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Abstract
Groundwater quality in the Datong basin is threatened by high fluoride contamination. Laboratory analysis is a standard 
method for estimating groundwater quality parameters, which is expensive and time-consuming. Therefore, this paper pro-
poses a hybrid random forest linear model (HRFLM) as a novel approach for estimating groundwater fluoride contamination. 
Light gradient boosting (LightGBM), random forest (RF), and extreme gradient boosting (Xgboost) were also employed in 
comparison with HRFLM for predicting fluoride contamination in groundwater. 202 groundwater samples were collected 
to draw up the performance capability of several models in forecasting subsurface water fluoride contamination. The perfor-
mance of the models was assessed utilizing the receiver operating characteristic (ROC) area under the curve (AUC) and the 
confusion matrix (CM). The CM results reveal that with nine predictor variables, the hybrid HRFLM achieved an accuracy 
of 95%, outperforming the Xgboost, LightGBM, and RF models, which attained 88%, 88%, and 85%, respectively. Likewise, 
the AUC results of the hybrid HRFLM show high performance with an AUC of 0.98 compared to Xgboost, LightGBM, and 
RF, which achieved an AUC of 0.95, 0.90, and 0.88, respectively. The study demonstrates that the HRFLM can be applied 
as an advanced approach for groundwater fluoride contamination prediction in the Datong basin and could be adopted in 
various areas facing a similar challenge.

Keywords Hybrid random forest linear model · Fluoride · Light gradient boosting machine · Groundwater · Extreme 
gradient boosting

Introduction

Groundwater is the most important water source in the world 
(Brindha and Elango, 2011). It plays a principal role in eco-
nomic growth in several countries like Denmark, Austria, 
and China (Khosravi et al., 2020; Manap et al., 2013). In 
the Datong basin, groundwater serves in agriculture and 
industrial activities and constitutes the primary drinking 
water (He et al., 2021; Nafouanti et al., 2021b). However, 
the quality of this water resource is vulnerable and continu-
ously deteriorating due to the introduction of fluoride as 
a direct consequence of increasing numerous natural and 
anthropogenic activities (Li, 2001; Orban et al., 2010; Xie 
et al., 2011). Hence, monitoring the subsurface water qual-
ity is essential for the protection and sustainability of the 
groundwater source.

The groundwater fluoride in the Datong basin is derived 
from the release of fluorite and biotite under the arid and 
semiarid climate (Guo et al., 2007; Li et al., 2020; Mama-
tha and Rao, 2010). Furthermore, human activities directly 
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contribute to the groundwater fluoride concentration, includ-
ing fertilizers (e.g., phosphatic fertilizer, nitrogen phospho-
rus potassium), irrigation, sewage, and sludge (Ramanaiah 
et al., 2006). Assigned by the World Health Organization, 
an optimum range of 0.5 to 1.5 mg/L of fluoride maintains 
the protection of teeth and bone growth in the human body 
(Al-Mohair et al., 2015; Su et al., 2013a). However, a high 
quantity of fluoride in groundwater is a source of several 
complications, including bone deformation and dental 
change, which have been reported in Africa, Pakistan, India, 
and China (Rafique et al., 2008; Tripathy et al., 2006). In this 
case, modeling can help identify groundwater fluoride quan-
tity, and an accurate groundwater estimation is also essential.

