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A B S T R A C T   

An accurate and high-resolution age model in marine sediments is essential for reconstructing past oceano
graphic and climate changes. The southeastern Indian Ocean is an important component of oceanographic cir
culation and global climate. However, the integrated biostratigraphy for the Late Pleistocene interval is not well 
known in the region. To address this issue, we constructed a new chronology for International Ocean Discovery 
Program (IODP) Hole U1516B in the Mentelle Basin, offshore southwestern Australia. We employ planktonic 
foraminifera δ18O to construct an astronomically tuned age model for Hole U1516B. Biostratigraphic analysis 
was performed for Hole U1516B using planktonic foraminifera, nannofossils, radiolarian taxa and diatoms. Seven 
planktonic foraminifera events are recorded, including the PT1a and PT1b boundaries. Eight nannofossil events 
were recorded including the boundaries between CN14a, CN14b and CN15. The planktonic foraminifera datums 
marked in Hole U1516B are mostly synchronous with datums reported in the southern hemisphere but are 
diachronous with datums in the northern hemisphere. The nannofossil datums marked in Hole U1516B have a 
close affinity with globally reported datums but small inconsistencies are probably due to strong ecological 
control. The diatom events are inconsistent and only recorded in short intervals during interglacials and several 
key radiolarians taxa are absent.   

1. Introduction 

Glacial and interglacial climate events caused major palaeoceano
graphic changes during the Pleistocene. In particular, the last 800 ky 
have been characterized by strong warming in tropical and monsoon 
regions with intense cooling at higher latitudes (Ruddiman, 2006). 
Changes in ice volume are paralleled by fluctuation in proxies such as 
microfossil assemblages, stable isotopes and sediment characteristics in 
deep sea sedimentary sequences (Antonarakou et al., 2015; Guballa and 
Peleo-Alampay, 2020). In the Pleistocene, many periods are potential 
analogues to present climate, such as MIS 11 (Loutre and Berger, 2003), 
which may help understand future climatic changes (Guballa and Peleo- 
Alampay, 2020). To reconstruct the climatic and oceanographic changes 
in marine sediments, an accurate age model is essential (Antonarakou 
et al., 2019; Huybers and Wunsch, 2004; Lisiecki and Lisiecki, 2002; 

Ramsey, 2009a). 
In recent decades, the Pleistocene nannofossil biostratigraphy has 

been greatly improved (Takayama and Sato, 1987; Matsuoka and 
Okada, 1989; Rio et al., 1990; Sato et al., 1991; Castradori, 1993; Raffi 
et al., 1993; Young, 1998; Hine and Weaver, 1998; de Kaenel et al., 
1999; Flores et al., 1999, 2000, 2003; Raffi, 2002). The updated nan
nofossil biostratigraphy provides accurate and high-resolution datums 
for biochronology and global stratigraphic correlation. However, the 
Late Quaternary nannofossil biostratigraphy is less analysed in the In
dian Ocean compared to the Atlantic Ocean, Pacific Ocean, and Medi
terranean Sea (Supplementary Table S1). Similarly, planktonic 
foraminifera taxa provide first order biostratigraphic information (e.g., 
Wade et al., 2011). Globally, the planktonic foraminifera biostratig
raphy in older ages is well developed (e.g., King et al., 2020; Lirer et al., 
2019; Wade et al., 2011), but the biostratigraphic scheme is still 
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restricted to a few species (e.g., LO Gr. tosaensis) in the Late Pleistocene 
interval. In addition, the siliceous microfossils, Radiolaria and diatoms, 
have also been extensively used for biostratigraphy and palae
oceanography (e.g., Johnson et al., 1989; Moore Jr et al., 1993; Itaki, 
2003; Motoyama and Nishimura, 2005; Cortese et al., 2012; Winter 
et al., 2012; Matsuzaki et al., 2014a, 2014b; Koizumi and Yamamoto, 
2016; Kamikuri et al., 2017; Andrade et al., 2019). 

Hole U1516B recovered during IODP Expedition 369 acquired a 
continuous record of the Upper Pleistocene in the Mentelle Basin, 
Southwestern Australia Huber et al. (2019a) (Fig.1). The Site U1516 
preserved a unique record of the oceanography, climate and geological 
evolution of the Southeast Indian Ocean and offshore Southwestern 
Australia (e.g., Harry et al., 2020; Tagliaro et al., 2021, 2022). The re
gion is characterized by important oceanographic currents and water 
masses e.g., Leeuwin Current (LC), Leeuwin Undercurrent (LUC), West 
Australian Current (WAC), Subtropical front (STF), Subtropical Water 
(STW), and South Indian Central Water (SICW). The U1516B can be used 
to study the complex paleoceanographic circulation offshore south
western Australia (manuscript in preparation). Therefore, these cores 
offer the opportunity to build a high-resolution age model and provide a 
foundation for future paleoceanography studies. 

In this study, we construct an age model for Hole U1516B using an 
astronomically tuned oxygen isotope record and radiocarbon dates. The 
age model is used to determine ages for biostratigraphic events in the 
planktonic foraminifera and nannofossil records. The biostratigraphic 
datums of the foraminiferal assemblages are globally correlated to both 
the southern and northern hemispheres. Finally, radiolarians and di
atoms are also assessed for their biostratigraphic importance in the 
region. 

