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a b s t r a c t 

Hyperspectral images (HSIs) are known for their high dimensionality and wide spectral bands that in- 

crease redundant information and complicate classification. Outliers and mixed data are common prob- 

lems in HSIs. Thus, preprocessing methods are essential in enhancing and reducing data complexity, re- 

dundant information, and the number of bands. This study introduces a novel feature reduction method 

(FRM) called improving distribution analysis (IDA). IDA works to increase the correlation between related 

data, decrease the distance between big and small data, and correct each value’s location to be inside 

its group range. In IDA, the input data passes through three stages. Getting rid of outliers and improv- 

ing data correlation is the first step. The second stage involves increasing the variance. The third is to 

simplify the data and normalize the distribution. IDA is compared with four popular FRMs in four avail- 

able HSIs. It is also tested and evaluated in various classification models, including spatial, spectral, and 

spectral-spatial models. The experimental results demonstrate that IDA performs admirably in enhancing 

data distribution, reducing complexity, and accelerating performance. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

The development of obtaining remote sensing images and im- 

roving the resolution has made a big jump in the field of hyper- 

pectral images (HSI). It has become one of the hottest topics. Al- 

hough this development brings a lot of advantages and lets the 

btained HSIs be used in vast and different fields, the researchers 

ace many difficulties related to the large dimensionality and data 

omputational complexity [ 1 , 2 ]. The large dimensionality of HSIs 

omes from their broad spectral bands and numerous redundan- 

ies. In addition, the computational data complexity happens be- 

ause of the high spectral resolution, different sample ratios in 

lasses, and high dimensionality of the data. All of these obstacles 

aise processing complexity and reduce classification precision. Di- 

ensionality reduction is an efficient technique for minimizing the 

imensionality, complexity, and processing time of HSI. 

Dimensionality reduction methods (DRM) have been one of the 

ssential steps in HSI preprocessing. DRM is categorized into fea- 

ure selection and feature extraction [ 3 , 4 ]. In the feature selection,
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he informative features are selected as a subset from the original 

ataset [5] . Feature extraction uses functional mapping to trans- 

orm the original features into a new subset containing the most 

ritical information [ 2 , 6 ]. Feature selection aims to maintain the 

hysical meaning of the original data by selecting the effective 

ubset of the existing data. Due to feature extraction works to re- 

uce dimensionality and enhance data learning by feature extrac- 

ion methods (FEM), it has received much interest. FEM is supe- 

ior to feature selection at handling noise, complexity, and sparsity 

n real-world datasets. Commonly, FEM can be used to extract the 

eatures in the two most common ways: supervised and unsuper- 

ised methods [ 3 , 4 , 7 ]. Supervised FEM employs labeled informa-

ion while transferring data [20] ; for instance, linear discriminant 

nalysis (LDA) and independent component analysis (ICA) [8] . Be- 

ause no labeled data is used in unsupervised FEM, it focuses on 

he data. These methods look for the similarity between pieces of 

ata to determine whether they can be categorized and grouped, 

or example, multi-dimensional scaling (MDS), singular value de- 

omposition (SVD), principal component analysis (PCA), and iso- 

etric mapping (ISOMAP). 

Principal component analysis (PCA) is the most commonly used 

nsupervised feature extraction approach. PCA is a linear data 

ransformation that reduces redundancy while increasing variance. 

https://doi.org/10.1016/j.patcog.2022.109096
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.109096&domain=pdf
mailto:dalal@cug.edu.cn
mailto:alqaness@zjnu.edu.cn
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mailto:emanahmed@csu.edu.cn
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he principal components are a collection of linearly uncorrelated 

bservations x of dimension M (they reside in R 

M ) [ 9 , 10 ]. LDA is

 supervised linear FEM. Because of the dimensionality curse, LDA 

an be employed as a feature extraction approach to improve com- 

utational efficiency and minimize the amount of overfitting. LDA 

as a similar general concept to PCA. On the other hand, LDA does 

ot try to find the orthogonal component axes with the most vari- 

tion in a dataset. Instead, it looks for the feature subspace that 

est separates classes. In other words, LDA forms two scatter ma- 

rices: (1) an in-between-class matrix that calculates the distance 

etween each class’s mean and (2) a within-class matrix that com- 

utes the distance between each class’s mean and the data within 

hat class. Independent component analysis (ICA) is a linear FEM 

hat looks for independent and non-Gaussian features. It is unlike 

CA; it focuses on increasing the variance. ICA decomposes the in- 

ut data into a mixing matrix and the basis coefficient and then 

hooses the top independent components. ICA strives to standard- 

ze data distribution and reduce mutual values to the greatest ex- 

ent possible [ 3 , 11 , 12 ]. 

The singular value decomposition (SVD) [ 13 , 14 ] represents lin- 

ar algebra and factorizes any matrix into singular vectors and 

ingular values: X = u.σ. v T . Where X is the orginal input data

ith ( m × n ) dimination, u and v are orthogonal matrices with 

 m × m ) and ( n × n ) sizes, and σ is ( m × n ) digonal matrix. Iter- 

tive numerical algorithms are used to calculate the SVD. How- 

ver, the resultant matrices may contain complex values, and some 

atrices may fail to decompose accurately due to the limits of 

oating-point arithmetic. Thus, SVD works better with more com- 

onents selection [3] . Imani and Ghassemian introduced feature 

pace discriminant analysis (FSDA) [7] . FSDA first works to max- 

mize the differences between features depending on calculating 

he covariance of the instance. Then, according to the first step re- 

ults, the mean of each feature is calculated to get the covariance 

atrix. The whole feature reduction of this study depends on this 

ovariance matrix, which increases the variance between classes 

esides reducing the band numbers. In 2018, uniform manifold ap- 

roximation and projection (UMAP) was introduced by McInnes 

t al. [15] as a nonlinear dimensional reduction method; based on 

opological algebra in multi-dimensional space. UMAP is a neigh- 

or graph that captures local structure rather than global struc- 

ure to find a similar graph in lower dimensions to connect to the 

eighbor’s points, which works well with relative values with low 

pace between them. However, UMAP does not include a scaling 

rocess and cannot process noisy data. In conclusion, most dimen- 

ionality reduction methods (preprocessing methods) do not work 

o reduce outliers and the distance between related values. Fur- 

hermore, enhancing the data distribution helps obtain a more ac- 

urate classification, as shown in the result section. 

Many methods in deep learning have been used to extract the 

eatures of the HSIs, and they give impressive results in HSIs clas- 

ification compared to machine learning methods. In [16] , after re- 

ucing the dimensionality by PCA, inter-spectra difference feature 

ISDF) was used to model the relationship between close spec- 

ra and the neighbor spectral difference feature (NSDF) to extract 

tatistical information as the relationship inside the spectrum re- 

pectively. PCA was then used to create a multi-type spectral spa- 

ial feature (MSSF) by fusing the changed features. The SVM was 

hen employed to classify MSSF features. The MSSF approach pri- 

ritized neighboring spectrum values while disregarding distantly 

elated variables. The SVM was included in a convolutional neural 

etwork (DNN) in [17] . Multiple SVM functions adjusted with the 

VM regularization parameter were used to initialize the weights 

f DNN’s hidden layers. This integrated model performed better 

han the traditional SVM in classifying HSI. Chen et al. devised 

ual-stream deep architecture (SSDS) to extract single spectral and 

djacent spatial features in two separate parts, then fuse them in 
2 
he third part by fusion-wise pooling for filtering and selecting the 