The advancement of artificial intelligence (AI) has 
brought vast technology to study and estimate groundwater 
contamination (Chang et al., 2020; Feng et al., 2020; Gupta 
et al., 2021; Vesselinov et al., 2018; Wang and Wang, 2020). 
Machine learning (ML) approaches have been considered a 
crucial concept in hydrology research following their suc-
cessful deployment in anticipating groundwater recently, as 
they can resolve complex problems (Huang et al., 2020c; 
Jain et al., 1996). An artificial neural network (ANN) is the 
frequently employed ML algorithm to estimate groundwater 
contamination, and it has been applied in Canada to predict 
groundwater levels (Adamowski and Chan, 2011). Likewise, 
the extreme learning machine (ELM), a feed-forward neu-
ral network, was employed to forecast groundwater fluoride 
in the Maku area (Barzegar et al., 2017). However, these 
algorithms suffer from overfitting and are susceptible to 
an intensive operation requiring much computational time. 
Currently, ensemble learning models such as extreme gra-
dient boosting (Xgboost), light gradient boosting machine 
(LightGBM), and random forest (RF) have been employed to 
forecast groundwater contamination (Gupta and Natarajan, 
2021; Rahmati et al., 2019; Singh et al., 2014; Taherdang-
koo et al., 2021). In comparison with single models, these 
methods use more base learners to achieve accurate results. 
In addition, they can also reduce variance, minimize bias, 
and then decrease the overfitting problems in the model 
(Huang et al., 2009, 2020b). For instance, Xgboost was 
employed to predict the subsurface water levels in Malaysia 
and found that it performs better than other models (Ibrahem 
Ahmed Osman et al., 2021). LightGBM was utilized to fore-
cast groundwater level anomalies in the aquifers of South 
Africa, and the model achieved satisfactory performance 
with less error (Gaffoor et al., 2022). RF was also used to 
forecast groundwater quality assessment in Miandoab and 
nitrate in Africa, and the model gave better results due to its 
capability to avoid overfitting (Norouzi and Moghaddam, 
2020; Ouedraogo et al., 2019). However, these approaches 
are challenging to interpret and require ample space and 
extensive training time (Huang et al., 2020a). Therefore, 
an alternative hybrid model of ensemble learning (RF) and 

logistic regression (LR) is necessary as an adopted method 
for groundwater contamination.

Many researchers have recently employed hybrid mod-
els for estimating groundwater contamination generated by 
combining several ML techniques (Gupta et al., 2022; Khos-
ravi et al., 2018; Kombo et al., 2020; Ransom et al., 2017; 
Talukdar et al., 2022). For instance, ELM was combined 
with adaptive neuro-fuzzy analysis for groundwater estima-
tion (Afkhamifar and Sarraf, 2021; Azizpour et al., 2022). 
A hybrid RF K-nearest neighbor (KNN-RF) was applied to 
estimate groundwater levels (Cao and Yu, 2014; Mehta et al., 
2018). However, those hybrid models were employed with 
no evident technique to confirm their findings in predicting 
groundwater contamination. To enhance further analysis and 
development for groundwater estimation, we suggested a 
novel hybrid random forest linear model (HRFLM), which 
is more flexible and can correlate more specific answers with 
three ensemble learnings as evident methods for predicting 
groundwater fluoride.

In the present research, we aim to employ a hybrid 
HRFLM model to estimate groundwater fluoride contami-
nation in the Datong basin. Secondly, HRFLM, Xgboost, 
LightGBM, and RF were compared to identify the potential 
algorithm for predicting groundwater fluoride contamina-
tion. This study disclosed that the novel union of RF with 
the linear model (LR) to form the HRFLM model could 
improve groundwater contamination assessment and can be 
applied to various fields and study areas. Also, the study will 
prove the performance of classification analysis in estimat-
ing water parameters.

Study area

The Datong basin is around 6000  km2 in the Shanxi Province 
and is part of the Cenozoic faulted basins. It appertains to 
the semiarid climate in East Asia characterized by seasonal 
regions (Su et al., 2015; Wang and Shpeyzer, 2000). The 
average precipitation is about 225 to 400 mm generally from 
July to August. The air temperature is 6.5 °C per year, and 
the evapotranspiration is below 2000mm (Xing et al., 2013). 
Also, mountains and slopes bordered the area from the north-
west to the southwest. The Sanggan and Huang Shui rivers 
constitute the principal river across the site from the south 
to the north (Fig. 1), and they serve the area in the irrigation 
process for agricultural activities (Su et al., 2013b).

The bedrock outcrops are located in the north, west, 
and east. Archean gneiss and basalt are the outcrops for 
the north. The west comprises Cambrian–Ordovician 
limestone, shale, and Carboniferous–Permian–Jurassic 
sandstone. Shale, Cambrian–Ordovician limestone, and 
Carboniferous–Permian–Jurassic sandstone are also found 
in the research zone’s western part. Granite and Archean 
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gneiss are sparsely located in the basin’s northeast part. 
Aluvial-pluvial sand and gravel are the primary sediments 
in the area. Sandy loam soils, alluvial–lacustrine, and 
alluvial–pluvial sands are in the central part of the basin. 
Moreover, in the central part, silty clay and silts opulent 
in organic matter are identified (Guo and Wang, 2005).

