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Abstract: The heat transfer Magnetohydrodynamics flows have been potentially used to enhance the
thermal characteristics of several systems such as heat exchangers, electromagnetic casting, adjusting
blood flow, X-rays, magnetic drug treatment, cooling of nuclear reactors, and magnetic devices for
cell separation. Our concern in this article is to numerically investigate the flow of an incompressible
Magnetohydrodynamics micropolar fluid with heat transportation through a channel having porous
walls. By employing the suitable dimensionless coordinates, the flow model equations are converted
into a nonlinear system of dimensionless ordinary differential equations, which are then numerically
treated for different preeminent parameters with the help of quasi-linearization. The system of
complex nonlinear differential equations can efficiently be solved using this technique. Impact of
the problem parameters for microrotation, temperature, and velocity are interpreted and discussed
through tables and graphs. The present numerical results are compared with those presented in
previous literature and examined to be in good contact with them. It has been noted that the imposed
magnetic field acts as a frictional force which not only increases the shear stresses and heat transfer
rates at the channel walls, but also tends to rotate the micro particles in the fluid more rapidly.
Furthermore, viscous dissipation may raise fluid temperature to such a level that the possibility of
thermal reversal exists, at the geometric boundaries of the domain. It is therefore recommended
that external magnetic fields and viscous dissipation effects may be considered with caution in
applications where thermal control is required.

Keywords: micropolar fluid; channel; magnetic field; heat transfer

1. Introduction

The fluids involving nano-sized polymeric additives, mixed in a non-symmetric
manner, are recognized as micropolar fluid. This fluid involves spinning micro fragments
that provide a better mechanism for the successful employment of micropolar fluid in
biotechnology and engineering. At first and almost at the same time, a hypothesis was
proposed by Vogel and Patterson [1], Fabula and Hoyt [2] on the liquids encasing polymeric
added substances in a small amount. Their examinations portrayed that the liquids having
polymeric added substances show a reduction in the shear stresses in closeness to a rigid
surface. The Newtonian fluids could not describe this characteristic. Eringen [3,4] initiated
the framework of micropolar fluids. This work was further developed by Ariman et al. [5,6]
who also provided examples and applications of micropolar fluids. Micropolar liquids can
communicate the flow conduct of exotic lubricants, paints, polymeric materials, flow in
capillaries, animal blood, and ferro liquids.

Exploration exercises expecting to investigate fluid material science at micro and
nano scales have been expanding in recent years. The fluid flows in micromachined fluid
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systems (e.g., valves and pumps) and channels utilizing Navier–Stokes equations have
been deeply analyzed in the existing literature [7]. In certain circumstances, the Navier–
Stokes conditions (obtained from the classical continuum) cannot explain the fluid flow
attributes at a large scale [8]. It may be due to the reason that the spinning molecules
substantially affect the flow field when the molecular size is comparable to the channel
size. The Navier–Stokes equation does not involve the effect of molecular spin. The theory
of microcontinuum comprised of micromorphic, microstretch, and micropolar theories
was established by Lee et al. [9] and Eringen [10–12]. This theory offered a mathematical
structure to investigate such motions. The degree of freedom called gyration is used, in
the micropolar theory, to find the rotation of micro-structured molecules. Therefore, the
system of micropolar flow model equations consists of an additional transport equation
to solve gyration. The molecular spin can be determined from this equation. The theory
of micropolar fluid is an alternative persuasive methodology to numerically explore the
microscale fluid dynamics, and is computationally effective rather than the molecular
dynamics (MD) simulation. Papautsky et al. [13] adopted the model of micropolar fluid
for the first time, and experimentally observed that the volume flow rate decreased for the
flow in a rectangular microchannel.