iscriminative features [18] . SSDS takes a long time and ignores 

he distantly related values. The multi-view deep autoencoder ap- 

roach was proposed in [19] to extract only important features, 

emoving noise and revealing a common latent representation. In 

ddition, a semi-supervised graph CNN was employed to incorpo- 

ate graph topology and local vertex features in the convolutional 

ayers to improve HSI classification by retaining spectral-spatial in- 

ormation. In [1] , spatial and spectral kernel generation modules 

ere designed to focus more on extracting salient features of HSIs 

imultaneously, focusing only on the pixels with a strong correla- 

ion. The model of this study [20] consists of two components for 

xtracting spatial and spectral characteristics. The RNN component 

oncentrates on learning inner spectral correlations, whilst the 2D- 

onvolutional neural network (2D-CNN) component operates in 

he spatial dimension and focuses on the spatial relationships be- 

ween neighboring pixels. Many studies used parallel networks of 

ulti-scale CNNs to get more spectral-spatial features, which made 

omputing more complicated and time-consuming [21–23] . For in- 

tance, in [24] , the proposed classification model contains three 

ulti-scale and dimension branches of CNNs, with a residual block 

n each branch to improve the feature extraction of the HSI and 

revent insufficiency. Although deep learning algorithms deliver 

xcellent performance, some likely increase noise values or gen- 

rate unrelated ones, while the majority disregard distantly related 

alues. Therefore, these have an undeniable effect on precision and 

engthen the training period. 

Even though the preprocessing of FEMs and deep learning 

ethods have successfully extracted the features, these methods 

o not improve well the HSIs’ data complexity and distribution. 

hese methods may increase noise and outlier values during the 

lassification. Most preprocessing methods ignore the importance 

f redistributing the shared data to the correct position and cate- 

ory. The reasons behind all these complexities can be summarized 

s follows: 

• The common HSIs classification problem with multi-class im- 

ages is the imbalance of samples in all classes, which compli- 

cates the extraction and reduction equally for all classes. 
• Many FRMs and DLMs ignore the relevance between classes’ 

joint values during the processing time, so some potential dis- 

criminant information may be lost, which affects the classifica- 

tion speed and accuracy. 
• HSI is known for hundreds of bands, redundant data, wide di- 

mensionality, mixed pixels, and more. All of these complicate 

both reduction and classification and increase the processing 

time. 

Let V = { v i : v i ∈ R 

d } N 
i =1 

be the input data with the mean 

f each instance (m). Enhancing the correlation of ( V) generates 

 D) to extract k subspace features from the ( d × 1 ) original vec-

or space ( V). A transformation matrix ( W) is used as a weight

o extract the final features: Y q ×k = D q ×k × ( W k ×1 ) 
T 

. The proposed 

ethod, improving distribution analysis (IDA), is a novel unsuper- 

ised feature extraction method. It uses three measures to produce 

he final extracted features that solve the challenges mentioned 

bove. Using four different HSI datasets, IDA performs better than 

tate-of-the-art FEMs that were compared. The main contributions 

f IDA are as follows: 

• The input data in IDA passes through three stages: the first 

stage reduces the distance between related data, which helps 

decrease outlier and mixed data. The second stage is to enhance 

the variations, which enhance the classification process. The fi- 

nal stage is for distribution improvement and getting the new 

subspace of features. 
• IDA provides the best way to improve spatial and spectral infor- 

mation. It is the best method to solve the problem of skewed 
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and outliers and send each value to its correct position and 

group. 
• IDA enhances the accuracy of classification models and the 

training time simultaneously for four different HSI datasets. The 

code of IDA is available at https://github.com/DalalAL-Alimi/ 

IDA . 

. Improving distribution analysis (IDA) 

Besides the HSI difficulties, each dataset has its unique distribu- 

ion and complexity. Moreover, many FEMs do not care about en- 

ancing data distribution and localization. So, IDA focuses on im- 

roving the variance and redistributing each value to its correct 

ocation and class. Thus, these processes strengthen choosing only 

he most robust informative features. In other words, the IDA fol- 

ows these steps: 

1 Decrease the distance between the big and small values, which 

helps to neglect the outlier values and increase the correlation 

between values in each class. 

2 Enhance the variance between classes and the localization of 

each value. 

3 Improve the data distribution to be more normal and reduce 

the data complexity. 

Let V ij represent the main values of the input dataset, i and j

re the dimensions of V. q and g are the numbers of instances and

eatures (bands) respectively, μ is the mean. If we see the follow- 

ng matrix horizontally, we can observe the main values that char- 

cterize each class for the other through the full features. Looking 

ertically at the matrix, we get the features; each feature charac- 

erizes the whole band individually. 

i = 

[
V i 1 , V i 2 , V i 3 , . . . , V iq 

]T 
, i = 1 , 2 , 3 , . . . , q (1) 

According to the above equation the μi is the mean of g in- 

tances in i th dimension. So, the first step of IDA is to minimize the

ap between the related values, big and small values. Thus the first 

tep of minimizing is calculating the mean ( μ) of each instance: 

q = 

q ∑ 

q =1 

V q /q (2) 

The one dimension (1D) of μq is converted into 2D, which 

quals the V dimension, so the new dimension of μq will be q × g ,

here q × g = i × j and μ( q, g ) = μq , as can be seen in the following

atrix, each column of μ( q, g ) is equal to μq , repeating g times: 
3 
Then, to increase the correlation between the values inside each 

lass, the generated matrix ( μq g ) is subtracted from the V ij . 

 q g = V q g − μq g (3) 

This means that the original features space is transferred into a 

ew space in which values within each class have a more corre- 

ated space. 

In order to make the values to be smoother and enhancing 

ore the correlation between the related values, the dilation ( D) 

s taken for the results of the third equation and the main values. 

ilation works to remove all the intensity fluctuations except the 

ntensity peak according to the main values of V ij and S q g . 

 q g = S q g � V q g = ∪ b∈ V S b (4) 

The second step works to improve the variance between classes. 

o do that, firstly, we subtract the dilation results of Eq. (4) from 

he main input data again (V ij ) to get F q g : 

 q g = V q g − D q g (5) 

So, the calculated values can be represented as follows: 

Secondly, transferred data is used now to know the main rela- 

ion between spectral values and increase the differences between 

hem by using the covariance matrix, which can be calculated via 

he following equation: 

 f = 

( 

q ∑ 

i =1 

(F i − F̄ 

) (
F i − F̄ 

)T 
) /q − 1 (6) 

Where F̄ is the mean of F , and the dimension of C f is d × d. C f 
alculates the distance observation from the mean of each variable. 

In this step, we will focus on the error in measurement. Since 

he true value of the covariance matrix is not known, the arith- 

etic 

 f = C ˆ f 
∓ ε, (7) 

here ε is the random error, C ˆ f 
is the estimation values. 

ε are small values belonging to [0, 1] and are usually chosen 

rbitrarily, but the difference here is that we choose ε depending 

n the correlation between each class. In other words, ε is chosen 

epending on the coefficient correlation. For example, if the coef- 

cient correlation is high, the value of ε is big, and vice versa. To 

o that, we generate the error matrix ε q g depending on the coef- 

cient correlation, then the matrix of covariance C f is subtracted 

rom the matrix of ε qg , in Eq. (6), to generate a new and more co-

ariance matrix ( G d×d ) . 