Additionally, aquifers in the area are in the center below 
the plain flat alluvial-lacustrine, including upper, middle, and 
lower aquifers. Gravel and sands form the upper aquifer and are 
generally found at 5 to 60 m below the land, from a distance of 
2–10 m. Furthermore, the middle aquifer is made of sand and 
sandy gravel from 60 to 160 m below the land surface (Jiang 
et al., 2018; Xie et al., 2009). Lastly, the lower aquifer contains 
fine sand and silt detected at the lowest point, more signifi-
cant than 160 m below the land. Groundwater revitalization 
is through infiltration from mountains in front of the basin’s 
bedrock, meteoric water vertically, an outflow from non-peren-
nial rivers laterally, and irrigation return flow. Evaporation and 
abstraction are the foremost reasons for the subsurface water 
discharged in the study area (Guo and Wang, 2005).

Methodology

Sampling and laboratory analysis

In this research, 202 subsurface water samples were gathered 
from numerous wells in the research area formerly discussed 
by Nafouanti et al. (2021a, b). Samples were sifted via 0.45-
mm membrane sieves and gathered in 500-mL pre-cleaned 
polyethylene flasks. They were washed with deionized water 
to avoid contamination while collecting and pumped for 5 to 
10 min to flush the pipe-floating solids to find fresh ground-
water. The physical elements, like total dissolved solids 
(TDS), were measured using HACH Instruments portable 
Hana meters (Sension+ MM150). The Ion Chromatograph 
DX-120 (Thermo Scientific, USA) was utilized in the ana-
lytical procedures to assess the significant anions  (Cl−, 
 NO3

−,  HCO3
−,  SO4

2−,  F−). The Inductively Coupled Plasma 
Atomic Emission Spectroscopy, ICP-AES (IRIS Intrepid II 
XSP), was employed to measure the concentration of major 
cations  (K+,  Na+,  Ca2+, and  Mg2+). Similarly, Inductively 

Fig. 1  The Dantong basin (research zone)
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Coupled Plasma Mass Spectrometry (ICP-MS) (Agilent, 
USA) was employed to analyze the trace elements (Fig. 
s2). After every ten (10) samples, replicates and standards 
were inserted to preserve quality control and assurance. The 
groundwater physicochemical parameters are summarized 
in the descriptive statistical analysis presented in Table 1.

Machine learning methods

Dataset preprocessing

Preprocessing is the first phase of dealing with machine 
learning data before building the model. The dataset is 
composed of 10 predictor variables:  Cl−, TDS,  K+,  Na+, 
 Ca2+,  Mg2+

,  HCO3
−,  SO4

2−,  NO3
−, Zn, and the output 

variables. Furthermore, 80% of the dataset was employed 
in training and 20% for testing. Likewise, we have altered 
the dataset into classes assigning zero (0) when the flu-
oride concentration is inferior to 1 mg/L and 1 when 
the element fluoride exceeds 1 mg/L according to the 
Chinese recommendation (Pi et al., 2015). Likewise, all 
models’ data were scaled from 0 to 1 to improve the mod-
el’s speed and performance. The technique of min–max 
normalization was also used for the dataset scaling, as 
predictor variables in the different ranges can lead to 
inaccurate models. This technique has been previously 
utilized (Alkindi et al., 2022; Elbeltagi et al., 2022) for 
building a water resources model, and it is defined as 
follows:

Here, X is the predictor variable and X2 is the normalized 
predictor variable. Xmin and Xmax correspondingly represent 
the input variable’s minimum and maximum values. The 
flowchart of the modeling procedures has been demonstrated 
in Fig. 2.

Pearson correlation coefficient (Pr)

Pearson’s correlation analysis was utilized to predict the 
linear association between the inputs and the output vari-
ables (Bolandi et al., 2017; Nyakilla et al., 2021) to study the 

(1)X2 =
X − Xmin

Xmax−Xmin

significant linear association of each parameter (Yan and Au, 
2019). Therefore, water parameters such as  Cl−, TDS,  K+,  Na+, 
 Ca2+,  Mg2+

,  HCO3
−,  SO4

2−,  NO3
−, and Zn can significantly 

impact fluoride release due to natural and anthropogenic activi-
ties. It is donated as shown in Eq. 1. The result of the Pearson 
correlation can be found in the supplementary material section 
(Fig. s1).

where R is the linear correlation between two data a, and b, 
σa is the standard deviation of a, cov indicate the covariance, 
and σa is the standard deviation of b.

