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A B S T R A C T   

The right placement of fractures helps to enhance gas production in shale gas reservoirs. One parameter that 
helps to determine the target layers to place hydraulic fractures is the Brittlenex index (BI). However, no uni
versal and appropriate methods can be used to compute BI, with all established correlations being used under 
different conditions. This paper uses machine learning (ML) methods to predict the BI of Upper Ordovician 
Wufeng to Lower Silurian Longmaxi formation in the Weiyuan shale gas field, Sichuan Basin, China. Random 
forest based on particle swarm optimization (PSO-RF) was utilized for the first time to predict BI due to its ability 
to capture nonlinear relationships between many variables in the dataset, thus giving more accurate results than 
other models. Collected secondary data from the WY1 well were used for training, whereas WY2 well data were 
used for testing. The results revealed that PSO-RF outperformed Extreme gradient boosting (XGBoost), Light 
gradient boosting machine (LightGBM), and K-nearest neighbor (KNN) in predicting BI with high accuracy and 
minimum errors during training and testing. PSO-RF coefficient of determination (R2), root mean square error 
(RMSE), and mean absolute errors (MAE) after training and testing were 0.9934 and 0.9533,4.6327 and 
15.5308,2.0974 and 5.3896, respectively. In addition, the best-developed PSO-RF model was used to predict BI 
in WY3 and WY4 wells for model results validation; it was found that the model predicted the BI with high 
accuracy. This confirms that the developed model can be used to predict the BI of new development wells 
without depending on laboratory measurements, which are expensive and time-consuming to compute; thus, the 
developed model can be adopted as an alternative technique to determine the sweet spot for hydraulic fracturing 
in shale gas reservoirs to enhance gas production.   

1. Introduction 

Recently, global energy demand has increased faster because of 
population growth and rising prosperity led by Asian developing 
countries (Guan et al., 2023; Shalaeva et al., 2020). In 2021, the US 
Energy Information Administration (EIA) predicted that the energy de
mand will increase by 47% in 2050, with oil remaining the top source 
over renewables (Meghan and Maya, 2021). Conventional reservoirs are 
the major sources of energy and are depleting fast. However, due to 
technological developments such as horizontal drilling and hydraulic 

fracturing, unconventional resources have emerged among the new 
energy sources. Oil and gas widely use this technology to optimize hy
drocarbon production by generating intricate and effective fracture 
networks to ease fluid flows (Merzoug and Ellafi, 2023; Qun et al., 
2022). Previous literature has revealed that the success of hydraulic 
fracturing depends on rock brittleness (Peng et al., 2022; Shi et al., 
2021). Highly brittle shales are thought to benefit from fracturing 
stimulation (Ore and Gao, 2023; Ye et al., 2022). Researchers have done 
several investigations regarding the brittleness index (BI) notion. 
However, it is important to note that a universally accepted definition 
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and standardized method for evaluating BI have not yet been established 
due to diverse physical factors (Meng et al., 2021a; Shi et al., 2017). 

There are several established categories of BI expressions based on 
different conditions, such as mineral rock constituents (Jarvie et al., 
2007; Kivi et al., 2018; Kuang et al., 2021; Meng et al., 2021a; Munoz 
et al., 2016; Rybacki et al., 2015, 2016; Song et al., 2023), based on rock 
strength properties (Hucka and Das, 1974; Kivi et al., 2018; Kuang et al., 
2021; Li, 2022; Li et al., 2017; Xie et al., 2022; Zhang et al., 2016), based 
on rock stress-strain response to deviatoric loading elastic properties 
(Gao et al., 2023; Kivi et al., 2018; Kuang et al., 2021; Peng et al., 2022; 
Rickman et al., 2008; Rybacki et al., 2016), stress-strain characteristics 
(Andreev, 1995; Khan et al., 2023; Kivi et al., 2018; Kuang et al., 2021; 
Nouri et al., 2022; Xia et al., 2022), and energy balance analysis (Gong 
and Wang, 2022; Khan et al., 2023; Kivi et al., 2018; Kuang et al., 2021; 
Xia et al., 2017; Xu et al., 2022) as shown in Table 1. 

Due to the poor performance of developed empirical correlations, 
machine learning (ML) has been used recently to forecast the BI of rock 
formations (Cornelio and Ershaghi, 2019; Hassan et al., 2022; Mustafa 
et al., 2022; Ore and Gao, 2023; Shi et al., 2016b; Sun et al., 2020). For 
instance, Ye et al. (2022) used a backpropagation neural network 
(BPNN) integrated with principal component analysis (PCA) to predict 
experimental BI from well logs data collected from the 
Wufeng-Longmaxi and Baota formations in the Sichuan Basin. 
PCA-BPNN was compared with BPNN. The well-log data used in their 
study includes density (DEN), neutron porosity (CNL), gamma ray (GR), 
spontaneous potential (SP), compressional wave slowness (DT), and 
deep laterolog (LLD). The results revealed that BI predicted by 
PCA-BPNN matched the experimental data compared to BPNN because 
PCA eliminated LLD as input during training due to its small correlation 
with BI. Also, Shi et al. (2017) predicted BI from conventional well logs 
and petrophysical data collected from tight oil formation in the Xinjiang 
Basin, China, using multilayer perception neural network (MLPNN) and 
radial basis function neural network (RBFNN) techniques. The inputs 
data used for the models’ training and testing were GR, LLD, shallow 
laterolog (LLS), compessated acoustic (AC), lithology density (DEN), 
neutron porosity (CNL), and natural spectrum logs including Uranium 
(U), Thorium (Th), and Potassium (K). The results revealed that RBFNN 
outperformed MLPNN with small errors and high correlation coefficient. 
Further, Zhang et al. (2022) utilized hybrid machine learning, i.e., 
sparrow search algorithm-extreme learning machine (SSA-ELM) in 
predicting BI from well logs data collected from Songliao Basin found in 
northeast China in which other wells were used for training the model 
with two wells utilized for testing the model. GR, DEN, AC, CNL, RLLD 
and RLLS well logs were available data in which GR was excluded during 
training due to a small correlation with BI. It was found that hybrid 
SSA-ELM outperformed other used models’ such as BPNN, ELM, particle 
swarm optimization-ELM (PSO-ELM), support vector machine (SVM), 
conventional neural network (CNN), random forest (RF), long 
short-term memory (LSTM), K-nearest neighbor (KNN), decision tree 
(DT), kernel-based ELM (KELM), and grey wolf optimizer-ELM 
(GWO-ELM). Furthermore, Lee and Lumley (2023) predicted shale 
mineralogical BI (MBI) from seismic and elastic property well logs of 13 
wells in the Wolfcamp shale of the Midland Basin, West Texas, using DT, 
SVM, ensembles, multiple linear regression (MLR), and neural network. 
The inputs for the models’ were GR, DEN, AC, P-wave velocity (VP), 
conductivity, S-wave velocity (VS), U, bulk density (ρ), poisson ratio (v), 
VP/VS ratio, and Young’s modulus (E). It was revealed that MLR out
performed other models’, with E and VP having a high correlation with 
MBI while VP/VS ratio and v had a low correlation. Also, Shi et al. 
(2016a) predicted rock BI of Silurian Longmaxi black shales of well J1 
from the Jiaoshiba area of SE Sichuan Basin, south China, using BPNN, 
ELM, and regression models’. The inputs for the models’ were DEN, 
DTC, spontaneous potential (SP), LLD, and CNL. It was found that BPNN 
outperformed other models’ by giving low errors with high correlation 
coefficient while ELM took a short running time. In addition, Kivi et al. 
(2017) developed an adaptive neuro-fuzzy inference system (ANFIS) to 

Table 1 
Outlines of often utilized empirical brittleness indices (BI) correlations.  