After the subtraction, k largest eigenvector is selected to com- 

ute the eigenvector (W) of G d×d matrix, where k is the dimen- 

ionality of the new feature subspace ( k ≤ d ) . Now W represents 

he weight vector that will be multiplied with D, in Eq. (4) , to get

he final new dimensional subspace of transferred features as fol- 

ows: 

 q ×k = D q ×k × ( W k ×1 ) 
T (8) 

https://github.com/DalalAL-Alimi/IDA


D. AL-Alimi, M.A .A . Al-qaness, Z. Cai et al. Pattern Recognition 134 (2023) 109096 

Algorithm 1: IDA . 

Input: V ∈ R n ×d 

Output: Y ∈ R n ×k 

1: Reducing the gap by the dilation ( D = S � V ) 

2: Build the covariance matrix ( F. F̄ T ) 

3: Correct the results of the covariance matrix ( C ∓ ε) to increase the 

correlation. 

4: Obtain Eigen and vectors values by linear Eigen decomposition for ( C ∓ ε) 

5: Sort Eigenvalues in decreasing order to sort Eigenvectors 

6: Construct matrix W ( d × k ) with k top Eigenvectors 

7: Transform V to a new subspace Y by using W and D, ( Y = D. W) 

c

f

m

Y

t

(

3

d

d

s

p

3

d

A

o

b

a

T

c

a

d  

s

r

e

R

i

O

m

3

b

d  

s

f

H

o

S

t

s

v

v

e

u

f

a

S

t

[

o

c

t

o

t

c

t

t

f  

a

t

m

o

l

t

v

u

c

c

d

r

d

p

T

b

t

b

t

a

F  

h

c

i

t

s

i

i

b

v

o

n

t

o

b

(

i

d

This multiplication operation helps distinguish classes more and 

hooses the most practical features for classification. 

The third and final step is to normalize the data distribution by 

eeding these new transferred features ( Y q ×k ) to gaussian transfor- 

ation: 

 = G 

−1 
Y ( F Y ( Y ) ) (9) 

Where F Y represents Cumulative Distribution Function (CDF) for 

he Y , and G 

−1 
Y 

is the Gaussian Cumulative Distribution Function 

GCDF) in y. 

. Experiments 

The Python language is used to create and run the improving 

istribution analysis method (IDA) in a GPU with 26 GB RAM, Win- 

ows 10. This study used different hyperspectral datasets to mea- 

ure the output of IDA and compared it with other related ap- 

roaches. 

.1. Datasets 

The experiments of the study were with four different kinds of 

atasets. The first one is Indian Pines (IPs) which is developed by 

VIRIS sensor and covers 16 classes for Northwest India. The sec- 

nd dataset is Kennedy Space Center (KS_Center), also developed 

y AVIRIS, and covers 13 classes for KS_Center in Florida; both 

re available online. 1 The rest two datasets are from HyRANK. 2 

he HyRANK dataset provided a large dataset covering several land 

lasses; ISPRS developed it. It includes different hyperspectral im- 

ges, and this study used Dioni (Di) and Loukia (Lk) [25–27] . The 

etails of all used datasets are in Tables 1 and 2 ; each color repre-

ents a class. Fig. 1 shows the scene of each dataset. 

Precision (Pre.) and Recall (Rec.) are used to evaluate the final 

esults and show the accuracy of each class. Precision is used to 

valuate the actual positive classification. On the other said, the 

ecall gives the average of the actual positive computed accord- 

ng to actual positive and negative classification. Kappa accuracy, 

verall accuracy, and Average accuracy are used to determine each 

odel’s accuracy, as seen in Tables 3-19 . 

.2. Comparisons Output of IDA with different FEMs 

Having a good idea about the chosen data is a necessary step 

efore initiating any processing. Understanding and visualizing the 

ata give a clear vision of its nature and enable us to do neces-

ary processes to handle any problem and enhance the data be- 

ore feeding it to the classification model. After visualizing the 

SI datasets, it was observed that most of the datasets, if not all 

f them, have almost the same problems. The pixels or values in 
1 https://www.ehu.eus/ccwintco/index.php/Hyperspectral _ Remote _ Sensing _ 

cenes 
2 https://www2.isprs.org/commissions/comm3/wg4/hyrank/ 

v  

d

o

r

c

4 
he HSI images can be divided into four categories: unique values, 

hared values, outlier values, and noise values. Fig. 2 simplifies the 

isualization and the description of these categories. The unique 

alues are the values that differentiate each class from the oth- 

rs and do not exist in the other classes; each class has a partic- 

lar color and values. The expression "shared values" refers to the 

act that several classes share the same values and spectral char- 

cteristics in many cases; they can be called mixed or joint values. 

hared values are sometimes skewed due to classification errors 

hat hyperspectral imaging systems or sensor failures could cause 

28] . Still, upon closer inspection, it can be determined that many 

f them are primary values for specific classes and contribute to 

lass variation. Outliers are extremist values in a dataset or graph 

hat deviate far from the main pattern of values. However, many 

utliers may be major values for particular classes and contribute 

o supporting the variation. The values that do not belong to any 

lass and complicate the classification are called noise values. Due 

o the spatial context values (pixels) of samples are not fully cap- 

ured, they can include unreliable pixels because of many other 

actors like refraction and shadow [ 1 , 29 , 30 ]. The shared, outlier,

nd noise values complex FRMs and classification processes. 

This study faces to enhance the data distribution and varia- 

ion and reduce the dimension by obtaining and utilizing only the 

ost informative features. The aims of the first and second steps 

f IDA are to promote the correlation between small and big re- 

ated values, reduce the data complexity, and boost localization. In 

he first step of IDA, reducing the distance between big and small 

alues helps to reduce the quantity of outlier, noise, and mixed val- 

es. This step helps to adjust the position of the pixels, precisely 

hoose the most useful features, and accelerate and facilitate the 

lassification process. The histogram in Fig. 3 represents the data 

istribution of the first band in the IPs dataset, and the boxplot 

epresents the data distribution of the first five bands in the IPs 

ataset. The histogram in Fig. 3 (a) shows that this band has many 

eaks, the distribution is unstable, and there are different skewed. 

he boxplot displays the number of outliers and the data distri- 

ution in each band; outliers are represented as small circles in 

he boxplot. As can be seen, there are many outlier values in each 

and. 

We also observe the apparent improvement of IDA output and 

he differences between the original data distribution in Fig. 3 (a) 

nd the distribution data of IDA in Fig. 3 (c) in the histogram part. 

ig. 3 (b) gives a clear view of how the first and second steps en-

anced the data and transferred them into a new space by in- 

reasing the correlation of the corresponding values and reduc- 

ng outliers by decreasing the gap between related values before 

he last step. There is only one peak now, and the data slopes 

moothly with almost no outliers in each band. The last process 

s to normalize the data distribution more and scale it, as shown 

n Fig. 3 (c). The second step is intended to increase the variation 

etween classes. As a result of this separation process, unrelated 

alues (outliers) appear in each band, and Fig. 4 only displays the 

utliers of the first band in each dataset. In addition, because the 

ormalization process makes the data distribution more normal, 

he number of outliers also changes. In general, the IDA reduced 

utliers in the input dataset by more than 80%. 

The histograms and boxplots in Fig. 5 represent the data distri- 

ution of the first band in the IPs dataset for the other four FEMs 

ICA, SVD, UMAP, and PCA). As can be seen, there are many peaks 

n all compared FEMs. They do not have a specific shape or normal 

istribution, and there are significant gaps between big and small 

alues. Compared with IDA in Fig. 3 , it can be seen the significant

ifferences and how the IDA success in reducing the number of 

utlier values and improving the distribution, which will play a big 

ole in reducing the training time and increasing the final classifi- 

ation accuracy. 

https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://www2.isprs.org/commissions/comm3/wg4/hyrank/
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Table 1 

The four datasets description. 