Micropolar fluid flows have been explored analytically and numerically by several schol-
ars. A persuasive numerical scheme “RKF 45-method” was applied by Souayeh et al. [14] to
solve the flow model equations of micropolar nanofluid with allowance for warm nonlinear
radiation. A framework of biothermal characteristics was established for all the preeminent
parameters whose effects were elaborated through several graphs. An analytical and com-
putational study of hybrid nano-micropolar flow was premeditated by Tassaddiq [15]. The
findings of this study depicted that the macro-velocity field continuously reduced against
increasing values of the material parameters. A blood flow of a two-phase model, in which
blood is assumed to be a micropolar fluid, was examined by Jaiswal and Yadav [16]. A two-
dimensional microscopic seepage channel flow model having a real core structure was
established by Wang et al. [17]. The finite element method was used to simulate the flow of
solid particles in the fluid and the fact of clogging reservoir was examined. The impact of
uniform magnetic field was also taken in their analysis. The authors graphically analyzed
the flow model parameters for several Darcy and Brinkman regions. A micropolar flow,
with allowance for thermal radiation, in a channel, was carried out by Ahmad et al. [18].
They adopted finite difference discretization along with quasi linearization to solve the
dimensionless differential equations and spotted that thermal radiation caused an increase
in the mass transmission rate on the lower wall of the channel. Lund et al. [19] considered
the viscous dissipation and thermal radiation effects with first-order slip in a micropolar
fluid flow over a linear shrinking sheet. It was noticed that the fluid velocity increased in
the presence of a strong magnetic field. The fourth-order PC4-FDM (predictor–corrector
finite difference method) was employed by Khader et al. [20] to solve the non-dimensional
model dynamical equations of micropolar fluid. The flow was considered over a contract-
ing or expanding surface. Mass and heat transmission rates, as well as the friction factor,
were enumerated under some specific conditions. The bioconvective flow of micropolar
nanofluid and gyrotactic microorganisms with the coexistence of solutal and thermal strat-
ifications was developed by Tlili et al. [21]. The flow model problem, in this study, was
innovated by using the partial slip boundary conditions. The coupled and highly nonlin-
ear differential equations were treated numerically via the Homotopy Analysis Method
(HAM). It was profound that the effect of bio-convection Lewis number was to deteriorate
the local density number. Gangadhar et al. [22] developed a model problem for the flow
of micropolar fluid over an extending surface. The slip conditions were also taken into
account in the flow. A numerical technique, bvp4c MATLAB solvers, was used to attain
numerical solutions. A micropolar fluid flow model to solve the dynamical boundary
layer problems was established by Sui et al. [23]. They introduced the power-law function
in this model. In this study, the numerical solutions were found using the homotopy
analysis method. The interaction of applied Lorentz force with the micropolar fluid inside a
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magnetohydrodynamic micropump was examined by Alizadeh et al. [24]. Their outcomes
were correlated with that of experimental ones and were found to be almost similar to each
other for special cases. Maleki et al. [25] presented a comprehensive study describing the
magnetic nanoparticles effects on microfluidics. They proposed that the shear as well as
magnetic force provided a better mechanism of vortices’ manipulation inside the droplet.

Flows across the channels play a pivotal role in biotechnology and industry because of
their practical employments in binary gas diffusion, ablation cooling, air circulation in the
respiratory system, and the combustion process in rocket motors (see [26]). The micropolar
flows through channels have been deliberated by various authors. An incompressible,
steady, and laminar flow of micropolar within a resistive permeable medium between walls
of a channel with mass and heat deportation, by considering the effect of heat generation,
was examined numerically by Ahmad et al. [27]. A micropolar flow between parallel
plates of an inclined channel was analyzed by Srinivasacharya et al. [28]. The upper
plate was placed at a fixed heat flux and the lower plate was maintained at a constant
temperature. They used the spectral quasi-linearization method to solve the governing
equations numerically. The flow of an unsteady micropolar fluid, by taking the Dirichlet
boundary conditions over a domain Ωε, was scrutinized by Boukrouche et al. [29]. This
flow problem was thus interpreted by the angular micro-rotation field, the pressure, and
the fluid velocity. The MHD micropolar flow generated by peristaltic waves with heat and
mass transfer attributes through a curved channel was determined by Ahmed et al. [30].
The lubrication approximation was utilized to reduce the relevant governing equations.
The impacts of various parameters such as curvature parameter, Brinkman number, and
micropolar parameter on the flow were analyzed in detail. Ding et al. [31] presented
an interesting novel study of micropolar fluid flow in nanofluidic channels, in which it
was argued that the microstructure nature of fluid particles had a profound effect on the
electro kinetic phenomena. The effect of EDLs (electrical double layers) and velocity slip
were also taken in this channel flow problem to investigate their effects on microrotation.
Singh et al. [32] proposed a numerical study regarding the flow of micropolar fluid to report
the effects of entropy generation on the flow within an inclined channel in the presence of
thermal conductivity, changeable dynamic viscosity, and steady vortex viscosity. A channel
flow involving micropolar fluid was considered by Ahmad et al. [33]. An increase in the
micropolar material parameters increased the flow velocity, microrotation, and temperature
while an increase in the porosity parameter produced an opposite effect.

The magneto-hydrodynamic phenomenon is widely used in the fields of astrophysics,
engineering, geophysics, and aerospace engineering. Examples include photochemical
reactors, plasma confinement, fiber coating, transportation, magnetic drug targeting, heat
exchangers, electromagnetic casting, X-rays, cooling of nuclear reactors, sensors, and so
forth. The flow of electrically conducting fluids immersed in external magnetic fields was
numerically explored by Fonseca et al. [34] using the finite volume method. The influence
of the magnetic field on the flow velocity, along with other parameters, was observed.
The nature of the non-Newtonian pulsatile flow of micropolar-Casson fluid, influenced by
Lorentz force, in a restrained channel subject to Darcy’s law was surveyed by Ali et al. [35].
In their study, the maximum velocity of the flow was attained at the constriction throat
of a channel. The effect of Lorentz force on a flow-through cavity was determined by
Sheikholeslami and Rokni [36] by using the finite element method which was based on
control volume methodology. Their results portrayed that the Rayleigh number caused an
increase in convective flow. The peristaltic flow of MHD micropolar fluid inside a tapered
channel, to examine the impacts of thermal radiation and entropy generation, was explored
by Asha and Deepa [37]. The relevant equations of motion and heat transfer were solved by
Adomian Decomposition Method (ADM). A numerical investigation of two different types
of immiscible fluids (one of which was micropolar fluid) flow through a vertical channel
in the coexistence of magnetohydrodynamic was presented by Tetbirt et al. [38]. They
discussed the comparative results of magnetic and non-magnetic terms. Umar et al. [39]
analyzed the heat transfer of micropolar fluid flow in a constricted channel influenced
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by thermal radiation and the Lorentz force. A finite difference-based flow solver, on a
Cartesian grid, was used to find the numerical solution.