2. Oceanographic setting around Southwestern Australia 

Australia is a continent surrounded by surface and subsurface 
boundary currents flowing along the continental shelf and slope as 
components of the subtropical gyre circulation in the South Indian and 
South Pacific oceans (Domingues et al., 2007; Furue et al., 2017; 
Wijeratne et al., 2018). The transport of heat and mass flow towards the 
poles is important along both the east and west coasts of Australia. The 
Leeuwin Current System (LCS) is one of the important current systems in 
the eastern Indian Ocean (Fig. 1), which has three branches i.e., the Shelf 
Currents, the LC, and the LUC (Schloesser, 2014). The LC is character
ized by the only southward flowing eastern boundary current in the 
Southern Hemisphere (Wijeratne et al., 2018). The ITF is the direct 
source of water for LC, which flows along a steric height gradient from 
the West Australian shelf towards the Southwest Cape of Australia 
(Domingues et al., 2007; Furue et al., 2017; Wijeratne et al., 2018). The 
central and southern South Indian Counter Current (SICC) is a major 
contributor (>60% inflows) to the LC in the west (Wijeratne et al., 
2018). The warm and nutrient-poor LC suppress the coastal upwelling 
which results in the relatively oligotrophic nature of Western Australian 
waters (Koslow et al., 2008). The LUC has been noticed on the offshore 
edge of the LC on several occasions. The LUC typically exist at depth of 
250 m to 500 m, flows northward and transports cool oxygen-rich wa
ters north along the West Australian shelf (Domingues et al., 2007; Woo 
and Pattiaratchi, 2008; Schloesser, 2014; Wijeratne et al., 2018; 
Richardson et al., 2019). 

Fig. 1. The location of Site U1516 and the major oceanographic currents in the southeastern Indian Ocean, including Indonesian throughflow (ITF), Leeuwin Current 
(LC), Leeuwin Undercurrent (LUC), Eastern Gyral Current (EGC), South Equatorial Current (SEC), South Java Current (SJC)South Indian Current (SIC) and West 
Australian Current (WAC) (updated from Domingues et al., 2007). 
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3. Materials and methods 

3.1. Core samples of IODP Hole U1516B 

IODP Site U1516 was drilled during Expedition 369 in the Mentelle 
Basin (Fig. 1). Site U1516 comprises four holes (U1516A, B, C and D). 
Hole U1516A (34◦20.9169′S, 112◦47.9553′E) was drilled up to 223.6 m 
CSF-A and then the vessel was offset 20 m east to core Hole U1516B 
(34◦20.9175′S, 112◦47.9684′E). The Hole U1516B was drilled up to 
16.2 m CSF-A with ⁓102% recovery (Huber et al., 2019a; Huber et al., 
2019b). The cores were immediately sectioned into 30 cm whole rounds 
on the catwalk and sealed in light-proof bags with no further shipboard 
analysis. Since the cores from Hole U1516B are also cored and curated 
by IODP, the depth scheme of CSF-A can be used for this hole even 
though it was not included in the proceeding of IODP Expedition 369. 
The subsampling has been detected in the lab for biostratigraphic 
analysis, oxygen isotope analysis, and radiocarbon dating. 

3.2. Oxygen isotope analysis 

Oxygen isotope analysis was performed for Hole U1516B. The 
planktonic foraminiferal species Globigerinoides (G). ruber sensu stricto 
(s.s) (white) was selected for isotopic analysis from samples spaced 
about 10–13 cm apart while the initial few samples were taken at an 
interval of 4 cm. About 35–40 individuals of G. ruber s.s were picked 
from the >250 μm (250–355 μm) fraction. The tests of the foraminifera 
were carefully crushed into several fragments and were cleaned 
following the cleaning method of Barker et al. (2003). Stable oxygen 
isotope ratios of the planktonic foraminifera tests were measured on 
Thermo-Finnigan MAT-253 isotope ratio mass spectrometer with an on- 
line, automated carbonate preparation system (Kiel IV) at the State Key 
Laboratory of Geological Processes and Mineral Resources, China Uni
versity of Geosciences, Wuhan. The values are reported per mil (‰) 
relative to Vienna Pee Dee Belemnite (VPDB) standard, calibrated by 
using GBW 04416 and GBW 04417 standards, along with a laboratory 
internal standard ISTB-1 (Supplementary Table DS1). Standards were 
run after every 10 samples and the standard deviation was <0.045% for 
δ18O. 

3.3. Radiocarbon dating 

The chronology for core top 0.75 m samples of Hole U1516B is based 
on seven accelerator mass spectrometry (AMS) radiocarbon (14C) dates 
(Table 1). Planktonic foraminifera species Globigerina inflata were ana
lysed at Beta Analytic Test Laboratory, United States of America (USA). 
AMS 14C dates were calibrated using the MARINE20 calibration curve in 
BetaCal4.2 (Heaton et al., 2020; Ramsey, 2009b). The age is reported as 

radiocarbon years before present (BP), “present” = 1950 CE and is 
rounded to the nearest 10 years. 

3.4. Age model 

The age model for Hole U1516B is based on the 14C and δ18O records. 
The δ 18O record of Hole U1516B was visually tuned to the δ18O record 
G. ruber s.s with the astronomically tuned global benthic foraminifera 
δ18O stack LR04 (Lisiecki and Raymo, 2005) (Figs. 3D and 5), using 
QAnalySeries (Kotov and Paelike, 2018; Paillard et al., 1996). Tuning a 
planktonic δ18O to the benthic stack is justified on the grounds that the 
SST component of the record is small and therefore there is a good 
correspondence of oxygen isotope events between the two records. This 
approach has been used successfully elsewhere (Barrows et al., 2007) 
and the associated errors are unlikely to be significant beyond the last 
glacial cycle (Supplementary Fig. S1). 32 δ18O tie points and seven 14C 
ages (top 76 cm) were used for the tuning (Supplementary Table S2). 