Xgboost model

This study used the Xgboost to estimate groundwater fluo-
ride contamination. Xgboost is a machine learning approach 
of gradient boosting machine proposed in 2016 by (Chen 
and Guestrin 2016) (Fig. 3). The ensemble algorithm uses 
weak learners’ capacity to achieve robust performance, and 
it is very speedy and efficient in avoiding overfitting due 
the introduction of a new tree model with a loss function. 
Column subsampling and shrinkage approaches are utilized 
to decrease model variance and bias. The shrinkage process 
simplifies the reduction of bias when employing an indi-
vidual tree, which enhances the process. Similarly, the ran-
domization and the boosting iteratively average base learners 
techniques simplify the variance reduction by subsampling 
into the algorithm (Hu et al., 2021).

The procedure of Xgboost works as follows: For exam-
ple, a data (DT) has n features with m number of instances, 
hence:

DT= [ (  xi,yi): i =  1… ..m,xi ƐRm,yi ƐR], Ýi will be the 
forecasted dependent variable of an ensemble tree model 
produced by the below calculations:

The variable k signifies the number of trees and Fk (k-th-
tree). It is necessary to resolve the preceding equation by 
reducing the loss and regularization objective to discover the 
best functions.

(2)Ra,b =
cov(a, b)

�a�b

(3)Ôi = Φ
(
xi
)
=

k∑
k=1

fk
(
xi
)
fk 𝜖 F

Table 1  Statistical descriptive 
of physicochemical water 
parameters in the research zone 
(unit mg/l)

Features Cl− TDS F− Mg2+ Na+ K+ HCO3
− Ca2+ SO4

2− NO3
+ Zn

Maximum 3086 9118 22.3 773 2346 327 1785 189.4 2689 572 0.22
Minimum 5.76 302 0.01 4.3 6.3 0.01 172 3.2 0.01 0.01 0.01
Mean 178 1223 16 56.8 219 7 479.4 44.3 196 41 0.07
Standard deviation 352 1293 1.9 77.9 319 25 296 29.1 341 79 0.02
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Fig. 2  Flowchart for the modeling 
procedures

Fig. 3  The Xgboost model 
procedures
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The variable l represents the loss function, the dissimilar-
ity concerning the predicted output Ý, and the actual output 
yi. Ω is a measure showing the complication of the model, 
and it helps the model avoid overfitting, and it is computed 
using:

The variable T symbolizes the number of leaves, and w 
symbolizes the weight of each leaf. The boosting function is 
utilized in decision trees when training the model to reduce the 
objective function. It works by adding a novel function f as the 
algorithm conserves training. Consequently, a novel function is 
added in the t-th iteration in the following procedures (Ibrahem 
Ahmed Osman et al., 2021):

(4)℘(Φ) =
∑
i

l
(
yi,Ȧ.i

)
+
∑
k

Ωf(k)

(5)Ω
�
fk
�
= yT +

1

2
y‖w‖2

(6)�(t) =

n∑
i=1

l
(
yi,Ȧ.

(t−1)

i
+ ft(xi)Ω

(
ft
)

(7)

�split =
1

2

⎡⎢⎢⎢⎣

�∑
i∈IL

gi

�2

∑
i∈IL

hi + �
+

�∑
i∈IR

gi

�2

∑
i∈IR

hi + �
−

�∑
i∈Igi

�2
∑

i∈I hi + �

⎤⎥⎥⎥⎦
− �

(8)gi = � .

A.
(t−1)1

(
yi,

.

A
(t−1)

)

(9)h1 = �2.
A

(t−1)1
(
yi,

.

A.(t−1)
)

LightGBM

This research employed the LightGBM to predict fluoride 
contamination in groundwater. LightGBM is an algorithm 
with a great-performance gradient boosting framework 
(GBDT) built on a decision tree model. The LightGBM 
includes a Gradient-based One-Side Sampling (GOSS), 
Exclusive Feature Bundling (EFB), and histogram leaf-wise 
tree growth technique. The GOSS is a sampling technique 
that conserves all instances with high gradients and makes 
random sampling on the cases with a slight gradient. A con-
stant multiplier for the dataset cases with a slight gradient is 
employed to compensate for the dataset distribution during 
the sampling process.