Research is carried out by Ahmad et al. [40] to comprehend how much magnetic field
affects the flow through a cavity in the presence of a dipole. Additionally, it was deter-
mined that the effect of the magnetic field shifted the temperature field towards the zone of
higher temperature around the dipole location. Taking the flow of micropolar fluid along a
two-dimensional channel, Mirzaaghaian and Ganji [41] found that the Reynolds number
significantly affected the streamwise velocity and negligibly affected the concentration and
temperature. They verified the validity and precision of the Differential Transformation
Method (DTM) and declared that this method is prominent to find the approximate so-
lutions of the fluid problems. The same flow was presumed in a channel having porous
walls [42]. In this problem, the concentration equation contained the chemical reaction
term. The numerical solution was determined via the homotopy perturbation method
(HPM). It was concluded that the Sherwood and the Nusselt number are directly propor-
tional to the Peclet number and suction/injection parameter. An effort was taken out by
Mahian et al. [43] to investigate the magnetohydrodynamic effects on the distributions
of temperature, entropy generation, and velocity. The flow was taken within the gap of
two concentric rotating cylinders. The governing equations were solved analytically to
determine the average and local entropy generation rate. A novel study on the fractal-based
approaches and fractal models to elaborate the convective heat transfer, critical heat flux,
and effective thermal conductivity was presented by Cai et al. [44]. Combined power and
heat systems were discussed by Mahian et al. [45]. A technique (Grey Wolf Optimization)
was introduced to model several structures of the system. The downward flow under the
influence of a strong magnetic field through a vertical duct was explored numerically by
Zhang and Zikanov [46] using the two-dimensional approximation. Ahmad et al. [47,48]
offered novel studies involving the flow of hybrid nanoparticles under the magnetohydro-
dynamic environment. They determined that the effect of Lorentz force suppressed the
velocity and enhanced the temperature.

The current study regarding the flow of micropolar liquids within permeable media
(channel in the present case) has a scope in several fields of technology and industry like
microemulsions, lubrication, micro machines, petrochemical, foams and aerogels, polymer
blends, and alloys. A survey of the existing literature denotes that no work has been
performed so far to numerically investigate the micropolar flow through porous channels
taking into account the simultaneous effects of viscous dissipation and magnetohydrody-
namics.

An important characteristic, viscous dissipation, is taken into account in the recent
analysis. An efficient computational algorithm is presented to obtain a meaningful nu-
merical solution. The novel results for the fluid flow through porous channels have been
investigated and physically interpreted through graphs and tables.

2. Problem Formulation

Consider an incompressible and steady micropolar flow through the gap between the
walls of a channel. Both channel walls are porous with different permeability. The fixed
pressure gradient causes the motion of the fluid between channel walls and the magnetic
field is applied along the y-axis. The impacts of the body, as well as couple forces, are
considered to be negligible. Taking into account these flow assumptions, we intend to
investigate the two-dimensional micropolar fluid flow problem involving the magnetic
and viscous dissipation effects at any channel cross-section. The components u and v are
appropriately taken as velocity components are taken along and across the channel, as
appeared in Figure 1. The upper wall of the channel is situated at y = −c and the lower
wall is placed at y = c, so that 2c is the entire channel width. The injection velocity at the
lower wall is U1 and that taken at the upper wall is U2. The permeability parameter, to
analyze the effects of different permeability at both walls, is defined as
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A =
U2 −U1

U2
, (1)

The injection velocities through the porous walls can be determined by this parameter.
 

 
 

Figure 1. Porous channel model.

The relevant flow model equations of micropolar fluid, as suggested by Eringen [3],
can be written as:

∂ρ

∂t
+∇·(∂V) = 0, (2)

∇(∇·V)(λ + 2µ + κ)− (µ + κ)∇×∇×V + κ∇× v−∇π + ∂ f = ∂V′, (3)

(α + β + γ)∇(∇·v) + κ∇×V − γ(∇×∇× v)− 2κv + ∂l = ∂jv′, (4)

The terms involved in the above equations such as V, π, l, f , ρ, v, and j represent
the fluid velocity vector, pressure, body couple per unit mass, body force per unit mass,
density, fluid velocity vector, and the microinertia, respectively. The material constants are
denoted by λ, µ, α, β, γ, κ.