Measurement’s 
methods 

Expressions Symbols 
definitions 

Based on rock 
mineral 
constituents 

BI1 =
Wqtz

Wqtz+carb+cly 

BI2 =
Wqtz+dol

Wqtz+carb+cly+TOC 

BI3 =
WQFM+carb

Wtotal 

BI4 =

aQFPVQFP

aQFPVQFP + acarbVcarb + acly+TOCVcly+TOC + aφφ 

Wx is weight 
fraction of 
component x 
Vx is volume 
fraction of 
component x 
ax is 
weighting 
factor of 
component x 
Qtz is quartz, 
carb is 
carbonate, cly 
is clay 
Dol is 
dolomite, 
TOC is total 
organic 
carbon 
QFM are 
quartz, 
feldspar, and 
mica 
QFP are 
quartz, 
feldspar, and 
pyrite 
φ is porosity 
T0 is 
unconfined 
tensile 
strength 
UCS is 
unconfined 
compressive 
strength 

Based on rock 
strength 
properties 

BI5 =
UCS − T0

UCS + T0 

BI6 =
UCS
T0 

BI7 =
UCS.T0

2 
BI8 = sin(φ)

φ is internal 
friction angle 
E is Young’s 
modulus v is 
Poisson’s 
ratio 

Based on rock 
stress-strain 
response to 
deviatoric 
loading, elastic 
properties 

BI9 =
1
2

(
E − Emin

Emax − Emin
+

vmax − v
vmax − vmin

)
Emin and Emax 

are minimum 
and maximum 
Young’s 
modulus 

Stress-strain 
characteristics 

BI10 = εp 

BI11 =
εe

εf 

BI12 =
σf − σr

σf 

BI13 =
εr − εf

εr 

BI14 =
εp

f − εp
c

εp
c 

BI15 =
H
E 

BI16 =
σf − σr

σf

1
10

log
⃒
⃒
⃒
⃒
σcd − σr

εcd − εr

⃒
⃒
⃒
⃒

εp is sustained 
plastic strain 
at failure 
εe is total 
elastic at 
failure 
εf is total 
strain at 
failure 
σf is stress at 
failure 
σr is residual 
strength 
εr is residual 
strain 
εp

f is plastic 
strain when 
frictional 
strength is 
fully 
mobilized 
εp

c is plastic 
strain when 
cohesive 

(continued on next page) 
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predict BI from well-log data collected from a western Iranian Basin. The 
inputs used were (GR), density (RHOB), neutron porosity (NPHI), 
slowness of the compressional wave (DTC), and electrical resistivity 
(RT). It was revealed that ANFIS model outperformed empirical corre
lations (BI1 to BI9). Further, it was found that BI has positive correlation 
only with RHOB logs whilst others had negative correlations. In addi
tion, Table 2 summarize few previous studies on predicting BI for shale 
formations which are essential in locating the favourable place for hy
draulic fracturing. However, these ML models’ have several limitations 
such as overfitting, poor prediction of outputs which do not match the 
original data, computational complexity, bias and fairness, interpret
ability etc. 

Hence, this paper utilizes ML techniques to locate where hydraulic 
fracturing can be executed to enhance hydrocarbon production from 
shale gas formations in Weiyuan gas fields, Sichuan Basin, China, by 
predicting BI. To the best of the author’s knowledge, particle swarm 
optimization-random forest (PSO-RF) was used for the first time to 
predict the BI of the shale formations in which higher BI formations are 
preferred for hydraulic fracturing operations because it indicates that 
the rock formation has properties that make it conducive to fracturing 
and creating effective pathways for the flow of reservoir fluids. How
ever, it is important to note that hydraulic fracturing is a complex pro
cess, and the suitability of a rock formation for fracking is influenced by 
several factors, including not only the brittle index but also the depth, 
thickness, and composition of the rock, as well as the presence of natural 
fractures and faults. To assess PSO-RF effectiveness in predicting BI, it 
was compared with Extreme gradient boosting (XGBoost), Light 
gradient boosting machine (LightGBM), and K-nearest neighbor (KNN). 
The results of this paper helped to develop an appropriate ML technique 
that helped to predict the BI of shale formations that will help to increase 
hydraulic fracturing effectiveness if properly located, which will 

enhance shale gas production. This paper contains several sections: 
introduction, geological setting, data preprocessing,machine learning 
algorithms, results and discussions, and conclusions. 

2. Geological setting 

The study area of this paper is the Weiyuan shale gas field located in 
the Sichuan Basin, as shown in Fig. 1. The Sichuan Basin is found in the 
southwestern region of China. The Basin is located in the northwest and 
is part of the Yangtze Platform. It is a large intracratonic Basin on the 
stable South China block. It is located in Sichuan province and the 
Chongqing area and encompasses an area of approximately 23 × 104 

km2 (Mgimba et al., 2022). The Longmaxi and Wufeng shales are the 
principal focal points for the exploration and development of shale gas 
within the southeastern region of Chongqing. These formations exhibit 
abundant organic material and undergo substantial thermal modifica
tion at a considerable depth. The primary factors that contributed to 
these formations’ significant shale gas formation were supported by the 
persistent anaerobic conditions that prevailed over an extended period 
(Wang et al., 2021). The Sichuan Basin today generates the most gas in 
China and has the country’s most abundant natural gas resources. In 
2014, it was reported that the Sichuan Basin has 3.22 × 1012 m3 gas 
reserves (Mgimba et al., 2023a). The Basin formed in the late Protero
zoic and has continued to the present day. The basement near the Basin’s 
centre comprises extensively metamorphosed intermediate basalt 
magmatic rocks. The Sichuan Basin is surrounded by mountains such as 
Wu on the eastern and Daha on the northern part. The Micang and Daba, 
Daliang, Longmen, and Dalou mountains border the Basin to the north, 
south, west, and east (Mgimba et al., 2023b). 

The Weiyuan region is found in the southwestern part of the Sichuan 
Basin. It includes Weiyuan County, Gongxian County, and Rongxian 
County, all located inside Neijiang City. The site is located inside the 
geologically elevated region of central Sichuan, characterised by rela
tively low levels of structural strength. The fundamental framework of 
the gas field exhibits characteristics of a broad and gradual anticline 
formation. The burial depth of the Wufeng-Longmaxi formation bottom 
ranges from 1100 to 2800 m, with a steady increase from the northwest 
to the southeast (Chen et al., 2019b; Zeng et al., 2018). The Weiyuan 
region is tectonically found in the southwestern section of the central 
plain zone of the paleouplift in central Sichuan. It consists mostly of the 
slope area on the eastern wing of the Weiyuan anticline (Huang et al., 
2012; Meng et al., 2021b). Several formations were created in the 
southeast of Chongqing during the Cambrian, Ordovician, and Silurian 
epochs, while others are absent owing to tectonic uplift and erosion. As 
shown in Fig. 2, the principal source rocks in the area are the Lower 
Cambrian Niutitang formation, Lower Silurian Longmaxi formation, and 
Upper Ordovician Wufeng formation (Mgimba et al., 2023a). 