3.5. Biostratigraphy 

Calcareous nannofossils, planktonic foraminifera, radiolarians and 
diatoms were identified for biostratigraphy of Hole U1516B. The sam
ples were split into required aliquots (i.e., 0.5 g for nannofossils, 1 g for 
radiolarians and diatoms and 5 g for planktonic foraminifera) for anal
ysis on the same depth levels. The sample preparation procedures fol
lowed are briefly discussed below. 

3.5.1. Planktonic foraminifera 
The core samples were dried overnight at 400C. 5 g of the dried 

samples were washed over a 74 μm sieve to obtain the planktonic 
foraminifera. The samples were then dried at room temperature. The 
fraction >150 μm was examined for diversity under a stereomicroscope. 
In each mixed sample, > 300 specimens were counted, excluding the 
broken and altered specimens (two rounds of analysis, overall >600 
specimens). The entire samples were thoroughly examined above and 
below a biostratigraphic event/zone to ensure the presence or absence of 
species. 

3.5.2. Calcareous nannofossils 
Samples were prepared for nannofossils according to the method of 

Ma et al. (2019). For each sample, 0.5 g of dried bulk sample was dis
integrated in 250 ml ultra HQ distilled water. The solution was kept in 
an ultrasonic bath for a short time. The weight of sediment, the amount 
of ultra HQ water, and the time in the ultrasonic bath remained the same 
for all samples. Then 330 μl of the well-mixed suspension was added to a 
coverslip using an automatic precision pipette and dried on a hot plate at 
a low temperature of 30–35 ◦C. After drying, the coverslip was mounted 
on a glass slide with Canada balsam. The sections were described at the 
State Key Laboratory of Biological Sciences, CUG, Wuhan by polarizing 
microscope. The sections were examined at 630× and 1000× resolution 
and photomicrographs were taken of each slide. For taxonomic 
nomenclature, the nomenclature described in Nannotax 3 (Young et al., 
2018) was used. The species are well preserved and visible under the 
microscope. 

3.5.3. Radiolaria and diatoms 
For the analysis of Radiolaria and diatoms, 1 g of dry sediment was 

used. To remove the organic matter, the sediments were treated with 
36% hydrogen peroxide (H2O2). After removing the organic matter, 
carbonates were removed with 30% hydrochloric acid (HCl). After 
keeping the sediments in HCl overnight, the HCl were washed three 
times (centrifuge method) with distilled water and the clean siliceous 
materials were kept in a test tube. The clean siliceous material was 
diluted in 3 ml of distilled water. The silica mixture of 330 μl was added 
to the glass coverslip and kept overnight to dry. After drying overnight, 
the coverslips were mounted to the slide with Canada balsam. The 

Table 1 
Radiocarbon (14C) ages of Hole U1516B upper 0.75 m CSF-A interval. (CI =
confidence interval).  

Samples Depth 
CSF-A (m) 

Lab 
identifier 

Age BP 
(ky) 

Age cal BP (ky) 
(95% CI) 

δ13C 
%₀ 

1H-1-J1- 
F-1 0.06–0.10 

Beta- 
582,633 8.9 ± 20 8.2–7.8 0.9%₀ 

1H-1-J1- 
F-2 

0.13–0.16 Beta- 
594,965 

9.6 ± 60 9.1–8.5 0.6%₀ 

1H-1-J1- 
F-3 

0.26–0.30 Beta- 
582,634 

13.4 ±
40 

14.2–13.7 0.9%₀ 

1H-1-J2- 
F-1 0.30–0.33 

Beta- 
594,967 

19.7 ±
60 21.4–20.8 0.7%₀ 

1H-1-J2- 
F-2 

0.42–0.46 
Beta- 

594,964 
27.5 ±

120 
19.1–28.6 0.8%₀ 

1H-1-J3- 
F-1 

0.60–0.63 Beta- 
594,968 

32.6 ±
120 

35.0–34.1 0.9%₀ 

1H-1-J3- 
F-2 

0.73–0.76 Beta- 
594,966 

34.7 ±
230 

37.7–36.7 0.9%₀  
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sections were described at the State Key Laboratory for Biological Sci
ences, China University of Geosciences, Wuhan by polarizing micro
scope. The sections were studied at 200×, 400× and under plan light, 
while diatoms were studied with 630 x and 1000×. 

4. Results 

4.1. Orbitally tuned age model 

The δ18O record shows six complete glacial-interglacial cycles over 
the last 766 ky in Hole U1516B (Fig. 2) Some sections of the planktonic 
record do not show the full expected range of δ18O values (e.g., MIS 9, 
13) possibly due to under sampling. The age model of Hole U1516B is 
presented in Figs. 2 and 3. Sedimentation rates range between 1 and 4 
cm/ky throughout the analysed cores increasing up to 6 cm/ky at top of 
the core probably due to less compacted sediments. Sedimentation rates 
show no obvious differences between glacial and interglacial cycles, but 
some cycles show a slight increase in interglacial cycles and vice versa 
(Fig. 3B). 