For the 2D problem under observation, the normal velocity v and the streamwise ve-
locity u are two non-zero components of velocity. Hence, we may precise the microrotation
and the velocity vectors as:

v = (0, 0, ϕ(x, y))

V = (u(x, y), v(x, y), 0)

}
, (5)

Putting (5) in the Equations (2)–(4), we obtain:

∂v
∂y

+
∂u
∂x

= 0, (6)

−1
ρ

∂π

∂x
= u

∂u
∂x

+ v
∂u
∂y
− (µ + κ)

ρ
∇2u− κ

ρ

∂ϕ

∂y
+

σB0
2

ρ
u (7)

−1
ρ

∂π

∂y
= u

∂v
∂x

+ v
∂v
∂y
− (µ + κ)

ρ
∇2v +

κ

ρ

∂ϕ

∂y
(8)

ρj
(

u
∂ϕ

∂x
+ v

∂ϕ

∂y

)
= γ∇2 ϕ + κ

(
∂v
∂x
− ∂u

∂y

)
− 2κϕ, (9)

ρcp

(
u

∂T
∂x

+ v
∂T
∂y

)
= κ0

∂2T
∂y2 + µ

(
∂u
∂y

)2
+ σB0

2u2, (10)
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where κ0 is the thermal conductivity, σ is the electrical conductivity, B0 is the strength of
the magnetic field, T is the temperature, and cp is the specific heat at constant pressure.
The boundary conditions are given as:

u(x, c) = 0, u(x,−c) = 0

v(x, c) = U 2, v(x,−c) = U 1

ϕ(x, c) = 0, ϕ(x,−c) = 0

, (11)

where the injection/suction velocity at the lower and upper wall is U1 and U2, respectively.
It may be important to mention that one of these velocities will be positive, and the other
will be negative. The microrotation and velocity field are acquired by solving Equations (6)–
(10) under adequate boundary conditions (11). However, the following similarity variables
are suggested, as proposed by Berman [49], to alter the relevant governing PDEs (6)–(10)
into ordinary ones:

ψ(x, y) =
(

Uc
A
− χU2

)
f (η), (12)

Φ(x, y) = −g(η)
(

Uc
A
− χU2

)
, (13)

where η = y
c is the similarity variable, and Uc is a constant reference velocity. Furthermore,

g(η) is the dimensionless angular velocity, and χ is the spatial variable along the horizontal
direction. The components u and v in correlation with the stream function ψ are:

u = ∂Ψ
∂y =

(
U
A −

χU2
c

)
f ′(η)

v = − ∂Ψ
∂x = U2 f (η)

, (14)

The continuity Equation (6) is satisfied identically by the above-proposed velocity field
and, thus, these components describe possible fluid motion. The equation of continuity is
not considered further because of the elimination of the pressure term from the governing
equations. Using (12)–(14) in (7)–(10), we find

− f ′′′
(

µ + κ

c2

)
+

(
1

U
A −

χU2
c

)
∂π

∂x
+

g′π
c2 =

(
f ′

2
− f f ′′

)ρU2

c
, (15)

f ′′
(
(µ + κ)U2

c2

)
− k

U2g
c2 −

∂π

∂y
=

1
c

ρU2
2 f f ′, (16)

γg′′ + κc2 f ′′ + 2κc2g = ρjcU2
(

f ′g− f g′
)
, (17)

The notation of prime expresses the differentiation w.r.t.η. Now, boundary condi-
tions (11) in view of (12) and (13) become:

g(1) = 0, g(−1) = 0

f (1) = 1, f (−1) = 1− A

f ′(1) = 0, f ′(−1) = 0

, (18)

Excluding the terms of pressure from Equations (15) and (16), we get

f (iv) − C1g′′ −M(1− C1) f ′′ = Re
(

f f ′′′ − f ′ f ′′
)
, (19)

Equation (17) can be rearranged as:

− C2(2g− f ′′ ) + g′′ − C3( f g′ − f ′g) = 0, (20)
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Equation (10) now takes the form:

θ′′ + PrRe f θ′ + EcPr
(

f ′′
2
+ M f ′

2)
= 0, (21)

In the above dimensionless equations, M expresses the magnetic field parameter,
Re which represents the parameter that associates the injection velocity at both walls.
Furthermore, the parameters such as C3, C2, and C1 are the material parameters describing
the microinertia density, spin gradient viscosity, and vortex viscosity, respectively. These
parameters are written as

Re =
ρU2c

(µ + κ)
, M =

σB0
2c2

µ
, C1 =

κ

(µ + κ)
, C2 =

κc2

γ
and C3 =

ρjU2c
γ

As U2 is included in Re, thus the value of Re will be less than zero at the upper
wall. It is noticed that, if we eliminate the microrotation, then Equation (19) will become
the equation of Newtonian fluid, whereas Equation (20) reduces to zero (identically) for
j = 0, as mentioned in [4–6]. This leads us towards the validation of our micropolar fluid
flow model.

3. Numerical Approach

A typical approach to numerically solving the governing differential equations is as
follows: Setting t = θ′, s = g′, p = f ′, q = f ′′ , r = f ′′′ in Equations (19) and (20),
we have

p = f ′, q = p′, r = q′, r′ = C1s′′ + M(1− C1)q− Re( f r− pq)

θ′ = t, t′ = −PrRet f − EcPr
(
q2 + Mp2)

g′ = s, s′ = C2(q− 2g) + C3(pg− f s)

, (22)

With respect to the following BCs:

g(−1) = 0, f (−1) = 0, θ(−1) = 1, p(−1) = −1

q(−1) = α1, r(−1) = α2, s(−1) = α3, t(−1) = α4

}
, (23)