3. Data preprocessing 

3.1. Data source and preprocessing 

The study area of this paper includes four wells in which WY1 was 
used for training, WY2 was used for testing the models’, and two other 
wells (WY3 and WY4) were used for model validation of the best- 
developed model. These wells located in the Weiyuan shale gas field 
were used to determine the BI of the formation, which is one of the 
important parameters to locate the right layers for hydraulic fracturing 
operations to enhance shale gas production. The inputs of the models’ 
include young modulus (E), bulk modulus (K), shear modulus (G), 
compressional wave slowness (DTC), shear sonic log (DTS), resistivity 
log (R), poisson ratio (v) whilst the output of the model was brittleness 
index (BI). The statistical analysis of the datasets used for training and 
testing are shown in Tables 3 and 4. To improve the models’ accuracy 
and robustness, avoiding overfitting and biasness, a modified Z-scores 
method was used to determine outliers of the data as presented in box 

Table 1 (continued ) 

Measurement’s 
methods 

Expressions Symbols 
definitions 

strength is 
completely 
degraded 
H is 
hardening 
modulus 
σcd is crack 
damage stress 
or yield stress 
εcd is crack 
damage strain 
or yield strain 

Energy balance 
analysis 

BI17 =
dWet

dWet + dWp 

BI18 =
dWr

dWe
=

M − E
M 

BI19 =
dWa

dWe 

BI20 =
dWet

dWp + dWr 

BI21 =
dWet + dWp

dWp + dWr 

BI22 =
dWet

dWr 

BI23 =
dWp + dWr

dWe + dWp 

BI24 =
dWa

dWe + dWp 

BI25 = BIE + BIpost =
(σf − σr)(εr − εf )

σf εf
+

σf − σr

εr − εf 

BInew =
1
2
(BInew− 1 + BInew− II) =

1
2

(
dWe

dWr
+

dWe

dWet + dWp

)

dWet is total 
elastic energy 
dWp is plastic 
energy 
M is post-peak 
modulus dWr 

is rupture 
energy 
dWe is 
consumed 
elastic energy 
dWa is 
additional 
energy  
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plots in Fig. 3 (data with outliers) and Fig. 4 (data without outliers) 
(Jamshidi et al., 2022; Sarvi et al., 2022; Yaro et al., 2023). Modified 
Z-score formula incorporates the median and median absolute deviation 
in a robust Z-score formula against outliers. This method assumes that 
the data are normally distributed. Furthermore, to ensure that the ML 
model treats and handles the inputs and output data impartially and 
avoids bias and overfitting, all datasets were standardized using the 
min-max approach to values between 0 and 1 using Eq. (1)(Majid et al., 
2023; Mulashani et al., 2022). 

y′
i =

yi − ymin

ymax − ymin
(1)  

Where y′
i, yi, ymin, ymax are the normalized value of yi, the value to be 

normalized, the minimum value of yi, and the maximum value of yi, 
respectively. 

3.2. Inputs-output correlations 

Correlation is a statistical measure describing the degree to which 
two variables change together (Niaki et al., 2023). The correlation be
tween the inputs and output can be positive, negative, or zero re
lationships. Positive correlations occur when an increase in one variable 

is associated with an increase in another variable. In comparison, a 
negative correlation occurs when an increase in one variable is associ
ated with a decrease in another variable. Zero correlation occurs when 
changes in the input variable do not consistently predict changes in the 
output variable. This section analyzed linear relationships between in
puts and output in cross plots (Dev et al., 2022; Mangalathu et al., 2022; 
Ryu et al., 2022). From Fig. 5, it has been shown that young modulus (E), 
bulk modulus (K), shear modulus (G), resistivity log (R), and poisson 
ratio (v) have a positive relationship with BI. In contrast, compressional 
wave slowness (DTC) and shear sonic log (DTS) negatively correlate 
with BI. The quantitative correlation between the datasets is shown in 
Fig. 6. Parameters with higher absolute magnitudes of relevancy factors 
demonstrate greater importance in estimating the BI(Ye et al., 2022). In 
addition, young modulus (E) and shear modulus (G) have more influ
ence on BI, with a correlation coefficient of 0.8947 and 0.8747, 
respectively. In contrast, resistivity log (R) and poison ratio (v) have a 
weak influence on BI, with a correlation coefficient of 0.2757 and 
0.1974, respectively. Despite resistivity log (R) and poisson ratio (v) 
having a weak influence on BI, they were included during model 
training with other inputs because they have a correlation coefficient of 
greater than 0.1 (Ore and Gao, 2023). 

Table 2 
Summary of a few different ML models’ used to predict BI of shale formations.  

References Inputs Methods Remarks Limitations of the best method 

Sun et al. 
(2020) 

Density, Schmidt hammer 
rebound number, point load 
index and p-wave velocity 

Chi-square automatic 
interaction detector (CHAID), 
RF, SVM, KNN, and ANN. 

-RF outperformed other methods in 
accuracy, followed by ANN and KNN. 

-Overfitting when the number of trees are large 
-Sensitivity to noise data 
- Favours the majority class, hindering minority 
performance. 

Mustafa et al. 
(2022) 

GR, DTC, resistivity log, 
RHOB, and NPHI. 

Feed forward ANN (FFANN) 
and ANFIS. 

-Both ANFIS and FFANN can be 
utilized for BI prediction. 
-ANFIS performed better than FFANN 
due to the least errors and high 
correlation during the training and 
testing of the models’. 

- ANFIS models’ may exhibit a high level of 
complexity and pose challenges in terms of 
interpretability, particularly in scenarios where the 
input data comprises many fuzzy rules and multiple 
layers of adaptive nodes. 
- ANFIS is prone to overfitting, particularly when 
there is little control over the complexity of the 
model. 
- ANFIS models’ have several hyperparameters that 
need to be tuned carefully, such as the number of 
fuzzy rules, the types of membership functions, and 
the learning rates. Choosing the right 
hyperparameters can be hard and greatly affect how 
well the model performs. 

Ore and Gao 
(2023) 

GR, DTC, RHOB, caliper 
(HCAL), NPHI, and 
photoelectric factor (PEZ) 

Gradient boosting (XGBoost), 
support vector regression 
(SVR), and neural networks 
(NN) 

XGBoost outperformed other models’, 
followed by NN and SVR for training 
and testing. 

- Computational complexity 
- Overfitting problem 
-Hyperparameter sensitivity 

Shi et al. 
(2016b) 

GR, CNL, LLD, U, DTC, 
spontaneous potential (SP) 

Back propagation artificial 
neural network (BPANN) and 
least squares support vector 
regression (LS-SVR) 

-LS-SVR outperformed BPANN but is 
time-consuming because it needs 
parameter determination for the 
validation process. 
-GR and U have the best correlation 
with BI, whereas LLD has a weak 
correlation with BI. 