4.2. Biostratigraphy 

4.2.1. Planktonic foraminifera 
Planktonic foraminifera are well preserved in the studied core sam

ples of Hole U1516B. 38 species are recorded (Supplementary text S1), 
and 5 species (i.e., Globorotalia (Gr) hessi, Gr. tosaensis, Gr. hirsuta, Glo
bigerinoides (G) ruber pink, Globigerinella (Ge) calida) show 

biostratigraphic datums. The first appearance datum (FAD) and last 
appearance datum (LAD) were recorded for each species (Table 2). The 
ages of the datums of planktonic foraminifera are mostly consistent with 
the calibrated biostratigraphic datums of Wade et al. (2011). Based on 
biostratigraphic datums, the core can be divided into two planktonic 
foraminiferal zones (i.e., PT1a and PT1b). The boundary between the 
zones is marked by the LAD of Gr. tosaensis at 610 ka. The lower part of 
the core (13.62–16.50 m CSF-A) is assigned to the PT1a zone, and the 
upper part of the core (0–13.60 m CSF-A) is assigned to PT1b (Fig. 4). 

The FAD of Gr. hessi is recorded at 752 ka (16.03 m CSF-A) and LAD is 
recorded at 243.1 ka (4.33 m CSF-A). Gr. hessi is succeeded by zonal 
marker species Gr. tosaensis LAD at 610 ka. In PT1b the first event is 
marked by the FAD of Gr. hirsuta at 445 ka (9.70 m CSF-A). The first 
entry of the G. ruber pink is recorded at 399.2 ka (8.32 m CSF-A) and the 
LAD is recorded to be 124 ka (2.10 m CSF-A). The FAD of Ge. calida is 
recorded at 273.3 ka (5.40 m CSF-A). Gr. flexuosa is considered an 
important biostratigraphic marker species in the tropics with consistent 
FAD and LAD but is poorly preserved and rare in the studied samples. 
G. conglobatus, Gr. scitula and Gc. puncticulata disappeared during the 
last 100 ky but this might be because of environmental changes. These 
species have no biostratigraphic value regionally and globally (e.g., 
Wade et al., 2011). 

4.2.2. Calcareous nannofossils 
The nannofossils are well preserved throughout the studied core 

samples of Hole U1516B, and 24 taxa were identified (Supplementary 
text S2) (Fig. 5). FAD and LAD, first/last common occurrence (FCO/ 

Fig. 2. δ18O comparison of Hole U1516B with the MIS boundaries of Lisiecki and Raymo (2005). (A) The planktonic foraminifera G. ruber s.s. δ18O (red line) from 
Hole U1516B, the small black triangles show the radiocarbon ages (B) middle latitude benthic foraminiferal F. wuellerstorfi δ18O record from Site U1308 (Hodell et al., 
2008), (C) the global benthic foraminiferal δ18O stack LR04 (Lisiecki and Raymo, 2005). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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LCO) and highest abundance (acme zone) were determined (Fig. 6 and 
Table 3). The nannofossil datums recorded in this study have good 
consistency with the nannofossils biostratigraphical schemes of Martini 
(1971) and Okada and Bukry (1980). Only NN19 (only the upper part), 
NN20 and NN21 of Martini (1971), represent CN14a (only the upper 
part), CN14b and CN15 of Okada and Bukry (1980) are represented in 
the Hole U1516B. The boundary between NN19/NN20 and CN14a/ 
CN14b is marked with the LAD of Pseudoemiliania (P) lacunosa at 425.2 

ka (9.10 m FAD of E. huxleyi CSF-A). Similarly, the boundary between 
NN20/NN2 and CN14b/CN15 is marked by the FAD of Emiliania (E) 
huxleyi at 287 ka (5.83 m CSF-A). Besides the demarcation of the major 
biostratigraphic zones, a total of eight events were recorded in Hole 
U1516B (Table 3). Among the recorded events, H. inversa is the only 
nannofossil species with a complete zone that includes both FAD and 
LAD (Fig. 6). 

4.2.3. Radiolarians 
The diversity and abundance of radiolarian taxa in Hole U1516B are 

poor and several taxa that are normally common at low to middle lati
tudes are absent. Absent taxa include important biostratigraphical 
markers i.e., Stylatractus universus, Collosphaera tuberos, Amphirhopalum 
ypsilon, Schizodiscus japonicus, Amphimelissa setosa, and Lychnocanoma 
sakaii. Few species are consistently recorded whereas some are once or 
twice recorded (Supplementary text S3). 

4.2.4. Diatoms 
Diatom abundances were found not to be high enough in Hole 

Fig. 3. Age model of Hole U1516B. (A) The planktonic foraminifera G. ruber s.s. δ18O (red line) and the global benthic foraminiferal δ18O stack LR04 (Lisiecki and 
Raymo, 2005) (black line), (black dots represent δ18O tie point and black dots represent 14C age tie point), (B) Depth-age model of sedimentary cores in Hole U1516B 
and sedimentation rate. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Nannofossil events distinguished in Hole U1516B.  

Planktonic events Depth CSF-A (m) Age (ka) 

LAD of G. ruber pink 2.11 124 
FAD of the Globigerinella calida 3.75 219.8 
LAD of Globorotalia hessi 4.36 243.1 
FE G. ruber pink 8.35 399.2 
FAD of Globorotalia hirsuta 9.73 445 
LAD of Globorotalia tosaensis 13.62 610 
FAD of Globorotalia hessi 16.03 752  
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U1516B to develop a regional zonation and were only identified at a 
generic level. The diatoms are restricted to the warm interglacials 
(Fig. 6). However, the occurrences of these diatoms can be considered as 
an event that might be reliable for regional age determination within 
Mentelle Basin. 