Here, the initial conditions to be determined are g′(−1), f ′′′ (−1), θ′(−1) and f ′′ (−1).
Thus, it may be better to incorporate a shooting technique to solve the above system.
This technique may associate an algorithm of fourth-dimensional zero (to determine the
missing conditions) and the Runge–Kutta method (to determine the first-order differential
equations). In order to satisfy the boundary conditions (e.g., p(1) = 0, f (1) = 0, g(1) = 0,
θ(1) = 0), the unknown initial conditions of the original boundary value problem are
computed. A troubling situation appears when the shooting method diverges the solution
before the completion of the iterative process. Usually, it happens even for exact guesses of
the initial conditions. This singularity may be attributed due to the reason that the solution
of the problem explicitly depends on the initial conditions or the differential equations
are not stable. On the other side, a finite difference approach may not suffer from these
inadequacies and can easily provide a better solution as compared to the shooting and
RK methods. Along with these features, we employed a finite difference scheme in our
previous work (see Refs. [50–52]), which we describe as follows:

We integrate Equation (19), which takes the following form:

f ′′′ − C1g′ −M(1− C1) f ′ − Re
(

f ′2 − f f ′′
)
= β0, (24)

where β0 denotes the integration constant to find out. This equation is further reduced into
the following equation after substituting f ′ = p:
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p′′ − C1g′ −M(1− C1)p− Re
(

p2 − f p′
)
= β0, (25)

Equation (25) is solved with respect to the following BCs:

p(−1) = −1, p(1) = 0, f (±1) = 0

θ(−1) = 1, θ(1) = 0, g(±1) = 0

}
, (26)

To attain the numerical solution, first, Equations (20), (21) and (25) are discretized at a
specific grid point by utilizing central differences instead of derivatives. Consequently, the
resultant system is solved numerically by the SOR technique under the BCs (26). In the
previous work, we employed a trial and error scheme to find the integration constant β0.
It took an enormous amount of time to find β0 by this method. Some manual calculation
was also performed in each simulation. This is why we search for another persuasive
approach that is based on the FDM and does not need to determine any unknown. In the
present work, the Quasi-linearization method is intended to apply which is a simple
numerical solution to the problem.

4. Numerical Solution Using Quasi-Linearization

The sequences of the vectors
{

f (k)
}

,
{

g(k)
}

,
{

θ(k)
}

, and
{

φ(k)
}

are assembled to
incorporate the quasi-linearization for the system of Equations (19)–(21). Equation (19) will
be linearized by defining the function Q such as:

Q(siv, s′′′ , s′′ , s′, s) ≡ f (iv) − C1g′′ −M(1− C1) f ′′ − Re( f f ′′′ − f ′ f ′′ )

Q(siv, s′′′ , s′′ , s′, s) + (s(k+1) − s(k)) ∂Q
∂s(k)

+ (s(k+1) ′ − s(k) ′) ∂Q
∂s(k) ′

+(s(k+1) ′′ − s(k) ′′) ∂Q
∂s(k) ′′

+ (s(k+1) ′′′ − s(k)′′′ ) ∂Q
∂s(k) ′′′

+ (s(k+1)iv − s(k)iv) ∂Q
∂s(k) iv = 0

, (27)

Using Taylor’s series expansion, we obtain:

s(k+1)iv + Res(k)s(k+1) ′′′ −
(

Res(k) ′ − (1− C1)M
)

s(k+1) ′′ − Res(k) ′′s(k+1) ′

+Res(k) ′′′s(k+1) = Re(s(k) ′s(k) ′′ − s(k)s(k) ′′′) + C1g(k) ′′

, (28)

Replacing the derivatives with the central differences in the ordinary differential
Equation (28), we will obtain the equation that will determine the sequence

{
s(k)
}

: The
matrix is linked as

B = B
(

s(k), g(k)
)

and As(k+1) = B with A = A
(

s(k)
)

, (29)

where the number of grid points is denoted by n. The matrices An×n and Bn×1 are initialized
as follows:

A1,1 = 1, B1 = 0

A2,1 = −4− 2hRe f1 −M(1− C1)h2

A2,2 = 6− hRe f2 + hRe f4 + 2(1− C1)Mh2

A2,3 = −4 + 2hRe f3 −M(1− C1)h2

A2,4 = 1 + hRe f2

B2 = h2C1(g3 − 2g2 + g1) + hRe f2(− f2 + 2 f1 − 2 f3 + f4)


, (30)
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and for 2 < i < n− 1

Ai,i−2 = 1− hRe fi

Ai,i−1 = −4− 2hRe fi−1 −M(1− C1)h2

Ai,i = 6 + hRe( fi+2 − fi−2) f4 − 2(1− C1)Mh2

Ai,i+1 = −4− hRe
2 fi+1 −M(1− C1)h2

Ai,i+2 = 1 + hRe fi

Bi = h2C1(gi+1 − 2gi + gi−1) + hResi(−si−2 + 2si−1 − 2si+1 + si+2)

+ hRe
2 (si+1 − si−1)(si+1 − 2si + si−1)



, (31)

and

An−1,n−3 = 1− hRe fn−1

An−1,n−2 = −4 + 2hRe fn−2 −M(1− C1)h2

An−1,n−1 = 6 + hRe( fi+2 − fi−2) + 2M(1− C1)h2

An−1,n = −4− hRe fi+1 −M(1− C1)h2

Bn−1 = h2C1(gi+1 − 2gi + gi−1) +
hRe

2 si(−si−2 + 2si−1 − 2si+1 + si+2)