Dataset Sensor Band Numbers Spatial Dimensions Spatial Resolution Classes Number 

IPs AVIRIS 200 145 × 145 20m 16 

KS_Center 176 512 × 614 18m 13 

Di Hyperion sensor (EO-1, USGS) 176 250 × 1376 30m 12 

Lk 176 249 × 945 30m 14 

Table 2 

The classes and the samples number in each class for the four datasets. 

# IPs Dataset KS Center Dataset HyRANK Datasets 

Classes Samples Classes Samples Classes Dioni Samples Loukia Samples 

Alfalfa 46 Scrub 761 Dense Urban Fabric (DUF) 1262 288 

Corn-notill (CN) 1428 Willow swamp (WS) 243 Mineral Extraction Sites 

(MES) 

204 67 

Corn-mintill (CM) 830 Cabbage palm hammock 

(CPH) 

256 Non Irrigated Arable Land 

(NIAL) 

614 542 

Corn 237 Cabbage palm/oak 

hammock (CPOH) 

252 Fruit Trees (FT) 150 79 

Grass-pasture (GP) 483 Slash pine (SP) 161 Olive Groves (OG) 1768 1401 

Grass-trees (GT) 730 Oak/broadleaf hammock 

(OBH) 

229 Broad-Leaved Forest (BLF) – 223 

Grass-pasture-mowed 

(GPM) 

28 Hardwood swamp (HS) 105 Coniferous Forest (CF) 361 500 

Hay-windrowed (HW) 478 Graminoid marsh (GM) 431 Mixed Forest (MF) – 1072 

Oats 20 Spartina marsh (SM) 520 Dense Sclerophyllous 

Vegetation (DSV) 

5035 3793 

Soybean-notill (SN) 972 Cattail marsh (CM) 404 Sparce Sclerophyllous 

Vegetation (SSV) 

6374 2803 

Soybean-mintill (SM) 2455 Salt marsh (SM) 419 Sparcely Vegetated Areas 

(SVA) 

1754 404 

Soybean-clean (SC) 593 Mud flats (MF) 503 Rocks and Sand (RS) 492 487 

Wheat 205 Water 927 Water 1612 1393 

Woods 1265 Coastal Water (CW) 398 451 

Buildings-Grass-Trees- 

Drives 

(BGTD) 

386 

Stone-Steel-Towers (SST) 93 
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.3. Evaluation Results with different FEMs 

In this paper, the classifier models are divided into machine 

earning methods, including SVM and multilayer perceptron (NN) 

28] , and deep learning methods, which are 2D-CNN [28] and 

pectral-spatial feature extraction methods. SVM and NN work to 

xtract the spectral features. 2D-CNN obtains the spatial feature, 

hile spectral-spatial feature extraction methods are used to ex- 

ract the spectral-spatial features simultaneously, like HybridCNN 

31] and HybridSN [32] , which were used in this study [ 18 , 28 ]. 

In order to evaluate the performance of the proposed method, 

rstly, IDA was compared with four different well-known feature 

xtraction reduction methods: ICA, SVD, UMAP, and PCA [ 3 , 15 , 33 ].

hey were compared with three classifier models and four differ- 
5 
nt datasets, and each dataset was split into 20% and 80% as train- 

ng and testing sets. The number of components (features) for all 

hese preprocessing methods is 15 for all datasets. This subsection 

ses the three models, SVM, NN, and 2D-CNN. The NN is one layer 

f fully connected (FC). The 2D-CNN model includes two layers of 

D-CNN, (5,5) Kernel-Size, one Max Pooling (2, 2), and one FC with 

00 units. NN and 2D-CNN use Relu as an activation function and 

5 window size. The number of epochs is 100 in all models. All 

sed FEMs reduced the number of bands to 15 bands. 

Tables 1 and 2 illustrate how diverse each dataset is. All of 

hem have distinct dimensions, resolutions, class numbers, and 

amples. IDA’s testing and evaluation are significantly complicated 

y these variances. Moreover, each dataset has its own data dis- 

ribution, providing an excellent opportunity to evaluate the sug- 
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Fig. 1. The four datasets’ scenes. 

Table 3 

The results of SVM of the different preprocessing models for IPs dataset. 

No Classes (%) Testing Samples ICA SVD UMAP PCA IDA 

Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. 

Alfalfa 37 77 46 0 0 0 0 77 46 82 76 

CN 1143 70 72 53 49 47 48 70 72 68 76 

CM 664 66 68 70 23 83 33 66 68 70 74 

Corn 190 62 54 73 17 73 13 62 54 57 43 

GP 386 86 89 87 66 85 71 86 89 85 89 

GT 584 88 96 82 96 72 96 88 96 95 93 

GPM 22 81 95 0 0 0 0 81 95 48 55 

HW 382 95 99 86 100 82 99 95 99 97 96 

Oats 16 57 50 0 0 0 0 57 50 47 50 

SN 778 73 68 49 34 56 44 73 68 68 66 

SM 1964 79 82 51 86 53 84 79 82 79 81 

SC 475 74 67 50 3 70 7 74 67 77 65 

Wheat 164 85 95 84 93 87 98 85 95 96 99 

Woods 1012 93 90 84 98 86 97 93 90 96 92 

15 BGTD 309 55 46 73 35 70 17 55 46 80 75 

16 SST 74 97 84 100 84 98 84 97 84 96 74 

Kappa accuracy (%) 75.35 57.26 58.12 75.34 76.87 

Overall accuracy (%) 78.43 63.78 64.35 78.41 79.76 

Average accuracy (%) 75.05 49.00 49.32 75.04 75.33 

Training Time (s) 0.33 0.19 0.21 0.25 0.24 

Test Time (s) 1.39 1.30 1.05 1.05 1.05 

6 
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Table 4 

The results of NN of the different preprocessing models for IPs dataset. 

No. Classes (%) Testing Samples ICA SVD UMAP PCA IDA 

Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. 

Alfalfa 37 0 0 0 0 0 0 17 41 0 0 

CN 1143 0 0 41 34 55 34 46 56 52 45 

CM 664 0 0 6 1 2 0 42 31 46 24 

Corn 190 0 0 30 4 94 8 26 30 0 0 

GP 386 0 0 29 34 46 73 61 67 58 56 

GT 584 0 0 83 78 67 84 86 86 76 87 

GPM 22 0 0 0 0 0 0 59 74 0 0 

HW 382 0 0 85 90 57 76 92 90 81 95 

Oats 16 0 0 0 0 0 0 20 6 0 0 

SN 778 0 0 45 4 0 0 45 33 53 47 

SM 1964 27 96 44 88 42 91 57 61 55 85 

SC 475 0 0 0 0 32 9 38 32 34 13 

Wheat 164 0 0 46 59 72 90 79 76 89 95 

Woods 1012 45 55 73 68 67 60 87 79 75 90 

BGTD 309 0 0 21 34 0 0 39 43 53 13 

SST 74 0 0 98 77 0 0 57 81 74 19 

Kappa accuracy (%) 9.80 39.60 39.66 52.19 53.87 

Overall accuracy (%) 29.78 49.24 49.62 58.18 60.68 

Average accuracy (%) 9.44 35.62 32.93 55.35 41.71 

Training Time (s) 10.03 14.82 9.84 13.00 13.49 

Test Time (s) 0.31 0.40 0.30 0.37 0.39 

Fig. 2. A small example illustrates the visualization of data distribution. 
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ested method with greater complexity. The outcomes of the three 

lassifier models are shown in Tables 3-14 for the four datasets. 