- LS-SVR detects outliers. Outliers can affect model 
training and produce unworthy outcomes. 
LS-SVR employs kernel functions to transform input 
data into higher-dimensional feature spaces. 
Selecting an appropriate kernel function can be 
difficult, requiring domain knowledge and 
experience. 
- Since LS-SVR does not natively produce 
probabilistic outputs, estimating prediction 
uncertainty can be difficult. 

Hassan et al. 
(2022) 

Mineralogical composition 
Ca, Na, Si, Al, and K 

ANN, fuzzy logic (FL), and SVM -All the developed models’ can be 
used for MBI prediction. 
-ANN outperformed all the models’, 
followed by SVM, then FL. 

-Require large datasets to provide accurate results 
- ANNs have a lot of hyperparameters that must be 
carefully chosen, such as the number of layers, 
neurons per layer, learning rate, and so on. Finding 
the best set of hyperparameters can be a time- 
consuming and expensive procedure. 
-Overfitting problem 

Cornelio and 
Ershaghi 
(2019) 

GR, HCAL, DTC, DTS, 
RHOB, RLLD, RLLS, and 
medium resistivity. 

KNN, SVR, DT, RF, and GB 
regressions. 

KNN outperformed other models’ - KNN has a significant computational cost during 
training and testing when working with huge 
datasets. 
- KNN memorizes the complete dataset rather than 
learning a discriminative function. As a result, it 
may have difficulty generalizing to new data, 
resulting in overfitting the training set.  
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4. Machine learning algorithms 

This section of the paper discusses four different ML models’ to assess 
their effectiveness in predicting the BI of Weiyuan shale gas fields. After 
training and testing the datasets, the models’ were compared, and the 
best model was used to predict BI in the other two pilot test wells. 

4.1. Extreme gradient boosting (XGBoost) 

Extreme Gradient Boosting (XGBoost) is a popular open-source 
Gradient Boosting Decision Tree (GBRT) widely used in machine 
learning competitions and real-world applications. Like LightGBM, 
XGBoost is designed to optimize and enhance the performance of 
gradient-boosting algorithms. It is known for its efficiency, scalability, 
and versatility. It applies to both regression and classification problems. 
It has gained popularity due to its ability to deliver strong predictive 
performance with relatively little parameter tuning and its compatibility 
with various platforms and languages. The ensemble technique lever
ages the capabilities of weak learners to attain robust performance. It is 
characterised by its high speed and efficiency in mitigating overfitting. 
Additionally, the model incorporates a novel tree model that allows 
users to build their loss function. Column sub-sampling and shrinking 
techniques are used to reduce both the variance and bias of the model 
(Chen et al., 2019a; Chen and Guestrin, 2016; Kavzoglu and Teke, 2022; 
Liu et al., 2022; Osman et al., 2021). Suppose we have a data set (DS) 
with n samples and m features DS = {(xi,yi : i= 1, ...,n,xi ∈ Rm,yi∈ R)}. 
Let ŷi be the predicted output of the model defined as (Alabdullah et al., 
2022; Liu et al., 2023): 

ŷi =
∑K

i=1
fk(xi), fk ∈ F (2)  

Where K, xi, and F are the number of regression trees, features related to 
sample i, and the space of regression trees, respectively. fk is the weight 
of the leaf for node j. The objective function of XGBoost, which needs to 
be minimized, is defined as (Alabdullah et al., 2022; Liu et al., 2023): 

Obj=
∑n

i=1
l(yi, ŷi)+

∑K

k=1
Ω(fk) (3)  

Ω(f )= γT +
1
2

λ‖ω‖
2 (4)  

Where 
∑n

i=1l(yi, ŷi) represents the training loss function, γ represents the 
degree of regularization, K is the number of trees, λ represents the reg
ularization coefficient, ω stands for leaf weight, and Ω(f) is a parameter 
used to limit the complexity of the model and prevent the model from 
overfitting. To minimize the objective function, assume, ̂yt

i ,i-th output of 
the model at the t-iteration. To minimize the following objective, the 
branches, ft, need to be added (Alabdullah et al., 2022; Liu et al., 2023). 

Objt =
∑n

i=1
l
(

yi, ŷ(t− 1)
i + ft(xi)

)
+Ω(ft) (5) 

The greedy algorithm helps to improve the model performance after 
adding ft. After that, the output of the model in each iteration by mini
mizing the objective function is given as (Alabdullah et al., 2022; Liu 
et al., 2023): 

Fig. 1. Locations of Weiyuan Shale Gas Field and shale gas wells (Nie et al., 2021).  
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ŷ(t)
i = ŷ(t− 1)

i + ft(Xi) (6)  

4.2. Light gradient boosting machine (LightGBM) 

LightGBM is a machine learning algorithm belonging to the Gradient 
Boosting Decision Trees (GBDT) family. It is based on a decision-tree 
approach introduced by Microsoft Research (Sun et al., 2021). The 
proposal of LightGBM emerged as a solution to address the limitations of 

typical GBDT methods, particularly in handling large-scale datasets 
(Hajihosseinlou et al., 2023). LightGBM successfully approaches 
regression, classification, and other machine-learning problems. 
Achieving accuracy in forecasting entails a lower memory need. Its goal 
is to improve computing efficiency and solve difficulties in large-scale 
prediction (Liang et al., 2020b). The LightGBM integrates two 
cutting-edge approaches: gradient-based one-side sampling (GOSS), 
which handles a huge data set, and exclusive features bundling (EFB), 

Fig. 2. The Stratigraphic column of the Southern Eastern Sichuan Basin shows the stratigraphic occurrence of Upper Ordovician Wufeng to Lower Silurian Longmaxi 
shale gas reservoir (Mgimba et al., 2023a). 
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which manages many data features without causing overfitting issues. 
Both of these techniques are designed to manage data more effectively. 
LightGBM uses the histogram technique and the tree leaf-wise growth 
strategy, contributing to its enhancements in computing efficiency and 
predictive accuracy (Guo et al., 2023). It combines weak learners to 
form strong models’ that can be used for prediction. Its objective is to 
minimize the loss function, commonly formulated as an overall sum of 
the losses incurred by each case within the dataset. The loss function can 
be expressed as (Omotehinwa et al., 2023); 

L(θ)=
∑n

i=1
l(yi, f (xi, θ))+Ω(θ) (7)  

Where L(θ) is the loss function required to be minimized with respect to 
the parameter θ. The first term 

∑n
i=1l(yi, f(xi, θ)) is empirical risk, which 

measures the differences between true output (yi) and predicted output 
f(xi, θ) for individual training samples. The second term Ω(θ) is the 
regularization term, which helps to prevent overfitting. LightGBM offers 
various choices for specifying the type of regularization to be employed. 
The parameter denoted as ‘lambda’ governs the strength of L2 regula
rization, whereas the parameter denoted as ‘alpha’ governs the strength 
of L1 regularization (Omotehinwa et al., 2023). For the benefit of the 
readers, the difference between LightGBM and XGBoost is shown in 
Table 5. The similarities between the methods include the following: 
both models’ can be applied for regression and classification problems; 
both models’ let you choose your own training goals and assessment 
criteria; both methods provide numerous hyperparameters tuning to 
reduce overfitting and increase model generalizations; both models’ 
combine weak learners to form strong learners models’ which can be 
used for prediction purpose etc. 