−hRe(si+1 − si−1)(si+1 − 2si + si−1)

An,n = 1, Bn = 0



, (32)

On the contrary, Equations (20) and (21) are readily linear. Hence, these equations (to
find

{
θ(k)
}

and
{

g(k)
}

) can be rearranged as:

θ(k+1)′′ + RePrθ(k+1)′ s(k+1) + Pr.Ec
(

Ms(k+1)′2 + s(k+1)′′ 2
)
= 0

C3g(k+1)′′ − C1C2

(
2g(k+1) − s(k+1)′′

)
= g(k+1)s(k+1)′ − g(k+1)′ s(k+1)

, (33)

The above equations s(k+1) are assumed to be known. The computational analysis is
described below:

• The suggested guesses for s(0), g(0), and θ(0) are provided, so that the conditions given
in Equation (26) are satisfied.

• The linear system (28) is solved to gain s(1).
• The linear system (32) is obtained from the FD discretization, and then the value of

known s(1) is used to get θ(1) and g(1).
• The iteration process is continued until and unless the numerical solutions of the

Equations (24) and (25) are attained.
• The three sequences are produced until max

{
‖ θ(k+1) − θ(k) ‖L∞, ‖ g(k+1) − g(k) ‖L∞,

‖ s(k+1) − s(k) ‖L∞

}
< 10−6.

It may be essential to mention here that matrix A (in Equation (31)) is not diagonally
dominant and is a pentadiagonal matrix. Hence, the SOR technique may not work well or
fail. Thus, some other direct methods like Gaussian elimination or the LU factorization
method can be used.

5. Results and Discussion

This section is committed to exploring the numerical outcomes with the support
of physical interpretations. The flow and heat transport attributes through a permeable
channel are characterized using micropolar fluid. A struggle is made to check out the
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impacts of pertinent parameters on the flow velocities f (η) & f ′(η), microrotation g(η),
and temperature θ(η) as well as on shear stresses, couple stresses, and rate of heat trans-
portation. The step sizes as well as the edges (for boundary layers) are balanced such that
the flow, microrotation, and temperature profiles demonstrate an asymptotic behavior. We
have taken fixed values of the parameter in the simulation (computational) analysis such
as Re = 1, C1 = 0.1, C2 = 0.2, C3 = 0.3, M = 1, A = 0.5, Pr = 6.2, and Ec = 0.2 otherwise
identified. An excellent comparison of our numerical results (please see Table 1) with the
literature for the classical Newtonian fluid is a source of validation for our computational
technique. In order to validate our mathematical model and the computational scheme
for non-Newtonian fluid, our numerical results for f (η) and g(η) against the fixed values
C1 = 0.1, C2 = 1, C3 = 0.1, M = 0, A = 0 and Re = 0.1 of the governing parameters,
for the liming case, have been plotted (please see Figure 2.) against the ones reported
in literature (Mirzaaghaian and Ganji [41]), by employing the Runge–Kutta method and
the Differential Transform method. Excellent comparison confirms the correctness of the
micropolar model and the accuracy of our numerical approach.

Table 1. Comparison of our results with the literature for the classical Newtonian fluid proposed by
Shrestha and Terrill [53].

Re A F
′′

(0 )
(Our Results)

F
′′

(0 )
(Literature)

F
′′

(1 )
(Our Results)

F
′′

(1 )
(Literature)

−149.13 1.9278 9.995342 9.994 −9.274998 −9.274
−74.72 1.9305 10.099089 10.098 −9.402380 −9.402
−48.54 1.9461 10.198621 10.197 −9.658360 −9.657
−16.16 1.9766 10.662255 10.660 −10.443826 −10.440
−156.44 1.8622 10.034452 10.035 −8.654121 −8.635

The simulation values of the material constants are given in Table 2. The numerical
consequences for several steps of η are enumerated in Table 3. This table specifies that our
numerical results converge in the best way with the values of step-size η, and it confirms the
accuracy of our numerical procedure. Table 4 reveals that the Reynolds number generates
an opposite effect on the lower as well as an upper wall for shear and couple stresses. Its
effect substantially reduces the couple and shear stresses on the lower wall (y = −c) and
increases on the upper wall (y = c), whereas the heat transfer rate increases on both walls
with its effect. The values of shear stresses, heat transport rates, and couple stresses on
both channel walls for distinct values of the magnetic field are portrayed in Table 5. All
values of f ′′ (±1) and θ′(±1) seem to be increasing on both walls with the impact of M.
The couple stress enhances for g′(−1) and reduces for g′(1). In view of mechanics, the
magnetic field applies a frictional force, known as the Lorentz force. Due to this force, fluid
is dragged towards the walls. This anomaly not only increases shear stresses at the walls
but also tends to rotate microfluid particles rapidly. Moreover, the Lorentz force produces
the temperature difference (between the temperature at channel walls and temperature of
fluid) and hence increases the heat transport at both walls.

Table 2. Non-dimensional parameters C1, C2, and C3 for different cases.