In this study, the IPs dataset includes the biggest number of 

lasses, 16 classes. In each class, the number of samples is dis- 

imilar. Some classes have very small samples compared to the big 

umber in others; 20–2455 samples, in Table 2 . Moreover, the data 

istribution is very complex. Because of all of these complexities, 

ot all FEMs can handle them. On the other hand, the IDA method 

roduces exceptional accuracy in the three classification models, as 

an be seen in Tables 3-5 . 

The KS_Center is also a multi-class dataset, which has 13 

lasses. The number of samples of each class is better than the 
7 
umber in the IPs dataset, 105–927 samples, in Table 2 . By con- 

rast, the data distribution is more complex than in the IPs dataset. 

or that reason, it was the most complex dataset to get very 

igh accuracy. Significantly, the ICA is the worst FEM to extract 

he features and enhance the accuracy in all classification mod- 

ls. With the KS_Center dataset, IDA provided a very high accu- 

acy. It was the best with the 2D-CNN model and the second- 

est method after UMAP with the SVM and NN models, as seen in 

ables 6-8 . 

The Di and Lk datasets have the least complex data distribu- 

ion, which is linear. In the Di dataset, the sample number in each 

lass is very high, but the outlier values are huge, as detailed in 

able 2 and Fig. 4 . Some classes have a small number of samples in

he Lk dataset, like the situation in the IPs dataset, and the number 

f outliers is very large. Tables 9 and 12 demonstrate that both ICA 

nd PCA achieved the same accuracy, but PCA prevailed in terms of 

erformance time; ICA excels with spatial data. The IDA provides 

ood performance with the Di dataset, Tables 9-11 . With SVM and 

N, the IDA was the third-best preprocessing enhancing spectral 

nformation in the Lk dataset. 

As can be observed, the outcomes are dependent not just on 

he FEM but also on the classification model employed. The ac- 

uracy of the used FEMs is different in each classifier model. For 

xample, ICA with SVM and 2D-CNN gives very high accuracy. On 

he other hand, ICA with NN gives very low accuracy. In general, 

he SVM is affected by the feature reduction methods, while NN 

s affected more by the number of training samples; NN is better 

hen it has enough training samples. 

It is evident from the IPs dataset results that the IDA results 

re the best. 2D-CNN achieves the maximum accuracy for all FEMs 
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Table 5 

The results of 2D-CNN of the different preprocessing models for IPs dataset. 

No Classes (%) Testing Samples ICA SVD UMAP PCA IDA 

Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. 

Alfalfa 37 97 89 82 84 100 73 56 62 100 100 

CN 1143 91 92 58 59 84 66 64 57 99 99 

CM 664 98 93 64 57 78 77 61 43 98 100 

Corn 190 79 95 59 49 86 91 53 25 98 100 

GP 386 93 96 88 87 98 95 85 91 100 97 

GT 584 98 99 93 99 88 93 84 96 100 99 

GPM 22 100 78 58 48 100 96 25 17 100 100 

HW 382 100 99 98 98 97 100 89 97 100 100 

Oats 16 100 31 50 31 53 63 3 6 100 100 

SN 778 95 88 51 34 67 81 74 39 99 100 

SM 1964 96 98 65 79 84 87 66 86 100 99 

SC 475 92 93 67 53 70 67 51 59 99 98 

Wheat 164 100 100 94 90 94 99 84 93 100 100 

Woods 1012 96 99 98 98 96 100 94 97 100 100 

BGTD 309 93 90 89 86 93 73 80 56 99 99 

SST 74 100 91 96 88 80 86 50 59 96 97 

Kappa accuracy (%) 94.17 69.34 82.22 67.79 99.15 

Overall accuracy (%) 94.89 73.37 84.41 72.08 99.26 

Average accuracy (%) 89.42 71.26 84.21 61.46 99.28 

Training Time (s) 30.74 29.67 30.12 30.50 29.44 

Test Time (s) 0.70 0.58 0.69 0.69 0.67 

Fig. 3. (a) represents the main data distribution for the first band of the IPs dataset. (b) The results of Eq. (8) represent the second step of IDA feature reduction. (c) is the 

data distribution after normalization, the final output of improving distribution analysis. 
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3

TER dataset. IDA was 3% more accurate in the Di dataset than ICA 
cross all various datasets. As demonstrated in Tables 6 and 7 , 

MAP with SVM and NN provides the maximum accuracy for the 

S CENTER dataset. PCA with NN yields the highest precision for 

he Di and Lk datasets. Alternatively, IDA maintains a balance and 

ives high accuracy with all classifier models and datasets. 

The IDA shows the differences and exceptional accuracy with 

D-CNN in all datasets. The IDA corrected the positions of the pix- 

ls, which enhanced localization. It improved spatial information 
8 
n each band (feature) and decreased noise and mixed values. The 

DCNN classification approach is more effective at extracting spa- 

ial than spectral information. Consequently, the IDA provided the 

DCNN with more precise spatial data; thus, the 2DCNN produced 

etter results than other models. For instance, IDA accuracy in the 

Ps dataset is 30% greater than SVD and PCA. Additionally, it is 

6% greater than SVD and 41% greater than PCA for the KS CEN- 
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Table 6 

The results of SVM of the different preprocessing models for the KS_CENTER dataset. 

No. Classes (%) Testing Samples ICA SVD UMAP PCA IDA 

Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. 

Scrub 609 30 97 40 98 92 95 36 96 65 82 

WS 194 75 2 0 0 82 80 0 0 26 34 

CPH 205 0 0 0 0 58 79 0 0 60 64 

CPOH 202 0 0 0 0 54 45 0 0 40 32 

SP 129 0 0 0 0 49 38 0 0 25 19 

OBH 183 0 0 0 0 60 48 0 0 32 24 

HS 84 0 0 0 0 74 70 0 0 43 32 

GM 345 22 25 19 15 78 74 27 23 50 55 

SM 416 0 0 63 88 80 92 57 64 76 76 

CM 323 60 2 60 2 93 85 60 2 49 43 

SM 335 100 86 98 88 90 96 100 86 97 87 

MF 402 50 55 46 54 93 86 49 62 59 50 

Water 742 72 99 71 99 100 100 77 100 90 91 

Kappa accuracy (%) 37.77 47.50 82.3 45.77 59.87 

Overall accuracy (%) 46.34 54.47 84.14 52.99 64.09 

Average accuracy (%) 28.11 34.21 76.09 33.19 53.05 

Training Time (s) 0.06 0.08 0.03 0.08 0.09 

Test Time (s) 0.25 0.35 0.16 0.37 0.29 

Table 7 

The results of the NN of the different preprocessing models for the KS_CENTER dataset. 

No. Classes (%) Testing Samples ICA SVD UMAP PCA IDA 

Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. 