4.3. K-nearest neighbor (KNN) 

K-Nearest Neighbors (KNN) is a simple and commonly used machine 
learning classification and regression technique. It is classified as 
instance-based learning or lazy learning because it is flexible to new data 
as it incorporates the new instances data into the decision-making pro
cess without retraining the model again; there is no explicit training 
phase because the algorithm stores the training instances for later use, 
direct use of instances, i.e., KNN directly uses the training instances as its 
“knowledge.” It doesn’t try to summarize the data into a model repre
sentation. It treats each training instance as a separate piece of infor
mation that can be consulted when needed (Ghunimat et al., 2023; 
Wang et al., 2023a). The basic principle of KNN is to classify or forecast 
the output of a new data point in the feature space based on the majority 
class (for classification) or average (for regression) of its k nearest 
neighbors (Jodas et al., 2023; Uddin et al., 2022). The fundamental 

principle of KNN is that identical and completely distinct samples are 
separated by shorter distances in the high-dimensional mapping space. 
The distance is calculated using the Euclidian formula, as shown in Eq. 
(8) (Kurniadi et al., 2018). The average values of the K nearest neigh
bors’ targets are determined based on the characteristics of true values 
when the input data enters the KNN model. 

di =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑p

i=1
(x2i − x1i)

2

√

(8)  

Where di represents the distance of data variables, x2i is sample data, x1i 
stands for testing data. The steps for KNN algorithms executions are: 1) 
Preparing data sample in the form of an array. 2)Preparing testing data 
in the form of an array; 3) Computing Euclidian distance between testing 
data; 4) Separating the distance results based on the lowest values and a 
predetermined number of neighbors; 5) Obtain predicted outputs based 
on the calculation of the highest number using Eq. (9) (Fan et al., 2019); 
6) Computing the accuracy based on the prediction results (Kurniadi 
et al., 2018). 

si =
1
k
∑k

j=1
Syj (9)  

Where si stands for the ith predicted value, which is the average value of 
Syj (j= 1, 2, ..., k); Syj stands for the predicted value of the jth closest 
known data point (yj). 

4.4. Particle swarm optimization-random forest (PSO-RF) 

Particle swarm optimization-random forest (PSO-RF) combines 
particle swarm optimization (PSO) with the random forest (RF) algo
rithm. The idea behind this hybrid is to leverage the strengths of both 
techniques to achieve better performance in certain scenarios (Chatrsi
mab et al., 2020; Shi and Zhang, 2023). However, whether PSO-RF 
consistently performs better than RF depends on the specific problem, 
dataset, and tuning parameters involved (Grichi et al., 2018; Liang et al., 
2020a; Wang et al., 2023b). 

4.4.1. Particle swarm optimization 
Particle Swarm Optimization (PSO) is an optimization population- 

based technique that operates on a swarm of particles, drawing inspi
ration from the collective behaviour observed in birds and fish (Wang 
et al., 2022). In PSO, a collective of particles representing potential so
lutions undergoes iterative alterations to their placements, using both 
individual experiences and the collective experiences of the entire 
group. The objective is to determine the optimal solution by 

Table 3 
Statistical analysis of the training data.  

Features K (MPa) DTC (μs /m) DTS (μs /m) v R (Ωm) G (MPa) E (MPa) BI (%) 

Mean 35.7061 60.6947 100.8989 0.2136 1.6655 24.7158 59.9443 69.9761 
Standard deviation 8.4732 5.0163 7.3590 0.0384 0.0788 3.4788 8.3043 9.4509 
Minimum 15.352 48.017 86.945 0 1.378 14.633 35.794 42.504 
Maximum 71.526 76.307 124.677 0.33 1.986 32.645 78.649 91.147 
Range 56.174 28.29 63.601 0.33 0.608 18.012 42.855 48.643  

Table 4 
Statistical analysis of the testing data.  

Features K (MPa) DTC (μs /m) DTS (μs /m) v R (Ωm) G (MPa) E (MPa) BI (%) 

Mean 46.4953 58.6262 106.9269 0.2833 1.8327 22.5649 57.9988 64.1728 
Standard deviation 15.1056 7.3670 10.6267 0.0355 0.1065 4.5192 12.1689 25.6444 
Minimum 13.679 45.338 88.013 0 1.378 7.631 19.838 24.539 
Maximum 83.587 81.884 151.614 0.367 2.184 33.04 86.156 111.044 
Range 69.907 36.546 63.601 0.367 0.806 25.409 66.318 86.505  
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Fig. 3. Combined datasets with outliers.  
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Fig. 4. Combined datasets without outliers.  
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Fig. 5. Pearson correlation between Brittleness index with inputs.  
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manipulating particles towards the optimal point within the search 
space. Suppose a population space with N dimension with each particle 
having an initial velocity and a position vector. The particle position and 
velocity are changed many times until the optimal solution is obtained 
(Deng and Jia, 2022). 

Based on the particle principle behaviour, the PSO model is devel
oped. The positions and velocity of the particles are expressed as Xi =

(xi1, xi2, ...,xiN)
T and Vi = (Vi1,VI2, ...,ViN)

T , respectively. At the same 
time, the individual population extremum is expressed as Pi =

(Pi1, Pi2, ...,PiN)
T and the global population extremum is expressed as 

Pg = (Pg1,Pg2, ...,PgN)
T . Then, the iteration formula of particles is 

expressed as (Grichi et al., 2018; Wang et al., 2022, 2023b): 

Vk+1
in =ωVk

in + c1r1
(
Pk

in − Xk
in

)
+ c2r2

(
Pk

gn − Xk
in

)
(10)  

Xk+1
in =Xk

in + Vk+1
in (11)  

Where ω represents the inertia weight, k represents the maximum iter
ations, Vin is velocity, c1 and c2 stands for constants, r1 and r2 are dis
tribution within [0,1]. Position and speed are always limited within a 
certain range, enabling the particles to search quickly. 

4.4.2. Random forest 
Random forest is a popular ensemble ML algorithm that belongs to 

the family of decision tree-based and is designed to improve the accu
racy and robustness of individual decision trees. It can be used to solve 
regression and classification problems. It integrates many decision trees 
during processing, and then the final results are derived by merging the 
outcomes of individual decision trees (He et al., 2023; Rigatti, 2017; 
Saha et al., 2022). The bootstrap sampling strategy is used to acquire the 
training samples linked to every base learner in the RF algorithm. 
Inother words, a subset is picked randomly from all the characteristics, 
and the samples left behind after the subset is drawn are called 
out-of-bag samples (OOB). The training samples and feature vectors of 
the tree are randomly generated with replacement. Both of these ele
ments show the randomness of the tree. Because of this, it is possible to 
circumvent the overfitting issue, and the unpredictability of the training 
extraction process contributes to a greater degree of difference across 
the various decision trees (Cutler et al., 2012; Fan et al., 2022; He et al., 
2022; Zhou et al., 2020). At this point, the forest has been constructed, 
and the results are computed by Eq. (12). Therefore, the final model 
formed has better accuracy (Grichi et al., 2018; Wang et al., 2022, 
2023b). 