Stellarima sp. was recorded at depth 0.60–0.63 m CSF-A in MIS 3 
(32.1 ka). At depth of 3.3–3.33 m CSF-A in MIS 7 (192.5 ka) Paralia 
sulcate and Cyclotella? sp. were recorded. The occurrences of both 
genera/species are very close to the boundary between MIS 6/7. The 
occurrences of both species in the region can be used as a marker species 
for the demarcation of the boundary between MIS 6/7. Cyclotella? sp. is 
again recorded at depth 4.20–4.23 m CSF-A in MIS 7 (239 ka) which is 
also close to the boundary between MIS 7/8. Cyclotella? sp. is followed 

by Thalassiosira sp. at depth of 4.33–4.36 m CSF-A (243.1 ka) on the 
boundary between MIS 7/8. Thalassiosira sp. is further recorded at 
depths of 10.90–10.93, 13.00–13.13, 14.92–14.95 m CSF-A in MIS 13 
(502.6 ka), MIS 15 (580–584 ka), and MIS 17 (702.2 ka). Diploneis sp. is 
observed at the depth of 10.90–10.93 m CSF-A in MIS 13 (502.6 ka). 

5. Discussion 

5.1. Global age framework of Planktonic foraminiferal 

Taxonomy and biostratigraphy of planktonic foraminifera are the 
foundations for providing first-order relative age control in marine 
sediments, understanding open marine evolutionary dynamics, and 

Fig. 4. Planktonic foraminifera biostratigraphy of Hole U1516B. (A) oxygen isotopes stratigraphy of Hole U1516B on the LR04 (Lisiecki and Raymo, 2005) age 
model and terminations (T-1–T-V), (B) Planktonic foraminifera biostratigraphic zones of Wade et al. (2011), (C) Planktonic foraminiferal events of this study, 
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Fig. 5. Key nannofossils assemblages from Hole U1516B. 1–2 Pseudoemiliania lacunose (16.30 m CSF-A), 3–4 Emiliania huxleyi (1.60 m CSF-A), 5–6 Gephyrocapsa 
omega (1.60 m CSF-A), 7–8 Gephyrocapsa oceanica (1.60 m CSF-A), 9–10 Gephyrocapsa muellerae (1.60 m CSF-A), 11–12 Gephyrocapsa caribbeanica (1.60 m CSF-A), 
13–14 Reticulofenestra sp. (16.30 m CSF-A), 15–16 Reticulofenestra pseudoumbilicus? (14.00 m CSF-A), 17–18 Helicosphaera princei (1.50 m CSF-A), 19–20 Heli
cosphaera carteri (1.50 m CSF-A), 21–22 Calcidiscus leptoporus (16.30 m CSF-A), 23–24 Helicosphaera inversa (9.40 m CSF-A), 25–26 Rhabdosphaera claviger (1.30 m 
CSF-A), 27–28 Calciosolenia sp. (1.30 m CSF-A), 29–31 Pontosphaera discopora (14.00 m CSF-A), 32–34 Pontosphaera japonica (1.60 m CSF-A), 35 Gladiolithus fla
bellatus (0.73 m CSF-A), 36 Sphenolithus sp. (0.73 m CSF-A), 37 Florisphaera profunda (0.73 m CSF-A), 38–39 Algirosphaera robusta? (0.73 m CSF-A), 40–41 Coccolithus 
pelagicus (11.00 m CSF-A), 42 Coccolithus pelagicus with bar (16.45 m CSF-A), 43–46 Coccolithus sp. (16.45, 14.00, 11.00 m CSF-A), 47 Syracosphaera pulchra (2.23 m 
CSF-A), 48 Oolithotus (16.45 m CSF-A). 
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reconstructing ocean-climate history (Kennett and Srinivasan, 1983; 
King et al., 2020; Norris, 2000; Vats et al., 2020; Wade et al., 2011; Wei 
and Kennett, 1986). Planktonic foraminifera are globally important for 
biostratigraphy and correlations due to their evolutionary history 

(Sabba et al., 2022). The evolutionary characteristics of planktonic 
foraminifera can be considered ideal for biostratigraphic index fossils 
such as diversity (Fischer and Arthur, 1977; Loeblich and Tappan, 1987; 
Tappan and Loeblich Jr, 1973), morphology of lineage and species 
(Arnold et al., 1995; Cifelli, 1969; Malmgren and Kennett, 1981; Norris, 
1996; Spencer-Cervato and Thierstein, 1997) and studying the dynamics 
of origins and extinctions of species (Thunell, 1981; Wei and Kennett, 
1986) and biogeographic distribution through time (Parker et al., 1999). 
Therefore, they are widely utilized for biostratigraphy of Cretaceous and 
Cenozoic marine sediments and are a fundamental component of 
Cenozoic chronostratigraphy (Wade et al., 2011). The diachroneities in 
the planktonic foraminifera datums can be caused by various factors 
including the dispersal of species by ocean gyre (Darling et al., 2000), 
opening and closing of ocean gateways (Fenton, 2015; Haug and Tie
demann, 1998), ecology (Ding et al., 2006) and dissolution (Nguyen 
et al., 2009). In particular, the intensification of glacial-interglacial 
transitions during the Pleistocene strongly influenced the stratification 

Fig. 6. Nannofossils biostratigraphy of Hole U1516B. (A) oxygen isotopes stratigraphy of Hole U1615B on the LR04 (Lisiecki and Raymo, 2005) age model and 
terminations (T-1–T-V), (B) nannofossils zones scheme of Okada and Bukry (1980), (C) nannofossils zones scheme of Martini (1971), (D) nannofossils events of this 
study, (E) The diatoms events recorded in Hole U1516B. 