Scrub 609 0 0 42 68 75 95 43 57 43 69 

WS 194 0 0 33 31 52 33 12 8 0 0 

CPH 205 0 0 0 0 7 3 23 36 12 3 

CPOH 202 0 0 20 8 21 57 0 0 29 18 

SP 129 0 0 2 2 0 0 3 5 0 0 

OBH 183 0 0 3 5 40 9 1 1 0 0 

HS 84 0 0 25 27 0 0 0 0 0 0 

GM 345 0 0 6 5 31 31 19 20 40 26 

SM 416 0 0 37 61 60 63 11 5 41 55 

CM 323 0 0 14 5 72 44 20 14 44 21 

SM 335 0 0 36 57 85 94 90 90 42 85 

MF 402 100 0 16 6 63 84 31 21 63 32 

Water 742 18 100 92 73 99 98 74 96 61 99 

Kappa accuracy (%) 0.04 30.27 59.70 32.88 40.21 

Overall accuracy (%) 17.78 37.67 64.04 40.16 47.72 

Average accuracy (%) 7.71 26.83 47.00 27.12 31.28 

Training Time (s) 4.24 5.71 7.13 6.68 8.16 

Test Time (s) 0.16 0.20 0.19 0.19 0.25 

9 
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Table 8 

The results of 2D-CNN of the different preprocessing models for the KS_CENTER dataset. 

No. Classes (%) Testing Samples ICA SVD UMAP PCA IDA 

Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. 

Scrub 609 46 96 87 92 100 100 79 90 100 100 

WS 194 42 13 43 35 98 97 35 26 99 99 

CPH 205 0 0 68 37 98 98 44 68 99 99 

CPOH 202 92 24 41 46 95 89 32 20 100 99 

SP 129 85 35 63 57 87 89 51 49 100 100 

OBH 183 100 2 48 54 95 97 32 8 100 100 

HS 84 0 0 47 60 100 100 44 8 100 100 

GM 345 32 83 53 73 96 99 48 77 99 100 

SM 416 0 0 87 75 99 98 90 66 100 100 

CM 323 53 43 51 46 100 100 53 44 99 98 

SM 335 97 92 81 72 100 99 84 69 100 100 

MF 402 67 68 55 57 99 100 52 57 99 100 

Water 742 87 100 78 80 100 100 71 82 100 100 

Kappa accuracy (%) 53.22 63.24 98.21 58.28 99.52 

Overall accuracy (%) 58.85 67.03 98.39 62.79 99.57 

Average accuracy (%) 42.75 60.25 97.41 51.18 99.47 

Training Time (s) 27.75 24.49 19.26 22.89 20.22 

Test Time (s) 0.33 0.40 0.33 0.41 0.33 

Table 9 

The results of SVM of the different preprocessing models for the Dioni dataset. 

No. Classes (%) Testing Samples ICA SVD UMAP PCA IDA 

Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. 

DUF 1010 83 85 85 79 80 63 83 85 90 85 

MES 163 98 83 98 77 94 81 98 83 94 82 

NIAL 491 89 87 90 89 83 87 89 87 90 89 

FT 120 88 69 92 71 92 61 88 69 89 83 

OG 1414 90 92 90 92 90 87 90 92 92 90 

CF 289 100 100 97 100 92 100 100 100 95 98 

DSV 4028 94 92 95 90 95 89 94 92 96 94 

SSV 5099 92 94 89 95 87 95 92 94 94 96 

SVA 1403 93 91 87 84 81 89 93 91 93 95 

RS 394 98 95 99 92 99 89 98 95 99 98 

W 1290 100 100 99 100 98 100 100 100 94 97 

CW 318 100 99 100 94 99 91 100 99 86 77 

Kappa accuracy (%) 91.13 89.32 87.14 91.13 92.09 

Overall accuracy (%) 92.85 91.42 89.68 92.85 93.63 

Average accuracy (%) 90.70 88.60 85.86 90.70 90.35 

Training Time (s) 0.46 0.24 0.25 0.44 0.33 

Test Time (s) 2.28 1.92 1.56 2.03 2.09 
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nd PCA. In addition, IDA is 21% superior to PCA, 17% superior to 

VD, 7% greater than UMAP, and 7.5% greater than ICA in the Lk 

ataset, according to Tables (8,11,14). Figs. 6-9 show the classifica- 

ion results of the output of the various feature extraction methods 

y the 2D-CNN model for the four datasets. Because the 2D-CNN is 
10 
he most accurate model for all FRMs and all datasets, Fig. 10 de- 

icts the average accuracy of each FEM with 2D-CNN during train- 

ng; as shown, the IDA has the highest and most steady accuracy. 

he IDA generally offers the highest precision because it improves 

ata distribution and decreases data complexity and outliers. 
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Table 10 

The results of the NN of the different preprocessing models for the Dioni dataset. 

No. Classes (%) Testing Samples ICA SVD UMAP PCA IDA 

Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. 

DUF 1010 0 0 62 56 55 57 85 73 77 68 

MES 163 0 0 70 80 0 0 50 65 83 44 

NIAL 491 0 0 79 78 0 0 67 81 79 76 

FT 120 0 0 30 37 0 0 68 65 75 25 

OG 1414 0 0 82 80 62 50 83 90 78 78 

CF 289 0 0 74 81 97 74 94 87 97 74 

DSV 4028 82 0 89 80 88 90 90 89 88 91 

SSV 5099 32 100 78 91 78 89 86 86 86 89 

SVA 1403 0 0 70 49 59 73 80 76 81 80 

RS 394 0 0 79 87 98 88 88 95 93 95 

W 1290 0 0 99 99 82 100 99 100 85 99 

CW 318 0 0 97 96 100 10 90 94 85 29 

Kappa accuracy (%) 0.11 75.98 70.97 83.03 80.85 

Overall accuracy (%) 31.90 80.80 77.02 86.28 84.67 

Average accuracy (%) 8.36 76.15 52.62 83.32 70.72 

Training Time (s) 14.20 13.42 19.7 15.58 20.72 

Test Time (s) 0.56 0.73 0.66 0.51 0.67 

Table 11 

The results of 2D-CNN of the different preprocessing models for the Dioni dataset. 

No. Classes (%) Testing Samples ICA SVD UMAP PCA IDA 

Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. 

1 DUF 1010 97 91 91 84 84 82 94 89 99 98 

2 MES 163 100 98 91 96 97 98 99 91 100 98 

3 NIAL 491 93 94 91 86 89 78 91 87 98 98 

4 FT 120 100 33 70 59 92 61 84 65 96 92 

5 OG 1414 93 99 93 95 92 94 94 99 99 99 

6 CF 289 99 100 97 94 100 96 100 100 100 100 

7 DSV 4028 98 94 97 97 98 95 97 99 100 100 

8 SSV 5099 94 99 95 96 94 97 98 96 100 100 

9 SVA 1403 98 97 93 91 91 90 94 98 100 100 

10 RS 394 100 96 90 97 82 99 99 98 100 100 

11 W 1290 100 100 100 100 100 100 100 100 100 100 

12 CW 318 100 100 100 100 100 100 100 100 100 100 

Kappa accuracy (%) 95.49 93.75 92.74 96.06 99.44 

Overall accuracy (%) 96.37 94.97 94.15 96.82 99.54 

Average accuracy (%) 91.72 91.33 90.71 93.55 98.62 

Training Time (s) 53.53 42.98 40.06 48.36 45.40 

Test Time (s) 1.16 0.97 0.94 0.97 1.11 

Fig. 4. The number of outliers of the first band in each dataset, the number after 

the second step of improving distribution analysis, and the outliers number in the 

final results for the IDA for the first band. 
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.4. Spectral-spatial extraction and time performance 

Using 2D-CNN and 3D-CNN is a very efficient way to extract 

pectral-spatial information from the HSI in deep learning algo- 

ithms [34–37] . Firstly, processing spectral-spatial features need to 

reate the input data cube before feeding it into 3D-CNN. The 3D- 

NN layers extract spectral-spatial feature maps, while the 2D- 

NN layers boost spatial features [ 38 , 39 ]. In this subsection, IDA 

s used as FRM for HybridCNN [31] , HybridSN [32] , and FUSENet 

40] models and compared with their original FRM, which is 

CA. 