Fig. 6. Correlation coefficient matrix between the datasets.  

Table 5 
Difference between LightGBM and XGBoost.  

Parameter LightGBM XGBoost 

Growth strategy LightGBM employs a leaf- 
wise tree growth technique, 
where the algorithm selects 
the split that yields the 
greatest improvement to the 
objective function. A deeper 
and more complex tree 
structure may result from this 
method. 

XGBoost utilizes a level-wise 
tree growth technique in 
which each level of the tree is 
extended at the same time. 
Because of its shallow trees, it 
may be less prone to 
overfitting. 

Missing value 
handling 

LightGBM can handle missing 
values effectively throughout 
training and prediction 
without explicit imputation. 

XGBoost requires missing 
value imputation before 
training. 

Parallelization 
and speed 

LightGBM is recognized for 
having a faster training speed 
because it uses a histogram- 
based method that lets more 
parallelization happen. 

XGBoost’s parallelization has 
improved, although 
LightGBM is usually deemed 
faster in training speed. 

Memory usage LightGBM’s histogram-based 
and feature bundling 
techniques make it 
particularly memory-efficient 
when working with 
enormous data sets. 

XGBoost could use more 
memory than LightGBM, 
particularly when working 
with large datasets. 

Handling 
categorical 
features 

LightGBM supports 
categorical characteristics by 
default. It uses integer indices 
to represent categories; 
therefore, it can handle 
categorical data without one- 
hot encoding. 

XGBoost supports categorical 
features but needs one-hot 
encoding. LightGBM’s 
category feature processing is 
faster and memory-efficient.  

M.N. Nadege et al.                                                                                                                                                                                                                              



Geoenergy Science and Engineering 233 (2024) 212518

12

f B
rf =

1
B
∑B

b=1
T(x,Ob) (12)  

Where fB
rf is the average tree output, B represent the trees, and T(x,Ob)

represents the output of each tree. 
The stages involved in the PSO-RF model development include. 

Step 1. After removing outliers in well datasets (WY1) and (WY2), all 
the brittleness index (BI) data with associated inputs such as young 
modulus (E), bulk modulus (K), shear modulus (G), compressional wave 
slowness (DTC), shear sonic log (DTS), resistivity log (R), and poison 
ratio (v) were standardized from zero to one.WY1 datasets were used to 
train the PSO-RF model, whereas WY2 datasets were used to test the 
model’s accuracy. 

Step 2. Initialize PSO parameters: This involves defining the hyper
parameters for RF, such as n_estimators, max_depth, min_samples_leaf, 
max_features, etc., then followed by setting PSO parameters such as 
number of particles, maximum iterations, inertia weight, etc. 

Step 3. Initialize particle swarm: At this stage, a swarm of particles is 
generated, each representing sets of RF hyperparameters. After that, 
particle positions and velocities within the hyperparameters space are 
initialized. 

Step 4. Evaluate initial particle positions by evaluating each particle 
performance (RF configuration) using cross-validation. Then, after each 
particle’s best position and performance are updated. 

Step 5. Main PSO loop: For each iteration, particle velocities must be 
updated, followed by evaluating particle positions, and then each par
ticle and global bests are updated. Updating particle velocities involves 
calculating new velocities of the particle based on the historical and the 
swarm’s global best and applying acceleration coefficients and inertia 

weight to balance exploitation and exploration. After that, the calcu
lated velocities are used to update particle positions, and it is important 
to ensure that each parameter is defined within hyperparameter space. 
Then, the particle positions are evaluated using cross-validation. 
Updating the personal and global best scenario involves observing if 
the performance of the particle is better than its personal best. The 
personal best needs to be updated. If the performance of the particle is 
better than the swarm global best, then the global best needs to be 
updated. 

Step 6. PSO-RF finalization: After the predefined number of iterations 
or convergence is met, the RF configuration associated with the global 
best particle is selected, followed by a training RF model utilizing 
selected configurations on the training data. 

Step 7. PSO-RF model evaluation: This involves assessing the trained 
model using testing/validation data by observing models’ performance 
indicators, i.e., R2, RMSE, and MAE used for this paper. If the results are 
not good, steps 2–6 are repeated until the best results are obtained. 

Step 8. Output the optimized RF model: After getting the best output, 
the RF model with optimized hyperparameters is obtained. The devel
oped model can be applied for new data having inputs but missing the 
output to test its validity. This paper used the developed model to pre
dict the BI index for two pilot test wells. 

Step 9. End; the predicted outputs are obtained using the PSO-RF 
model. The flowchart for PSO-RF is shown in Fig. 7. 

4.5. Hyperparameter tuning in models development 

Hyperparameter tuning is an important step in ML to ensure that the 
models’ predict the outputs of unseen data through algorithm optimi
zation. Tuning these hyperparameters correctly affects the model output 

Fig. 7. Flowchart for generalized Random Forest based on particle swarm optimization (PSO-RF).  
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(Bischl et al., 2023; Feurer and Hutter, 2019; Yang and Shami, 2020). In 
this paper, the random search was used for hyperparameter optimiza
tion for PSO-RF, XGBoost, LightGBM, and KNN to enhance the accuracy 
of the models’. The random search involves randomly sampling hyper
parameter combinations from predefined ranges. This method can be 
more efficient than grid search because it explores different combina
tions without exhaustively searching all possibilities. It evaluates per
formance for all combinations of hyperparameters and their values and 
finds the best value. The hyperparameter optimization via random 
search for this study is shown in Table 6. 

5. Results and discussions 

5.1. Models’ performance indicators 

Performance indicators are measurements used to evaluate the effi
ciency and effectiveness of ML models’. These indicators help data sci
entists and ML practitioners to understand the strengths and weaknesses 
of their models’ by providing insights into how a model works and 
assisting them in understanding the strengths and weaknesses of their 
models’. In this paper, Python 3.11.5 version software was used for 
models’ development. Three model performance indicators were used to 
assess the model efficiency and effectiveness in predicting BI, which are 
coefficient of determination (R2), root mean square error (RMSE), and 
mean absolute error (MAE), as shown in Eqs. (13)–(15), respectively 
(Mkono et al., 2023; Mulashani et al., 2022). The coefficient of deter
mination quantifies the strength and direction of a linear relationship 
between two variables. It determines the degree of agreement or simi
larity between the predicted and actual values. Mean absolute error 

quantifies the average absolute difference between predicted and actual 
values. One of the advantages of MAE is that it treats all errors equally, 
regardless of their magnitude, making it a good choice when outliers are 
present in the data. However, it doesn’t indicate the direction of errors 
or whether the model tends to overestimate or underestimate the actual 
values. A lower RMSE indicates better predictive performance, which 
signifies that the model’s predictions are closer to the actual values. A 
higher RMSE indicates poorer predictive performance, which signifies 
that the model’s predictions are farther from the actual values. It has 
been reported that the model performance is excellent when it gives R2 

value closer to 1 for training and testing. Also, If the RMSE and MAE are 
close to zero or significantly smaller than the range of the target vari
able, it indicates a good model fit (Dabiri et al., 2022; Wood, 2021). 