Table 3 
Planktonic foraminiferal events are distinguished in Hole U1516B.  

Nannofossil events Depth 
CSF-A (m) 

Age 
ka 

E. huxleyi > Gephyrocapsa sp. 1.65 89.22 
FCO of G. muellerae 3.31 192.5 
LCO G. caribbeanica 4.95 260.1 
FAD of E. huxleyi 5.86 287 
LAD H. inversa 6.43 330 
LAD P. lacunosa 9.13 425.2 
FAD H. inversa 9.55 436 
FCO G. caribbeanica 12.70 569.5  
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of surface waters and the marine environment as a whole (e.g., Crund
well et al., 2008; De Boer et al., 2010; Lisiecki and Raymo, 2005) These 
substantial environmental changes caused regional endemicity (Tsan
dev et al., 2008) which probably contributed to age diachronicities of 
planktonic foraminifera biostratigraphic events. 

A total of seven biostratigraphic events were identified in U1516B, 
five of which are global and two are regional in nature (Table 4). The 
first event is marked with the FAD of Gr. hessi at 750 ka (Fig. 7). In 
tropical-subtropical regions, this event is globally synchronous at ⁓ 
750 ka (Chaproniere et al., 1994; Wade et al., 2011) (Table 4). However, 
the LAD of Gr. hessi is geographically diachronous and categorized as a 
local/regional event due to age diachrony e.g., 400 ka (Aze et al., 2011), 
80 ka (Bolli and Suva (1973) and 243 ka in Hole U1516B. The LAD of Gr. 
tosaensis occurs at the base of PT1b (610 ka) (e.g., Berggren et al., 1995b; 
Berggren et al., 1995a; Mix et al., 1995; Wade et al., 2011). The event is 
usually considered globally synchronous. However, the event is reported 
at 650 ka south of Australia (Li et al., 2003), as well as placed in the 
earlier zonation scheme of Berggren et al. (1995b, 1995a). The earlier 
extinction of Gr. tosaensis in the south of Australia could be caused by a 
colder climate during MIS 16 and possible northward migration of the 
Subtropical Front (STF) (e.g., Bard and Rickaby, 2009; Cartagena-Sierra 
et al., 2021). In the North Pacific Ocean, 293–586 ka is recorded by Lam 
and Leckie, 2020. The FAD of Gr. hirsuta marked another global event at 
450 ka (Wade et al., 2011), consistent between the Indian Ocean (Hole 
U1516B; 445 ka) and the Southern Atlantic Ocean (Pujol and Duprat, 
1983) (Fig. 7 and Table 4). The small age gap (⁓ 5 ky) is probably due to 
sampling resolution. Therefore, Gr. hessi, Gr. tosaensis and Gr. hirsuta 
likely signify globally synchronous events. These species belong to the 
Globorotalia genus which lives in the subsurface to deep water settings 
(e.g., Kucera, 2007; Schiebel and Hemleben, 2017), probably more 
resistant to local SST drop and other ecological changes compared to 
surface dwellers. Therefore, they show a global trend of evolution and 
extinction. 

The FAD of the Ge. calida at 220 ka is potentially used as a 
biostratigraphic marker (Chaproniere et al., 1994; Berggren et al., 
1995a; Wade et al., 2011). In this study, the FAD of Ge. calida occurs at 
273.3 ka which is older than aforenamed studies. Ge. calida is an 
opportunistic species and commonly occurs in upwelling regions (e.g., 
Conan and Brummer, 2000; Retailleau et al., 2012; Schiebel et al., 2004; 
Schmuker, 2000), which means it responds to environmental changes 
and may have a diachronous FAD. 

In the Indo-Pacific region, G. ruber pink at 120 ka is considered a 
reliable biostratigraphic marker in the Indo-Pacific region (Thompson 
et al., 1979; Wade et al., 2011; Jia et al., 2018), which is recorded at 
⁓124 ka in this study. However, in the Indian Ocean (Hole U1516B) 
subevents of the G. ruber pink were found (Fig. 7), indicating 

environmental influence. In the Northern Pacific Ocean, the LAD of the 
species ranges between 238 and 327 ky (Lam and Leckie (2020). 