Cases C1 C2 C3

1 (Newtonian) 0.0 0.0 0.0
2 0.5 0.8 0.6
3 1.5 1.2 1.0
4 2.0 1.8 1.5
5 2.5 2.2 1.8
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Table 3. Heat transfer rate for different grids levels.

θ (η )

η 1st grid (h = 0.04 ) 2nd grid (h = 0.02 ) 3rd grid (h = 0.01 )

−1 0 1.110 × 10−14 2.220 × 10−14

−0.8 0.114837 0.114875 0.114884
−0.6 0.209793 0.209801 0.209803
−0.4 0.284490 0.284478 0.284474
−0.2 0.337757 0.337734 0.337728

0 0.367501 0.367480 0.367475
0.2 0.370597 0.370592 0.370591
0.4 0.342664 0.342690 0.342697
0.6 0.277659 0.277739 0.277759
0.8 0.167226 0.167384 0.167424

Table 4. Shear stresses, couple stresses, and heat transfer rate for different Re.

Re f
′′
(−1) f

′′
(1) g

′
(−1) g

′
(1) θ

′
(−1) θ

′
(1)

20 0.232365 −9.555630 0.043748 0.053847 0.001080 −1.091 × 102

25 0.228974 −11.663329 0.043657 0.053994 8.3896 × 10−4 −1.293 × 102

35 0.225328 −15.522721 0.043558 0.054160 5.802 × 10−4 −1.628 × 102

50 0.222740 −20.566032 0.043488 0.054281 3.969 × 10−4 −2.008 × 102

100 0.219890 −32.974621 0.043410 0.054416 1.933 × 10−4 −2.717 × 102

Table 5. Shear stresses, couple stresses, and heat transfer rate for different M.

M f
′′
(−1) f

′′
(1) g

′
(−1) g

′
(1) θ

′
(−1) θ

′
(1)

0 0.580726 −0.970072 0.047934 0.049648 0.088538 −6.553525
2 0.659488 −1.013888 0.048119 0.049586 0.120434 −7.031084
5 0.762826 −1.081215 0.048326 0.0495301 0.170245 −7.729011
8 0.853300 −1.147412 0.048478 0.049499 0.221727 −8.410174

10 0.908217 −1.190206 0.048560 0.049487 0.256740 −8.856996

Table 6 reveals the influence of permeability parameter A on heat transfer rate, couple,
and shear stress for fixed values of M, Pr, Ec, Re, and material constants C1, C2 and C3.
All of the physical quantities enhance on upper as well as lower channel walls with the
effect of A. The analysis of skin frictions, couple stresses, and rates of heat transfer for
material parameters on both the channel walls is provided in Table 7. The diverse values of
micropolar material constants are given in Table 2. The first case (see Table 2) where all
values of material parameters are taken as zero represents the Newtonian case, whereas
the remaining values are randomly chosen to determine their impacts on the flow [54,55].
The combined impact of C1, C2 and C3 is to devaluate the skin friction and enhance the
couple stresses, whereas the joint effect of these parameters causes a reduction in the heat
transport rate on the lower wall and escalation on the upper permeable wall.

Table 6. Shear stresses, couple stresses, and heat transfer rate for different A.

A f
′′
(−1) f

′′
(1) g

′
(−1) g

′
(1) θ

′
(−1) θ

′
(1)

1 1.338391 −1.860358 0.097310 0.099233 1.027413 −9.996802
1.2 1.659443 −2.172014 0.117328 0.119094 2.403682 −13.10309
1.4 2.003807 −2.462721 0.137499 0.138969 5.734645 −18.68517
1.6 2.374332 −2.732199 0.157803 0.158862 13.80296 −28.85614
2 3.206550 −3.206550 0.198724 0.198724 64.49000 −70.19019
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Table 7. Shear stresses, couple stresses, and heat transfer rate for different cases.

Cases f
′′
(−1) f

′′
(1) g

′
(−1) g

′
(1) θ

′
(−1) θ

′
(1)

1 0.636754 −0.989152 0 0 0.106991 −6.770115
2 0.590481 −0.965642 0.170540 0.195050 0.100538 −6.785268
3 0.458533 −0.919076 0.226882 0.293029 0.082804 −6.839315
4 0.335757 −0.906924 0.280579 0.444266 0.067329 −6.908943
5 0.196319 −0.930565 0.279039 0.559287 0.052486 −7.024112

The rates of heat transfer for diverse Ec and Pr values recorded in Tables 8 and 9
portray that the Eckert number upsurges the heat transport rate on both walls; however,
the Prandtl number causes a decrease in θ′(−1) and an increase in θ′(1). This study
leads to the results that the heat transportation rates, shear, and couple stresses may be
accommodated by selecting suitable parametric values and the permeability on both walls
to achieve the desired consequences.

Table 8. Heat transfer rate for different Ec.

Ec θ
′
(−1) θ

′
(1)

0 −6.407 × 10−4 −6.053392
0.1 0.051843 −6.423560
0.2 0.104327 −6.793728
0.3 0.156812 −7.163896
0.5 0.261780 −7.904233

Table 9. Heat transfer rate for different Pr.