R2 =

(
∑N

i=1
(yact − yact)

(
Yprd − Yprd

)
)2

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(yact − yact)

2

√ )( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
Yprd − Yprd

)2

√ )2 (13)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1
N

∑N

i=1

(
yact − Yprd

)2

)√
√
√
√ (14)  

MAE=
1
N

∑n

i=1

⃒
⃒yact − Yprd

⃒
⃒ (15)  

Where yact is actual value, yact is average actual value, Yprd is predicted 
value, Yprd is the average predicted value, and N represents the quantity 
of data. 

5.2. Models’ statistical analysis 

After training and testing the four models’, the R2, RMSE, and MAE 
were obtained. For training, R2 were 0.9934,0.9796, 0.9519, and 0.9416 
for PSO-RF, XGBoost, LightGBM, and KNN, respectively, as shown in 
Fig. 8. For testing, R2 were 0.9533,0.9272, 0.9264, and 0.9262 for PSO- 
RF, XGBoost, LightGBM, and KNN, respectively, as shown in Fig. 8. A 
high value of R2 during the training phase implies that the model 
effectively captures the underlying patterns present in the training 
dataset. Similarly, a high R2 value obtained during the testing phase 
indicates that the model performs well when applied to unseen data. 
This indicates that the models’ did not overfit training data. If there is a 
significant difference in the value of R2 between training and testing is 

Table 6 
Optimized hyperparameters for the developed models’.  

ML 
models’ 

Hyperparameters Descriptions Search space Optimal 
values 

KNN n_neighbors Number of 
neighbors 

[1,25] 7 

LightGBM max_depth Maximum depth 
of a tree 

[2,20] 15 

n_estimators Number of trees [500,2000] 1800 
learning_rate Shrinkage factor 

for each tree 
[0.02,0.3] 0.1 

num_leaves Number of leaves 
for each tree 

[1100] 10 

min_data_in_leaf Minimum number 
of data in leaf 

[1,30] 18 

bagging_fraction Number of events 
to be utilized for 
training a tree 

[0.1,1.5] 0.8 

lambda_l1 Reduce the issue 
of overfitting 

[0.1–2] 1 

XGBoost n_estimators Number of trees [500,2000] 1200 
max_depth Maximum depth 

of a tree 
[1,20] 12 

subsample Number of 
subsamples for 
constructing trees 

[0.1,1] 0.6 

colsample_by tree Number of 
features or 
predictors used to 
train a tree 

[0.1,1] 1 

learning_rate Shrinkage factor 
for each tree 

[0.01,1.5] 0.3 

RF n_estimators Number of trees [1000,2000] 1100 
max_depth Maximum depth 

of a tree 
[1,25] 22 

min_samples_leaf Minimum number 
of samples for leaf 
nodes 

[1,50] 38 

min_samples_split Minimum number 
of samples for 
nodes split 

[1100] 60  

Fig. 8. Correlation coefficient comparisons for different models’.  
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when overfitting occurs, it captures noise and specific patterns that 
don’t generalize well to testing data. It is crucial to consider both the 
training and testing R2 values since they offer various perspectives on 
the effectiveness and generalization of the model. The model must 
perform well on training and testing data sets to achieve high general
ization. Besides that, the RMSE values after training and testing all the 
models are shown in Fig. 9, in which PSO-RF had a minimum error 
compared to other models. In addition, the MAE values of PSO-RF were 
lowest compared to other models during training and testing, as shown 
in Fig. 10. The summary of the three performing indicators is shown in 
Table 7. After assessing statistical performance indicators, it has been 
revealed that PSO-RF outperformed XGBoost, LightGBM, and KNN 
models’ during training and testing with R2 of 0.9374, RMSE = 4.6327, 
MAE = 2.0974, and R2 of 0.9329, RMSE = 15.5308, MAE = 5.3896, 
respectively. The order of performances for all models’ in predicting BI 
was PSO-RF > XGBoost > LightGBM > KNN. The ability of PSO-RF to 
capture nonlinear relationships between many variables that are present 
in the dataset may be one of the reasons why it has a lower error rate and 
a better accuracy rate than other models. It may be difficult for other 
models’, such as XGBoost, LightGBM, and KNN, to accurately predict the 
complex nonlinear interactions in the data, which might result in greater 
error rates. On the other hand, due to PSO-RF adaptability in terms of 
both the discovery and integration of such nonlinear correlations, it was 
able to make more accurate predictions for BI. In addition, PSO enables 
the optimization of both the feature selection and the hyperparameters 
of the RF model. PSO can assist in identifying a subset of pertinent 
features that exhibit a greater influence on the models’ predictive ca
pacity. This phenomenon enhances the generalization process and mit
igates the issue of overfitting, particularly in scenarios characterised by 
a multitude of extraneous or duplicative variables. 

5.3. Models’ comparisons 

As introduced in the methodology section, four models’ were used in 
this paper. Hence, four ML models’ were compared to assess their 
robustness and predictive accuracy in BI. This section analyzed cross 
plots to evaluate the models’ performances. Cross plots, also known as 
scatter plots, are used to compare actual and predicted values in ML and 
statistics. When the points in a cross plot are close to the line y = x, the 
predicted values almost match the actual values, and the coefficient of 
determination is always high (close to one), indicating high accuracy of 
the used model. On the other hand, when the points in the cross plots are 
far away from the line y = x, the predicted values are not close to actual 

values, indicating a low level of model accuracy with high errors. For the 
ideal scenario, the predicted values perfectly match the actual values 
with all the data points exactly falling on the line y = 1 with R2 = 1. The 
cross plots for PSO-RF, XGBoost, LightGBM, and KNN during training 
are shown in Fig. 11 (a), 11 (b), 11(c), and 11 (d), respectively. For 
testing, the cross plots for PSO-RF, XGBoost, LightGBM, and KNN are 
shown in Fig. 12 (a), 12 (b), 12 (c), and 12 (d), respectively. Figs. 11 and 
12 revealed that the BI values predicted by PSO-RF are better than the BI 
values predicted by XGBoost, LightGBM, and KNN during training and 
testing. The reason (s) behind this is that PSO-RF has PSO, which helped 
optimize RF hyperparameters for each particle in the swarm, increasing 
ensemble diversity and resulting in a more diverse ensemble of trees that 
improves model performances. Also, PSO explore and identify the 
optimal configurations of hyperparameters, such as the number of trees, 
tree depth, and minimum samples per leaf, which enhance model per
formance instead of employing default hyperparameters or manual 
adjusting settings. In addition, PSO helped in escaping local minima 
effectively as it avoids the model stuck in suboptimal configurations. 

In addition, Taylor’s diagram was employed to compare the pre
dicted and actual BI. Taylor diagrams are type of graphical analysis tool 
that can be used to evaluate the accuracy of various models’ or simu
lations in relation to a reference (actual) dataset. Taylor diagrams 
represent how well different models’ replicate the observed data in 
terms of correlation and variability. Taylor’s diagram consists of three 
major components: reference points representing the actual data; cir
cular contours representing the standard deviation (SD), R2, and model 
points. A model closer to the reference point better captures the 
observed variability and correlation. Furthermore, the angle between 
the model point, the reference point, and the origin represents the cor
relation between the model and the observations. Smaller angles indi
cate higher correlations. In addition, the distance along the circular 
contours from the reference point shows the SD of the model’s diversity. 
Models’ with similar SD to the reference data will be more accurate 

Fig. 9. RMSE comparisons for different models’.  