From the above comparison, it is noticeable that the FAD and LAD of 
the reported species in Hole U1516B are quite similar to those from the 
tropical region (e.g., Wade et al., 2011), indicating the similar ecological 
conditions and flow of warm water from the tropical region through ITF 
and LC (e.g., Petrick et al., 2019). However, the planktonic foraminifera 
datums from Hole U1516B have obvious diachroneities with the sub
tropical Northern Pacific Ocean (Table 4). Besides environmental and 
ecological differences, the key factor that probably caused dia
chroneities is the dissolution factor, as high dissolution is recorded in the 
studied cores (Lam and Leckie, 2020). Dissolution can highly affect the 
planktonic foraminifera (Nguyen et al., 2009), which could cause the 
diachroneities in FAD and LAD of the planktonic foraminifera. The 
magnetostratigraphic age model of Lam and Leckie (2020) also seems to 
be affected by dissolution as very older ages were marked for younger 
species (Table 4). The planktonic foraminifera datums in the Indian 
Ocean (Hole U1516B) are synchronous with South Atlantic Ocean and 
Southern Pacific Ocean (Table 4). The similarities of planktonic fora
minifera datums between the South Atlantic Ocean and Indian Ocean 
are probably due to the similar ecological conditions as both are char
acterized by the southward flow of warm surface water e.g., Agulhas 
Current (Gordon et al., 1987) and LC (Petrick et al., 2019). Similarly, the 
Southern Pacific Ocean (Lau Basin) situated in the tropical region pro
vides similar surface water conditions as that of LC. 

5.2. Global comparison of nannofossil events 

The significance of nannofossils in the relative dating of marine 
sediments is because of their abundance and diversity, rapid evolution, 
preservation potential, and wide distribution in the marine environment 
(Raffi and Backman, 2022). Cenozoic nannofossils are considered one of 
the most powerful tools for biostratigraphic analysis and correlation in 
the marine realm (Agnini et al., 2017). The high-resolution chro
nostratigraphy coupled with nannofossil biostratigraphy allows for 
global correlation. Most of the nannofossil events reported in this study 
are synchronous with globally reported datums at least at the marine 
isotope stage (MIS) but some events show obvious diachroneities as 
shown in Table 4. The diachroneities in the nannofossil events are 
mainly caused by ecology and dissolution (e.g., Marsh, 2003; Thierstein 
et al., 1977). Similarly, the diversity and abundance of the nannofossil 
are highly controlled by the stratification of the water (e.g., Brand, 
1994). Here we compare the identified nannofossil events in Hole 
U1516B with globally reported events (Fig. 8 and Table 4). 

Based on the nannofossils encountered, three zones (NN19–21) are 
distinguished according to Martini (1971) and two zones (CN14–15) 

Table 4 
Global comparison of planktonic foraminifera and nannofossils events in the southern and northern hemispheres. The ages units are in kilo years ago (ka) while ages 
marked with a single asterisk (*) represent millions of years ago (Ma). In the southern hemisphere, the Indian Ocean represents the present study (Hole U1516B).  

Events Southern Hemisphere Northern Hemisphere 

Indian Ocean Atlantic Ocean Pacific Ocean Atlantic Ocean Pacific Ocean Mediterranean Sea 

LAD of G. ruber pink 124  120  238–327  
FAD of the Ge. calida 219.8    *3.087–0.254  
LAD of Gr. hessi 243.1   80   
FE G. ruber pink 399.2      
FAD of Gr. hirsuta 445 450   *1.123–0.673  
LAD of Gr. tosaensis 610    610–650, 293–586  
FAD of Gr. hessi 752  750    
E. huxleyi > Gephyrocapsa sp. 89.22 85  MIS4/5  55–81 
FCO of G. muellerae 192.5 150 170    
LCO G. caribbeanica 260.1 280, 249     
FAD of E. huxleyi 287    290 274 
LAD H. inversa 330 271, 250   540, 220 369 
LAD P. lacunosa 425.2 447  390 460, 433, 440–436 424–406 
FAD H. inversa 436   439  407 
FCO G. caribbeanica 569.5 560, 540      
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according to the classification of Okada and Bukry (1980). The CN14 of 
Okada and Bukry (1980) is further divided into subzones i.e., CN14a and 
CN1b. Overall eight nannofossils events are recognized in the studied 
interval of U1516B and all are global in nature (Fig. 7 and Table 4). The 
boundary between NN19-NN20 and CN1a-CN1b is marked with the LAD 
of P. lacunosa at 425 ka (Fig. 7). Previously, the LAD of P. lacunosa is 
used as a boundary marker in the Mediterranean Sea, Atlantic and Pa
cific oceans in both hemispheres during 460–390 kyr (Berger et al., 
1994; de Kaenel et al., 1999; Flores et al., 2003; Matsuzaki et al., 2015; 
Sato and Takayama, 1992; Takayama and Sato, 1987; Thierstein et al., 
1977) (Table 4). The event is generally synchronous during MIS 12 with 
exceptions, but has significant age differences between different studies, 
because of the division of the event into two i.e., LADs of P. lacunosa 
lacunosa > 7 μm and elliptical P. lacunosa < 5 μm (e.g., Hay, 1970; 

Matsuoka and Okada, 1989). It is believed that the circular P. lacunosa 
lacunosa > 7 μm became extinct before the elliptical P. lacunosa < 5 μm 
(Hay, 1970), with a reported age gap of 30 ky in western Pacific Ocean 
Matsuoka and Okada (1989). In addition, the elliptical and circular 
P. lacunosa (< 5 μm) could not be distinguished in light microscopy here 
(de Kaenel et al., 1999). 