Tables 15 and 16 show that the IDA significantly impacts clas- 

ification accuracy for all classifier models. Although the results 

f the Di and Lk datasets are almost identical for PCA and IDA, 

DA substantially decreases training time, as seen in Tables 17 and 

8 . Adding 2D-CNN after 3D-CNN layers reduces the complexity of 
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Table 12 

The results of SVM of the different preprocessing models for the Loukia dataset. 

No Classes (%) Testing Samples ICA SVD UMAP PCA IDA 

Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. 

DUF 144 81 73 64 55 60 47 81 73 71 63 

MES 33 100 81 98 83 92 85 100 81 100 87 

NIAL 271 91 89 87 83 66 73 91 89 81 79 

FT 39 64 70 90 14 0 0 64 70 42 38 

OG 701 89 92 88 90 58 49 89 92 68 72 

BLF 111 63 69 72 54 68 47 63 69 65 58 

CF 250 63 70 80 56 71 53 63 70 62 65 

MF 536 63 57 66 56 61 51 63 57 67 63 

DSV 1897 78 77 75 84 67 79 78 77 76 75 

SSV 1402 82 85 80 85 75 78 82 85 78 81 

SVA 202 92 79 87 45 74 39 92 79 86 68 

RS 244 95 97 89 90 83 92 95 97 92 94 

W 697 100 100 100 100 100 100 100 100 99 99 

CW 225 100 100 100 100 100 100 100 100 96 96 

Kappa accuracy (%) 79.22 77.58 67.17 79.22 73.71 

Overall accuracy (%) 82.50 81.34 72.73 82.50 77.88 

Average accuracy (%) 81.25 71.15 63.79 81.25 74.20 

Training Time (s) 0.36 0.22 0.25 0.35 0.34 

Test Time (s) 1.60 1.40 1.45 1.50 1.57 

Table 13 

The results of the NN of the different preprocessing models for the Loukia dataset. 

No Classes (%) Testing Samples ICA SVD UMAP PCA IDA 

Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. 

DUF 144 0 0 46 11 0 0 60 50 58 21 

MES 33 0 0 30 59 0 0 48 50 0 0 

NIAL 271 0 0 55 61 45 47 72 74 71 63 

FT 39 0 0 58 22 0 0 52 46 100 3 

OG 701 0 0 80 82 43 12 84 82 64 54 

BLF 111 0 0 0 0 68 29 36 48 70 31 

CF 250 0 0 21 5 63 48 53 56 68 43 

MF 536 0 0 56 56 54 50 54 46 60 55 

DSV 1897 28 100 67 76 60 78 70 68 66 77 

SSV 1402 0 0 68 78 61 80 74 77 69 78 

SVA 202 0 0 39 23 78 17 57 50 59 50 

RS 244 0 0 74 68 69 77 67 91 82 82 

W 697 0 0 100 100 100 100 100 100 87 99 

CW 225 0 0 99 100 100 100 95 100 91 59 

Kappa accuracy (%) 0.00 64.57 56.70 68.16 63.35 

Overall accuracy (%) 28.09 70.66 64.67 73.10 69.72 

Average accuracy (%) 7.14 53.03 45.47 67.00 51.17 

Training Time (s) 8.16 8.23 11.32 11.83 15.17 

Test Time (s) 0.31 0.29 0.36 0.37 0.46 

12 
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Fig. 5. (a) represents the output of ICA data distribution. (b) is the SVD output. The obtained feature of UMAP is represented in (c). (d) is the representation of first band 

data of the PCA output. The four examples are for the first band of the IPs dataset. 

Fig. 6. The output of 2D-CNN Of IPs dataset for each FEMs and the first image is the first image is the ground-truth (GT) image. 

Fig. 7. The output of the 2D-CNN Of KS_CENTER dataset for each FEMs and the first image is the first image is the ground-truth (GT) image. 

13 
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Fig. 8. The output of the 2D-CNN Of Dioni dataset for each FEMs. 

Fig. 9. The output of the 2D-CNN Of Loukia dataset for each FEMs. 
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D and enhances object localization (spatial features). The FUSENet 

odel obtains less accuracy than HybridCNN and HybridSN since 

t does not include 2D-CNN, Tables 15-18 . In general, the IDA pre- 

rocessing introduced the best spectral-spatial extraction for the 

hree classification models utilized. Moreover, it is the quickest in 

erms of training and testing time, indicating that IDA significantly 
14 
nhanced the reduced data and its complexity prior to feeding it 

o the classifier model. 

It is evident from all comparisons that the IDA enhanced the 

xtraction of the spectral features, spatial features, and spectral- 

patial, especially the spatial features extraction. Table 19 shows 

he performance accuracy of IDA with three different numbers of 
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Fig. 10. The average accuracy of each FEM obtained by 2D-CNN for all datasets: (a) IPs, (b) KS_CENTER, (c) Dioni, and (d) Loukia datasets. 

Fig. 11. The comparison of performance time for the feature reduction process (FRP), training, and testing in 2D-CNN for the four used datasets. 
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omponents (10, 15, 30); the number of used bands. Due to the 

tructure of HybridSN does not accept the ten bands of transferred 

eatures, it was trained with (15, 30) bands, as seen in Table 19 .

DA introduced a successful performance with all the different 

umbers of components in all used classifier models. 

When talking about feature reduction or preprocessing, it must 

e taken into consideration the amount of time taken by that pro- 

ess. So, Fig. 11 summarizes the four datasets’ preprocessing, train- 

ng, and testing time in 2D-CNN. It shows the differences in the 
15 
rocessing time that each FEM takes to reduce the input data di- 

ension. The UMAP takes longer in the feature reduction process 

FRP) than others. Although ICA, SVD, and PCA introduce shorter 

imes in FRP, they give lower accuracy and longer training time 

han IDA and, in some cases, longer testing time than IDA. Gener- 

lly, besides the highest accuracy of IDA, it provides a good balance 

etween FRP and training time, as evidenced in Tables 3-14 and 

ig. 11 . Furthermore, IDA accelerates the process of spectral-spatial 

xtraction models ( Tables 15-18 ). 
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Table 14 

The results of 2D-CNN of the different preprocessing models for the Loukia dataset. 

No Classes (%) Testing Samples ICA SVD UMAP PCA IDA 

Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. 

DUF 144 88 90 59 44 82 73 51 43 94 84 

MES 33 100 94 94 89 100 67 60 91 100 100 

NIAL 271 99 85 75 72 87 87 69 66 96 94 

FT 39 88 35 21 10 79 43 11 13 76 71 

OG 701 89 98 81 87 83 83 84 80 92 95 

BLF 111 99 40 56 53 83 58 30 28 80 69 

CF 250 86 58 63 51 90 77 61 59 92 88 

MF 536 73 84 70 68 83 83 73 67 95 94 

DSV 1897 84 86 76 79 85 90 76 75 92 92 

SSV 1402 86 88 79 79 90 89 75 77 92 95 

SVA 202 96 81 77 77 85 89 55 67 97 98 

RS 244 94 94 87 92 92 97 88 90 97 99 

W 697 100 100 100 100 100 100 99 100 100 100 

CW 225 100 100 98 100 99 100 98 100 100 100 

Kappa accuracy (%) 85.22 75.42 85.89 72.07 92.71 

Overall accuracy (%) 87.60 79.35 88.15 76.45 93.86 

Average accuracy (%) 81.01 71.46 81.10 68.31 91.40 

Training Time (s) 40.59 39.40 33.9 40.20 35.53 

Test Time (s) 0.83 0.82 0.81 0.82 0.81 

Table 15 

The three models to classify the spectral-spatial features for the IPs dataset. 