Furthermore, the EFB technique increases computational 
proficiency by allocating the variables into smaller bundles. 
In the LightGBM, the histogram of a leaf node could be 
computed by the difference between the parent node and the 
sibling node, which can reinforce the model speed in training 
and decrease memory consumption. In the histogram, it can 
be observed that consecutive floating-point eigenvalues are 
divided into small bins, which are employed in the construc-
tion of the histograms (Fig. 4). Firstly, statistical calcula-
tions are processed in the histogram which is the summation 
of gradients with the number of samples in the respective 
bin. This process will decrease the cost of calculation and 
storage in the model (Weng et al., 2019). In addition, the 
leaf-wise tree growth technique is necessary for optimizing 
and controlling model complexity. The leaves on the identi-
cal layer are extensively treated with various information 
gains (Kodaz et al., 2009). Thus, it indicates the reduction 
in entropy produced by dividing the nodes established on 
attributes, and it is determined as follows:

Fig. 4  Histogram-based decision tree technique
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where En(B) is the information entropy, pd is the ratio of B 
relating to category d, and D is the category number. The 
attribute’s value of V is shown as ϑ and Bϑ is the subset of B.

RF

In this work, the RF was employed to forecast fluoride con-
tamination in groundwater. RF forms a robust model by gen-
erating a thousand random trees to form a forest. In the RF, 
the model’s principal parameters, including the number of 
trees and the predictors, are selected at each node (Tesoriero 
et al., 2017). The uncertainty of forecasting on the RF tree is 
calculated via its standard deviation equation below:

where x is the unseen sample calculated by averaging the 
prediction 

∑D

d
fd(x) from every single tree, d and D are the 

repeated bagging from d to D, and d can be considered equal 
to 1.

In the RF, the random is accessible in two processes in 
the development of the tree. Primarily, a random is chosen 
with the substitute of the whole dataset rows from one-third 
of the dataset and “out-of-bag” (OBB), representing the data 
not arbitrarily chosen in the decision of the tree. Second is 
the limited number of randomly chosen parameters acces-
sible in every node, and the output in the RF is expressed as:

n represents the number of trees, and pi signifies each 
tree’s prediction. In the model, the dimension of the tree can 
be controlled by setting the required samples at the trees’ 
maximum depth and leaf node. The entropy is essential 
in the RF for determining the variable split at each node. 
It determines the homogeneity of the subset dataset, and 
when entropy is equivalent, the class label is identically split 
(Nguyen, 2020). However, zero entropy signifies that the 
sample is entirely homogenous and is expressed as below:

where T and p represent the probability of a randomly des-
ignated variable in a class n

(10)IG(B,V) = En(B) −
∑

vϵValues(W)

||B�
||

B
En

(
Bϑ

)

(11)En(B) =

D∑
d=1

_Pd log2 Pd

(12)� =

�∑D

d
(fb(x) − f )2

D − 1

(13)y =
1

n

∑n

i
= 1pi

(14)Entropy = −Tlog2(T) − plog2(p)

Hybrid random forest linear model (HRFLM proposed 
method)

The HRFLM is an ML suggested by Senthilkumar Mohan 
(Mohan et al., 2019) to increase the prediction accuracy in 
classification analysis. A hybrid approach combines two 
or more algorithms to solve the same issue and is widely 
employed to predict various datasets (Hazarika et al., 2022; 
Khosravi et al., 2021). The hybrid was formed using a ran-
dom forest classifier and linear model. Thus, three random 
forests and a linear model called the logistic regression (LR) 
algorithms were built. The LR is a generalized linear model 
employed as a linear classifier in classification analysis, and 
it is expressed as follows:

where bo and b1 are the estimated parameters
Therefore, a combination of RF and LR is a new method 

proposed to improve the prediction of groundwater fluoride 
contamination. The proposed method was implemented 
using the sklearn library in python, including matplot-
lib, pandas, and various compulsory libraries. HRFLM 
is a computational approach mining three association 
rules such as apriori, predictive, and Tertius (Nahar et al., 
2013). Three RF classifiers and one linear model (LR) were 
described to build the hybrid. The log loss function has 
been employed to update the optimal weight in the com-
bination of the two models. This technique will minimize 
the classification error and measure the degree to which 
the forecasting differs from the actual label, and it is deter-
mined as follows:

where i represents the specified observation or record, y 
means the actual value, and p is the prediction probability. 
Also, ln demonstrates the natural logarithm of a number 
which is the base of a mathematical constant. Thus, the 
model was combined with a controlling weight average, 
trained, and tested to evaluate the performance accuracy of 
the HRFLM.

