctuating variables. Conse-
quently, the more flexible the algorithm, the greater the predictive and 
more reliable model (De’ath and Fabricius, 2000). An algorithm 

performance depends on the algorithm structure, the data nature, and 
the parameter selection (Asim et al., 2018). For statistical analysis, 
feature selection (e.g., Filter methods) should be considered to obtain an 
excellent predictive model in such classification tasks. 

4.3. Identification of the variables influencing the fluoride mobilization 

The relationship between predictors with fluoride was determined 
using the mean decrease in impurity (MDI), a measure used for variable 
importance in RF (Calle and Urrea, 2011). It is a tree-specific feature 
importance measure computed by the feature importance implemented 
in the “skirt-learn library” for RF in python. The sum of MDI for each 
feature across every forest tree is accumulated each time a variable is 

Fig. 3. Performance for Logistic Regression using ROC (AUC) curve.  

Fig. 4. Important Features to the Fluoride using Mean Decrease in Impurity in Random forest.  

M.B. Nafouanti et al.                                                                                                                                                                                                                          



Applied Geochemistry 132 (2021) 105054

7

chosen to split a node. As demonstrated in (Fig. 4), the variables that 
tend to split nodes closer to tree root will have a more significant value. 
Thus, the essential variables of the model will be the highest in the plot 
and have the most significant MDI values, which are the cases of TDS, 
Cl− , NO3

− , Na+, HCO3
− , SO4

2− , Ca2+, Mg2+ in the plot. The variables K+

and Zn are lower in the plot, which means they have a small MDI and 
suggesting that they do not influence the fluoride in the study area. 

The application of the MDI to determine the important variables in a 
dataset to the dependent variable was quoted in previous studies 
(Breiman, 2001; Meinshausen, 2007; Zhao, 2000). In addition, the MDI 
was used to identify significant predictors to the dependent variables in 
microarray and facies prediction studies and has shown the ability to 
identify the important variables related to the dependent variable 
(Archer and Kimes, 2008; Bhattacharya and Mishra, 2018). The result of 
the MDI demonstrates that TDS, Cl− , NO3

− , Na+, HCO3
− , SO4

2− , Ca2+, 
and Mg2+ are the variables influencing the fluoride in the study area, 
which is consistent with the findings of previous studies (Chae et al., 
2007; Dhiman and Keshari, 2006; Guo et al., 2007). 

The permutation feature was adopted to assess the variable impor-
tance of ANN to know the most influential variables on the output. The 
permutation decreases the definitive model score when eliminating a 
single variable (Maier and Dandy, 1996; Wen et al., 2013). Overall, 
eleven (11) networks were evaluated to determine the most significant 
variables to the output. Each one demonstrated the change observed in 
network accuracy variation after removing a variable (Table 4). 

In the observation, after eliminating the variables K+ and Zn, the 
accuracy is 0.85 same as the original model accuracy. Therefore K+ and 
Zn could be excluded from the model as they do not affect the network 
accuracy and suggest that K+ and Zn do not enhance the fluoride in the 
study area. Conversely, with the elimination of other variables such as 
TDS, Cl− , NO3

− , Na+, HCO3
− , SO4

2− , Ca2+, and Mg2+, the model ac-
curacy decrease confirming their importance to the fluoride. Previous 
studies used the permutation feature to determine the most important 
variables to dissolved oxygen and learning event data (Matayoshi et al., 
2019; Wen et al., 2013). 

Therefore, in this study, the permutation feature and the mean 
decrease in impurity suggest the same results as TDS, Cl− , NO3

− , Na+, 
HCO3

− , SO4
2− , Ca2+, and Mg2+, the variables influencing the fluoride in 

the study area. However, the permutation feature is applicable 
compared to the MDI to determine the relationship between the input 
and output variables. Thus, the permutation is appropriate to any al-
gorithms to assess the essential variables to the output, but the MDI is an 
important measure feature limited to the RF algorithm. 

Previous studies have demonstrated different chemicals and pro-
cesses that influence fluoride in the study area (Su et al, 2013, 2015). 
The high fluoride in groundwater was generally characterized by the 
water type of HCO3–Na(Mg), HCO3.SO4–Na(Mg) and SO4.Cl–Na(Mg) 
(Su et al., 2013). Moreover, it stated that the increase in groundwater 
HCO3

− concentration facilitates the fluorite dissolution, thereby pro-
moting the release of fluoride into groundwater. The enrichment 
mechanism for fluoride concentration in groundwater is also related to 
cation exchange on the clay minerals, which causes the removal of Ca2+

by replacing it with Na + favoring the enrichment of groundwater 
fluoride (Rango et al., 2009; Saxena and Ahmed, 2003). 

5. Conclusion 

Globally, groundwater is an essential source of drinking water, 
especially in arid areas. The present study investigated and compared 
three algorithms, Random Forest, Logistic Regression, and Artificial 
Neural Networks, to predict groundwater fluoride in the Datong Basin. 
Our findings revealed that among the three algorithms implemented, RF 
suggests a significant prediction modeling to predict the fluoride in the 
study area with an accuracy of 0.89 and an error rate of 0.10. The mean 
decrease in impurity and the permutation feature were applied to 
determine the variables influencing the fluoride in the study area. These 

methods find similar variables related to fluoride, including TDS, Cl− , 
NO3

− , Na+, HCO3
− , SO4

2− , Ca2+, and Mg2+. 
According to many model evaluation criteria, the RF algorithm 

outperformed the ANN and LR when predicting groundwater fluoride 
contamination. These results suggest that the RF model can be used as a 
consistent algorithm to predict groundwater fluoride in the Datong 
Basin and can be applied to other study areas in predicting groundwater 
contamination. However, for the consistent performance of RF to predict 
groundwater fluoride in the study area, future research should be 
focused on developing other models that should be more flexible in 
predicting groundwater contamination. 
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