Performance Evaluation PCA-HybridCNN IDA-HybridCNN PCA-HybridSN IDA-HybridSN PCA-FUSENet IDA-FUSENet 

Kappa accuracy (%) 98.41 99.59 98.39 98.37 62.24 77.70 

Overall accuracy (%) 98.61 99.64 98.59 98.57 66.78 80.38 

Average accuracy (%) 97.00 99.12 96.30 98.84 48.74 63.54 

Training Time (s) 83.00 59.40 22.07 17.66 4344.71 3438.02 

Test Time (s) 1.60 1.83 0.71 0.74 77.60 60.02 

Table 16 

The three models to classify the spectral-spatial features for the KS_CENTER dataset. 

Performance Evaluation PCA-HybridCNN IDA-HybridCNN PCA-HybridSN IDA-HybridSN PCA-FUSENet IDA-FUSENet 

Kappa accuracy (%) 85.98 98.84 86.90 98.80 55.05 96.12 

Overall accuracy (%) 87.45 98.96 88.25 98.92 60.64 96.52 

Average accuracy (%) 84.35 98.42 83.09 98.42 68.67 96.83 

Training Time (s) 83.12 35.24 41.81 8.74 2006.90 1564.82 

Test Time (s) 0.84 0.92 0.37 0.41 39.39 30.35 

Table 17 

The three models to classify the spectral-spatial features for the Dioni dataset. 

Performance Evaluation PCA-HybridCNN IDA-HybridCNN PCA-HybridSN IDA-HybridSN PCA-FUSENet IDA-FUSENet 

Kappa accuracy (%) 99.11 99.35 99.13 99.24 98.72 98.20 

Overall accuracy (%) 99.28 99.48 99.30 99.39 98.97 98.54 

Average accuracy (%) 98.03 98.74 97.94 98.19 98.74 97.94 

Training Time (s) 95.33 94.71 48.06 33.72 6527.21 5966.79 

Test Time (s) 3.38 3.40 1.30 1.27 117.37 115.17 

Table 18 

The three models to classify the spectral-spatial features for the Loukia dataset. 

Performance Evaluation PCA-HybridCNN IDA-HybridCNN PCA-HybridSN IDA-HybridSN PCA-FUSENet IDA-FUSENet 

Kappa accuracy (%) 91.88 94.25 92.90 92.42 90.82 88.93 

Overall accuracy (%) 93.17 95.17 94.03 93.62 92.30 90.68 

Average accuracy (%) 89.60 91.55 88.77 89.88 92.92 92.44 

Training Time (s) 83.44 74.17 34.14 26.12 4337.41 4104.18 

Test Time (s) 2.47 2.32 0.78 0.88 78.61 76.92 

16 
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Table 19 

The results of SVM, NN, 2D-CNN, HybridSN, and FUSENet classifiers with three different dimension reductions of IDA (10, 15, 30) for the four datasets: 

(1) IPs, (2) KS_CENTER, (3) Dioni, (4) Loukia. 

Com. No. SVM NN 2D-CNN HybridSN FUSENet 

10 15 30 10 15 30 10 15 30 15 30 10 15 30 

(1) KA 76.33 76.87 80.61 49.73 53.87 64.43 98.87 99.15 99.69 98.37 99.12 83.88 77.70 75.05 

OA 79.29 79.76 83.05 57.31 60.68 69.15 99.01 99.26 99.73 98.57 99.23 85.94 80.38 78.21 

AA 76.26 75.33 77.04 38.27 41.71 55.09 97.13 99.28 99.45 98.84 98.69 65.68 63.54 63.78 

(2) KA 59.82 59.87 60.30 38.33 40.21 50.02 96.55 99.52 99.15 98.80 99.17 80.52 96.12 8495 

OA 64.16 64.09 64.36 46.31 47.72 55.90 96.90 99.57 99.23 98.92 99.26 82.59 96.52 86.46 

AA 52.42 53.05 56.60 29.31 31.28 41.27 95.26 99.47 98.77 98.42 98.81 81.37 96.83 82.72 

(3) KA 87.97 92.09 93.20 76.46 80.85 87.70 98.78 99.44 99.49 99.24 99.51 98.30 98.20 98.83 

OA 90.30 93.63 94.53 81.20 84.67 90.11 99.01 99.54 99.59 99.39 99.61 98.62 98.54 99.06 

AA 84.63 90.35 90.59 61.12 70.72 85.50 98.10 98.62 99.05 98.19 98.88 97.07 97.94 98.57 

( 4 ) KA 69.31 73.71 78.91 58.24 63.35 72.47 92.30 92.71 94.34 92.42 94.06 84.13 88.93 88.63 

OA 74.18 77.88 82.32 65.74 69.72 77.00 93.52 93.86 95.23 93.62 95.00 86.77 90.68 90.47 

AA 69.90 74.20 76.35 46.74 51.17 68.81 91.91 91.40 92.32 89.88 91.96 87.52 92.44 93.18 
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[

The following observations resulted from our previous experi- 

ents and comparisons: 1) The outcomes depend on more than 

nly the preprocessing and dimension reduction of input data. 

hey rely on the trained model’s capacity to extract features and 

he correct classifications for the preprocessing output. 2) Prepro- 

essing approaches not only play an essential role in boosting the 

erformance time of classifier models and their accuracy but also 

ignificantly lower the input data complexity. 3) The results indi- 

ate that reducing the outliers, normalizing the distribution, and 

educing data complicity are important in the preprocessing stage 

o enhance the classification stage. 

. Conclusion 

This study introduced improving distribution analysis (IDA) as 

n unsupervised feature reduction method. IDA simplified the data 

omplexity of hyperspectral images and the computational com- 

lexity of classification models. IDA consists of three steps that 

llow it to select the most informative characteristics and deliver 

xceptional performance. The initial step is to reduce the gap be- 

ween related data, which reduces the number of outliers and 

oise. The second step is refining the data and increasing the 

ariance, which improves classification and localization. The final 

tep is to make the distribution more normal. In other words, it 

educes differences within a class and increases differences be- 

ween classes to improve correlation and variance. With the In- 

ian, KS Center, Dioni, and Loukia datasets, the performance of 

DA was compared with various popular and state-of-the-art fea- 

ure extraction approaches. Moreover, IDA’s output was also eval- 

ated by several classification methods, including spatial, spectral, 

nd spectral-spatial feature extraction methodologies. The perfor- 

ances and comparisons demonstrated that IDA successfully ex- 

racted the features, reduced the dimensionality, and corrected 

he values’ location. It was the most effective solution to the HSI 

hallenges, yielding extremely high accuracy in all classification 

ethods, in some cases exceeding 36%, and reducing computing 

ime. 

The IDA was compatible with spatial feature extraction models 

uch as 2DCNN and performed well. Therefore, we must enhance 

he FRM to be compatible with spectral feature extraction mod- 

ls. In addition, IDA excelled at handling nonlinear datasets such 

s IPs and KSC, and future work will concentrate on accelerating 

nd improving linear datasets extraction. We observed that, in cer- 

ain instances, the test time for models using IDA was longer than 

or models using other DRMs; therefore, we will also focus on re- 

ucing the test time. 
17 
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