Metrics for the various model evaluation

The ROC (AUC) and the confusion matrix (CM) were 
employed to assess the performance of various models. The 
CM demonstrates the ability of the model to classify the 
actual values compared to the predictive values. The accu-
racy, specificity, sensitivity, and error rate were computed 
to evaluate the algorithms’ estimation. The different metrics 
equations are defined as follows (Fan et al., 2022; Hazarika 
and Gupta, 2022):

(15)p =
1

1 + e−(bo+b1x)

(16)Loglossi = −
[
yilnpi +

(
1 − yi

)
ln
(
1 − pi

)]
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The sensitivity is the same as true positive (TP) and repre-
sents the proportion of samples predicted with high fluoride. 
Specificity is the same as true negative (TN) and represents the 
proportion predicted with no fluoride. The accuracy signifies 
the percentages that are appropriately classified. In the evalu-
ation, the prediction error is known as the false-positive (FP), 
which means the model predicts an element as fluoride while 
the prediction is false. The false-negative (FN) represents the 
reverse error in binary classification analysis, meaning an ele-
ment is a fluoride, still, the model distinguishes it mistakenly as 
non-fluoride, and FN and FP represent the error rate.

Results and discussions

Models’ performance results using the confusion 
matrix

The CM results were employed to evaluate the HRFLM, 
Xgboost, LightGBM, and RF performance in forecasting 

(17)Sensitivity =
TP

TP + FN

(18)Specificity =
TP

TN + FP

(19)Error rate =
FP + FN

TP + TN + FN + FP

(20)Accuracy =
TP + TN

TP + TN + FN + FP

groundwater fluoride contamination and detailed in the sup-
plementary material section (Table s1, Table s2, Table s3, 
and Table s4), respectively. Furthermore, from the scikit-
learn GridSearchCV Python library, a set of hyperparam-
eters have chosen for the HRFLM model by searching the 
equilibrium between good accuracy and regularization 
(Table 2). A depth of 10 was chosen for the model as a 
large depth could lead to overfitting (Huang et al., 2019). 
Also, the parameter “C” equals 10 because selecting a 
small value yields a better regularization (Uscanga-junco 
et al., 2021). The performance of the HRFLM model in the 
training and testing stage was achieved with satisfactory 
results in the prediction of groundwater fluoride contami-
nation. The training phase’s accuracy, sensitivity, specific-
ity, and error rate were 98%, 98.2%, 98%, and 2%, respec-
tively. In the testing stage, the model provided an accuracy 
of 95%, a sensitivity of 95.2%, a specificity of 95%, and a 
minimum error of 5% (Table 3). The model has shown a 
high sensitivity and specificity, signifying that the HRFLM 
model has shown a prediction ability between the differ-
ent classes. The high sensitivity of the model confirms the 
presence of a large quantity of fluoride in groundwater 
in the research zone. Likewise, the training time of the 
model was 0.18 ms and 0.02 ms in the testing, demonstrat-
ing a less time-consuming model. Therefore, the model is 
acceptable due to its high accuracy, sensitivity, specificity, 
less error rate, and computational time. Our findings reveal 
a considerable ability of the HRFLM model to estimate 
fluoride contamination in groundwater. Based on the high 
performance of HRFLM, it can be applied to evaluate many 
contaminants in the subsurface water and can be adapted 
to different domains.

Table 2  Hyperparameter 
optimization of the HRFLM 
model using GridsearchCV

HRFLM hyperparameters Meaning Optimal value

n_estimators Number of trees 50
min_samples_split Minimum number of samples for nodes split 2
min_samples_leaf Minimum number of samples for leaf node 1
max_depth Maximum depth of trees 10
random_state an integer value implying the selection of a random 42
max_iter Maximum number of iterations 500
C Regularization parameter 10