Fig. 10. MAE comparisons for different models’.  

Table 7 
Statistical results of the models’.  

Model R2 RMSE MAE 

Training Testing Training Testing Training Testing 

PSO-RF 0.9934 0.9533 4.6327 15.5308 2.0974 5.3896 
XGBoost 0.9796 0.9272 4.881 20.524 2.2221 6.6105 
LightGBM 0.9519 0.9264 5.4575 28.025 2.3954 7.3421 
KNN 0.9416 0.9262 5.9152 30.1269 2.5862 8.5296  
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Fig. 11. Cross plots for the predicted versus actual BI in training WY1 datasets.  

Fig. 12. Cross plots for the predicted versus actual BI in testing WY2 datasets.  
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(Dabiri et al., 2022; Gleckler et al., 2008; Kioumarsi et al., 2023; Xi et al., 
2023). From Fig. 13, it has been shown that PSO-RF outperformed 
Adaboost, XGBoost, and KNN in the prediction accuracy of BI as its SD 
and R2 values are closer to actual values. The models’ performance 
assessment through Taylor’s diagram agrees with other model assess
ment methods, i.e., PSO-RF > XGBoost > LightGBM > KNN. 

5.4. SHAP analysis 

SHAP (SHapley Additive exPlanations) is a popular method for 
interpreting machine learning models’ by quantifying the contribution 
of each input feature to the model’s output. It provides a way to un
derstand the relationship between individual features and the predicted 
outcome (Alabdullah et al., 2022; Mangalathu et al., 2020; Zhang et al., 
2023). SHAP analysis is not limited to any specific type of machine 
learning model; it can be used with various models’, including linear 
regression, decision trees, random forests, and gradient boosting. The 
most common way to analyze the correlations between input features 
and the output using SHAP values is to create a SHAP summary plot or a 
feature importance plot. In this scenario, each feature is represented as a 
horizontal bar. The bar’s position on the plot indicates the average SHAP 
value for that feature across the dataset, and the colour of the bar shows 
whether the feature value is high (red) or low (blue) (Ji et al., 2022; 
Yang et al., 2021). Analyzing the SHAP summary plot lets you gain in
sights into how each feature affects the model’s predictions. Features 
with larger positive SHAP values push the predictions higher, while 
features with larger negative SHAP values push the predictions lower. 
Features closer to the baseline prediction have less impact on the 
model’s output (Mangalathu et al., 2020; Nazar et al., 2023). From 
Fig. 14, it has been revealed that E, G, and K are the most important 
input parameters affecting the BI of shale gas formations, whilst v and R 
are the least input parameters affecting the BI of the shale gas forma
tions. Besides that, Fig. 15 shows that the increase in E and G influences 
the increase in BI of the formations. Further, the decrease in DTS and 
DTC results in the increase of BI of the formation. In addition, the high 
value of R and v decreases BI. 

5.5. Validation of the results 

After the successful application of PSO-RF in predicting the BI of 
Weiyuan wells (WY1 and WY2) of the Sichuan Basin with high accuracy, 
the developed model was used to predict the BI of another two new pilot 
test wells (WY3 and WY4), which were not used to build the model. Well 

WY3 had the same inputs as wells WY1 and WY2, such as E, K, G, v, DTC, 
DTS, and R. Further, wells WY3 had BI data, while WY4 had no BI data. 
For well WY3, we assumed that BI does not exist and its inputs are used 
to predict new BI. The correlation plot between the field and predicted 
BI of the well WY3 is shown in Fig. 16, which shows that the coefficient 

Fig. 13. Models’ evaluation using Taylor’s diagram.  

Fig. 14. Relative influence of inputs to BI using PSO-RF.  

Fig. 15. SHAP analysis of the inputs to BI using PSO-RF.  

Fig. 16. Cross plots between predicted and field BI for well WY3.  
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of determination is 0.9981 while RMSE is 0.057699, and MAE is 
0.01499. In general, the coefficient of determination between the field 
and predicted BI is close to one, which validates the model accuracy 
results. Further, RMSE and MAE are close to zero, validating the 
developed model results. For well WY4, which had no BI values, the 
developed model was used to predict the BI, which remained very stable 
throughout the entirety depth of the wells, as shown in Fig. 17. Because 
of the nearly consistent BI values over the whole depth of the well, the 
predicted BI using PSO-RF shows that the potential depth for hydraulic 
fracturing operation is marked with red boxes (Fig. 17) because low 
brittleness formation limits the vertical growth of fractures, thus prevent 
the fractures to penetrate the potential hydrocarbons zone for produc
tion purpose. According to Fig. 17, the formation for hydraulic frac
turing operations is the Wufeng formation (First red box) and Linxiang 
(second red box) formations from the top. However, BI is not the only 
parameter to determine the possible layers for hydraulic fracturing in 
shale gas reservoirs. Many parameters such as fracability, fracture 
toughness, tensile strength, etc., can be grouped with BI to help make 
decisions on hydraulic fractures placement. 

6. Conclusions 

This study used Random Forest based on particle swarm optimiza
tion (PSO-RF) to develop a novel model for predicting the brittleness 
index (BI) of Upper Ordovician Wufeng to Lower Silurian Longmaxi 
shale gas formation from Young modulus (E), bulk modulus (K), shear 
modulus (G), compressional wave slowness (DTC), shear sonic log 
(DTS), resistivity log (R), and poisson ratio (v). The model predicted BI 
with high accuracy and the least errors compared to Extreme gradient 
boosting (XGBoost), Light gradient boosting machine (LightGBM), and 
K-nearest neighbor (KNN) models’. The following conclusions can be 
made based on the obtained results.  

1) During the training and testing phases, PSO-RF outperformed 
XGBoost, LightGBM, and KNN in BI prediction by yielding high R2 

and the least errors. PSO-RF R2 were 0.9934 and 0.9533 during 
training and testing, respectively. RMSE and MAE were 4.6327 and 
2.0974, and 15.5308 and 5.3896, during training and testing, 
respectively. The performance order of the models’ was PSO-RF >

XGBoost > LightGBM > KNN. This confirms that optimized ensem
bles can predict BI better than individual ensemble methods.  

2) From SHAP analysis, it has been found that the Young modulus (E) 
and Shear modulus (G) of the shale gas reservoirs greatly influence 
BI, with resistivity log (R) and poisson ratio (v) having the least in
fluence. E and G increase results in BI increase, while the decrease of 
R and v increases BI of the shale gas formations.  

3) After the proposed PSO-RF model was applied to predict BI of the 
other two wells for model validation results, it was found that the 
model predicted BI with great accuracy and helped to locate where 
hydraulic fractures can be placed to enhance shale gas production 
from the Weiyuan gas field. 

This study only focused on BI as one of the important parameters in 
determining the pay zone for hydraulic fracturing operations, whilst 
there are many parameters besides BI to be considered. Hence, we 
recommend future research to consider other parameters in their study, 
such as fracability, fracture toughness, tensile strength, etc. In addition, 
the proposed model in this research may also be used to forecast other 
hydraulic fracturing parameters, such as fracture toughness, tensile 
strength, etc. 
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