The acme of G. caribbeanica is a well-established event of the Mid- 
Brunhes interval probably associated with globally changed climate 
(Baumann and Freitag, 2004; Bollmann et al., 1998; Lupi et al., 2012). In 
the studied interval of Hole U1516B, G. caribbeanica dominates other 
nannofossil species during the 569–260 ky (MIS15–8) interval (Fig. 7). 
In the South Atlantic Ocean, the G. caribbeanica acme is reported be
tween 560 and 280 ky (Baumann and Freitag, 2004) and 540–249 ky 
(Flores et al., 2003). The acme of G. caribbeanica is mostly reported 

Fig. 7. (A) oxygen isotopes stratigraphy of Hole U1615B on the LR04 (Lisiecki and Raymo, 2005) age model and terminations (T-1–T-V), (B) planktonic foraminifera 
biostratigraphic zones of Wade et al. (2011), (C) planktonic foraminiferal events in Hole U1516B (D) nannofossils zones scheme of Okada and Bukry (1980), (E) 
nannofossils zones scheme of Martini (1971), (F) nannofossils events in Hole U1516B, (G) the diatoms events recorded in Hole U1516B. 
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during MIS 15–9, but local environmental changes causes minor age 
differences between studies. The FCO/LCO of the G. caribbeanica is 
synchronous between the Southeast Indian Ocean (Hole U1516B) and 
South Atlantic Ocean possibly due to close latitudinal position and 
ecological conditions (e.g., Baumann and Freitag, 2004; Flores et al., 
2003; Gordon et al., 1987). 

The H. inversa is the only nannofossil species which exhibits a com
plete zone in the Late Pleistocene (e.g., Maiorano et al., 2013). In this 
study, H. inversa occurred during the interval 436–330 ky (Fig. 7). 
Previously, the species is not very well documented and a few attempts 
recognize a narrow stratigraphic distribution during the Late Pleistocene 
(Takayama and Sato, 1987; Matsuoka and Okada, 1989; Marino et al., 
2003; Maiorano et al., 2013). The species is reported in the Mediterra
nean Sea between 407 and 369 ky, and in the Atlantic Ocean between 
439 and 160 ky (Maiorano et al., 2013; Sato et al., 1999; Sato and 
Takayama, 1992; Takayama and Sato, 1987). In the Pacific Ocean, the 
species is not recorded before 510 ka at mid-latitudes and 800 ka at low 
latitudes (Maiorano et al., 2013), whereas it disappeared (LAD) at 540 
ka (Matsuoka and Okada, 1989) and 220 ka (Marino et al., 2003) 
respectively. The LAD and FAD of H. inversa are globally diachronous 
which is probably controlled by latitudinal changes in the stratification 
of the water, where the species arrived at ⁓800 ka in mid-latitudes and 
⁓510 ka in low latitudes (Maiorano et al., 2013) (Table 4). 

In Hole U1516B, the FCO of G. muellerae is recorded at 193 ka (MIS 
6/7). The FCO of G. muellerae is previously recorded in the Agulhas 
Basin, South Atlantic and Southern oceans between 170 and 150 ky (MIS 
6) (Flores et al., 2003; Flores et al., 2000; Flores et al., 1999). Available 
data from the Southern Hemisphere suggest that the FCO of G. muellerae 
is closely correlated and can be used for biostratigraphy. However, 
further studies at different locations are needed. 

The last zone of the nannofossil biostratigraphic scheme of Martini 
(1971) (NN21) and Okada and Bukry (1980) (CN15) is marked with the 
FAD of E. huxleyi at 287 ka in U1516B (Fig. 7). Globally, this event is 
reported between 291 and 250 ky (Baumann and Freitag, 2004; de 
Kaenel et al., 1999; Flores et al., 2003; Matsuzaki et al., 2015; Thierstein 
et al., 1977) (Table 4). However, the generally accepted age is 290 ka 
(Raffi et al., 2006). The FAD of E. huxleyi is followed by the crossover 
(acme) of E. huxleyi on Gephyrocapsa populations (Gartner, 1977; de 
Kaenel et al., 1999). In Hole U1516B, the event is recorded at 89 ka (MIS 

5), but the abundance is not high as recorded at other locations, possibly 
due to SST. In the North Atlantic Ocean, the event occurs at high lati
tudes during MIS 4 and at low latitudes during MIS 5 (Thierstein et al., 
1977). The event is recorded in the Western Mediterranean Sea between 
55 and 81 ka (MIS 4–5) and in the South Atlantic Ocean at 85 ka (MIS 5) 
(Flores et al., 2003). The event is diachronous because either the species 
is ecologically controlled or because of a relative reduction arising from 
dissolution (Thierstein et al., 1977). 

6. Conclusions 

IODP Hole U1516B preserves an excellent record of biostratigraphy 
based on nannofossils and planktonic foraminifera whereas the radio
larian taxa and diatoms are poorly preserved. This biostratigraphy can 
be used for further correlation with the sediments of the Pacific and 
Atlantic oceans and the Mediterranean Sea. The conclusions drawn from 
the current study are as follows:  

• Seven planktonic foraminifera biostratigraphic events are identified, 
including the demarcation of the PT1b boundary.  

• The planktonic foraminifera datums marked in Hole U1516B are 
mostly synchronous with datums previously marked in the southern 
hemisphere whereas diachronous with the northern hemisphere.  

• Nannofossils are well preserved and show good diversity. Eight 
biostratigraphic events are identified including the H. inversa zone 
which is the only complete zone of the Late Pleistocene.  

• The nannofossil datums marked in Hole U1516B have a close affinity 
with those globally reported but have small inconsistencies probably 
due to strong ecological control and dissolution factor.  

• The radiolarian taxa and diatom are poorly preserved. The diatoms 
are restricted to specific intervals in interglacials whereas the radi
olarian taxa are relatively consistent but key marker species are 
absent are rarely occurred. 
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