Table 3  Statistical evaluation 
using the confusion matrix 
metric

Training Testing

HRFLM Xgboost LightGBM RF HRFLM Xgboost LightGBM RF

Accuracy 98 96 96 94 95 88 88 85
Sensitivity 98.2 97 97 96 95.2 92 92 90
Specificity 98 95 95 94 95 82 82 80
Error rate 2 4 4 6 5 13 13 15
Time (ms) 0.18 0.27 0.28 0.33 0.02 0.08 0.08 0.010
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Furthermore, the results of LightGBM in the training 
phase yield an accuracy of 96 %, a sensitivity of 97%, a 
specificity of 94%, and an error rate of 4%, whereas, in the 
testing, the results were 88%, 92%, 82%, and 13%, respec-
tively (Table 3). The model used 0.27 ms in the training and 
0.08 ms for testing during the prediction. Therefore, the pre-
diction results demonstrated in the LightGBM suggest good 
performance modeling. The sensitivity result of the model 
confirms the HRFLM model’s findings, showing a large 
number of fluorides in the research area. Besides, for the 
Xgboost, the accuracy, sensitivity, specificity, and error rate 
in training were 96%, 97%, 94%, and 4%, respectively. In 
the testing, the model accuracy, sensitivity, specificity, and 
error rate were 88%, 92%, 82%, and 13%, correspondingly. 
The model’s training and testing times were 0.28 ms and 
0.08 ms, respectively. Therefore, the model achieved good 
results and confirmed the high amount of fluoride in the sub-
surface water of the research area, confirming the HRFLM 
model findings. The GridSearchCV technique was employed 
to select the LightGBM and the Xgboost hyperparameters 
in Tables s5 and Table s6 in the supplementary materials. 
The good performance of the LightGBM and the Xgboost 
in predicting subsurface water fluoride contamination was 
enhanced by the best hyperparameters selected using the 
GridSearchCV technique. The Xgboost was previously 

employed in predicting water quality (Li et al., 2022; Liang 
et al., 2020). In our research, Xgboost has shown an ability 
to predict groundwater fluoride contamination.

Additionally, for the RF, the accuracy, sensitivity, speci-
ficity, and error rate for training were 94%, 96%, 94%, and 
6%, and those for testing were 85%, 90%, 80%, and 15%, 
respectively (Table 3). Likewise, as demonstrated in Table 3, 
the model utilized 0.33 ms time in training and 0.010 ms in 
the testing. The RF demonstrates high sensitivity, meaning 
that the model identifies more samples with high fluoride 
groundwater. This result confirmed the result yielded by 
the HRFLM model, showing a high amount of fluoride in 
groundwater in the research area. Similarly, a set of hyper-
parameters have been selected to enhance the model perfor-
mance by employing the GriserachCV technique (Table s7). 
The RF was applied previously in forecasting subsurface 
water fluoride contamination (Naghibi et al., 2016; Wu et al., 
2020). Our result reveals the RF’s performance ability in 
predicting groundwater fluoride contamination.

Evaluation results using the metrics ROC (AUC)

Our findings demonstrate that the performance of the 
HRFLM model using the AUC reached 0.98 in the predic-
tion of fluoride contamination (Fig. 5a). The AUC measures 

Fig. 5  The area under the curve 
of the HRFLM (a), Xgboost (b), 
LightGBM (c), and RF(d)
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the TP (sensitivity) and FP (false positive); when the AUC 
is closer to 1, it demonstrates that the model can classify 
the positive class. The results of the AUC of the HRFLM 
model indicate a high TP confirming the presence of a high 
quantity of fluoride in groundwater in the research zone, 
showing a useful application of the model. Likewise, the 
Xgboost model yielded an AUC of 0.95 in the prediction of 
groundwater fluoride contamination (Fig. 5b). A previous 
study has shown the prediction ability of the Xgboost model 
using the AUC metric with an AUC of 0.87 in the estimation 
of subsurface water (Arabameri et al., 2021). Regarding our 
findings, the model suggests a good performance in estimat-
ing fluoride in groundwater.

The LightGBM model’s result using the AUC is demon-
strated in Fig. 5c, and the model achieved an AUC of 0.90 
in estimating groundwater fluoride contamination. The RF 
model achieved an AUC of 0.88, showing a good forecast 
as the value of AUC is closer to 1 (Fig. 5d). Therefore, the 
LightGBM and RF models achieved a good performance in 
forecasting groundwater fluoride contamination.

Model comparisons: HRFLM, LightGBM, Xgboost, 
and RF

The results presented in Table  3 demonstrate that the 
HRFLM model achieved high accuracy, sensitivity, speci-
ficity, and error rate in forecasting groundwater fluoride 
contamination compared to LightGBM, Xgboost, and RF 

models. Furthermore, the AUC of HRFLM outperforms the 
other models in predicting fluoride contamination in ground-
water (Fig. 5a). Therefore, the HRFLM model has shown 
significant performance in estimating fluoride pollution in 
groundwater and reveals a useful application. The model has 
demonstrated less computational time during the prediction. 
Therefore, the great achievement of the HRFLM algorithm 
is attributed to the reason that hybrid models are soft com-
puting due to various optimization techniques that improve 
the model’s flexibility and accuracy (Ardabili, Mosavi, and 
Várkonyi-Kóczy 2020; Kondababu et al., 2021).