Pr θ
′
(−1) θ

′
(1)

0.6 −0.304826 −0.841981
1 −0.201856 −1.129528
2 −0.032221 −2.029494
3 0.046912 −3.099861
5 0.095148 −5.401683 

 

Figure 2. Comparison of our numerical results with literature, for f (η) and g(η) for C1 = 0.1,
C2 = 1, C3 = 0.1, M = 0, A = 0, and Re = 0.1.

The streamwise velocity f ′, the angular velocity g, and the normal velocity f are
depicted in Figure 3 for the assigned values of M and Re. The velocity f ′ initially decreases
and then increases gradually for Re when concavity changes, but, contrarily, the velocity
f ′ initially increases and then decreases gradually for M when concavity changes (see
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Figure 3a,b). It can be seen from Figure 3c,d that the effect of the Reynolds number is
to downturn the normal velocity, but the magnetic field parameter enhances the normal
velocity. In the same way, the angular velocity is increased by the Reynolds number and
decreased by the magnetic field parameter (as depicted in Figure 3e,f). It is worth men-
tioning here that the value of a magnetic parameter is fixed (e.g., M = 10) in Figure 3a,c,e.
Similarly, the value of Reynolds number is fixed (e.g., Re = 10) in Figure 3b,d,f. It is
observed here that both the magnetic parameter and the Reynolds number yield opposite
effects on the profiles of streamwise, angular, and normal velocities. The retarding force
elevates with amplifying values of magnetic field parameters. Consequently, the magnetic
field suppresses the streamwise velocity (after a change in concavity) and improves the
heat transport rate.

  

  

  
 

 

 

 

Figure 3. Impact of the Reynolds number Re and the magnetic parameter M on different profiles
(a) Streamwise velocity with different Re; (b) Streamwise velocity with different M; (c) Normal
velocity with different Re; (d) Normal velocity with different M; (e) Microrotation with different Re;
(f) Microrotation with different M.
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The effect of A (permeability parameter) on non-dimensional velocities is elucidated
in Figure 4a,c,e. The streamwise velocity and the microrotation increase, whereas the
normal velocity reduces with an increase in the permeability parameter.

  

  

  
 

Figure 4. Impact of the permeability parameter A and the micropolar parameters C1, C2, C3 on
different profiles (a) Streamwise velocity with different A; (b) Streamwise velocity with various cases;
(c) Normal velocity with different A; (d) Normal velocity with various cases; (e) Microrotation with
different A; (f) Microrotation with various cases.

The same velocities ( f ′, f and g) are displayed in Figure 4b,d,f for various guesses of
micropolar material parameters C1, C2&C3 (see values in Table 2). The numerical results
designate that the normal velocity is depressed while streamwise velocity (after concavity)
and microrotation increase by escalating the material parameters. Velocity f ′ tends to
decrease at the start, but, after concavity, it attains maximum value near the upper wall of
the channel (Figure 4b). It may be attributed because the permeability drives streamwise
moving fluid beyond the wall and causes an increase in the velocity near the upper
wall. The microrotation profile for micropolar parameters is concave upward in the
upper half of the channel and concave downward in the lower half of the channel. When
C1 = C2 = C3 = 0 at both permeable walls, the effect of skin frictions equally spreads from
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the walls such that the angular velocity (microrotation) is zero at the center of the channel
(see Figure 4f). The skin friction tends to rotate the micropolar fluid in opposite routes on
the walls. This is why the microrotation has opposite signs near the lower channel wall.

Temperature θ(η) is depicted in Figure 5a,b for multiple values of Ec (Eckert number)
and Pr (Prandtl number) as a function of the coordinate η. For both of these parameters,
temperature enhances near the upper wall of the channel. The results of Figure 5c expresses
that the temperature profile θ accelerates with an increment in the material parameters,
while Figure 6 shows the velocity distribution across the channel for Newtonian and
micropolar fluids.

  
  

 
 Figure 5. Impact of different parameters on temperature profile (a) Eckert number; (b) Prandtl

number; (c) Various cases of Micropolar parameter.

 

 

 

Figure 6. Velocity distribution across the channel for Newtonian and micropolar fluids for Re = 5,
M = 0, A = 1.5, C1 = 0.1, C2 = 1, and C3 = 0.1.
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6. Conclusions

An inclusive computational analysis of a micropolar flow with an allowance for heat
transfer through a channel is presented. The effects of magnetohydrodynamics (MHD) and
viscous dissipation have also been taken in the flow. The quasi-linearization is utilized to
attain the solution against microrotation, velocity, and thermal energy. The key points of
the present work may be mentioned as:

• The permeability parameter and the material parameters tend to enhance the microro-
tation, but these parameters depreciate the normal velocities.

• The Reynolds number inserts a low effect on couple stresses while it yields a significant
effect on skin friction and heat transport rates.

• The permeability parameter A substantially enhances shear stresses, couple stresses,
and the rates of heat transfer on both the channel walls.

• The impact of the Eckert and the Prandtl number is to uplift the temperature curves.
• The micropolar constants C1, C2&C3 intensively affect the microrotation rather than

the streamwise and the normal velocities.
• The micropolar fluid causes an escalation in couple stresses and a reduction in the

shear stresses.
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