As shown in Table 3 and Fig. 5 (b and c), the perfor-
mance results of the Xgboost and LightGBM are lower than 
the hybrid HRFLM in the prediction ability of groundwater 
fluoride. The LightGBM model can be prone to overfitting, 
which might be attributed to the lower performance of the 
model (Liu, 2022), and the Xgboost model is sensitive to 
outliers (Budholiya et al., 2020; Duan et al., 2021). The 
RF model has the lowest accuracy, sensitivity, specificity, 
and error rate (Table 3) in estimating subsurface water fluo-
ride contamination. Similarly, the RF model has the lowest 
performance AUC in the prediction (Fig. 5d). The model’s 
lower performance can be assigned to the model’s require-
ment for much training time (Lopez et al., 2020). Our find-
ings reveal that all models yielded satisfactory results in 
predicting fluoride contamination in groundwater. However, 
the adopted hybrid HRFLM gave the best performance 
results (accuracy = 95%, AUC  = 0.98), followed by Xgboost 

Fig. 6  The relative significance 
of the model’s independent 
variables
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(accuracy = 88%, AUC  = 0.95), LightGBM (accuracy = 
88%, AUC  = 0.90), and RF (accuracy = 85%, AUC  = 0.88).

Sensitivity analysis of inputs parameters

Sensitivity analysis was executed to identify the importance 
of input variables on fluoride contamination in groundwater 
estimation (Eq. 16) (Nyakilla et al., 2022). Figure 6 demon-
strates the comparative significance of every input element 
to the target variable. It is evident that TDS and  Na+ are 
the effective majority factors influencing fluoride in ground-
water, contributing to 95% and 65% of model architecture, 
respectively.  HCO3

−,  Cl−, and  SO4
2+ also have an impor-

tant effect contributing about 50%, 48%, and 46 % to model 
development, and  NO3

−,  Mg2+, and  Ca2+ contribute about 
28%, 26%, and 18%, respectively.

The analysis reveals that each input contributes significantly 
to fluoride estimation except for Zn and  K+, which have 5% 
and 2% of fluoride estimation, respectively, where δInput% 
signifies the change in percent of input and δOutput% signifies 
the change in percent of output. This result indicates that varia-
bles alter from maximum to minimum values. The smaller WL 
value specifies that an independent variable has less impact on 
the fluoride released in groundwater, whereas the higher value 
of WL demonstrates that input variables affected the release 
of fluoride in groundwater. Therefore the parameters TDS, 
 Na+,  HCO3

−,  Cl−,  SO4
2+,  NO3

−, and  Mg2+ have significant 
importance to the fluoride intrusion in the subsurface water, 
which has been confirmed by previous studies (Nafouanti 
et al., 2021a, b; Yang et al., 2021).

Conclusion

This study investigated the prediction ability of the proposed 
hybrid HRFLM to estimate subsurface water fluoride con-
tamination in the Datong basin. Three ensemble learning, 
including LightGBM, Xgboost, and RF, were also employed 
as evident approaches for forecasting fluoride contamina-
tion in groundwater. Our findings revealed that the proposed 
hybrid HRFLM outperformed the Xgboost, LightGBM, and 
RF in forecasting fluoride pollution in groundwater.

By employing the GridsearchCV hyperparameters, the 
HRFLM model was achieved with high sensitivity of 95.2%, 
an accuracy of 95%, a specificity of 95%, and a lower error 
rate of 5%. The model has used less computational time in 
training (0.18 ms) and testing (0.02 ms).

(21)WL =
1

T

T∑
i=1

(
�Output%

�Input%

)

i

x100

Moreover, the AUC of HRFLM was compared with the 
AUC of ensemble learning models such as LightGBM, 
Xgboost, and RF, which also demonstrated promising 
results by achieving an AUC of 98% in estimating ground-
water fluoride contamination. Thus, due to the model’s 
reliable findings, the hybrid HRFLM is recommended 
for estimating groundwater fluoride contamination due 
to the reliable and flexible results of the algorithm, and 
the method can be applied to various fields and research 
areas. Notwithstanding the above insights, it is difficult 
to understand the process of groundwater contamination 
owing to the presence of several parameters. Therefore, 
future studies need to be conducted on developing vari-
ous hybrid models that are more advanced to enhance the 
progress of groundwater prediction for better protection 
and sustainability.
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