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A Novel Hybrid Machine Learning Approach and Basin
Modeling for Thermal Maturity Estimation of Source Rocks
in Mandawa Basin, East Africa
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Basin modeling and thermal maturity estimation are crucial for understanding sedimentary
basin evolution and hydrocarbon potential. Assessing thermal maturity in the oil and gas
industry is vital during exploration. With artificial intelligence advancements, more accurate
evaluation of hydrocarbon source rocks and efficient thermal maturity estimation are pos-
sible. This study employed 1D basin modeling using PetroMod and a novel hybrid group
method of data handling (GMDH) neural network optimized by a differential evolution
(DE) algorithm to estimate thermal maturity (Tmax) and assess kerogen type in Triassic–
Jurassic source rocks of the Mandawa Basin, Tanzania. The GMDH–DE addresses the
limitations of conventional methods by offering a data-driven approach that reduces com-
putational time, overcomes overfitting, and improves accuracy. The 1D thermal maturity
basin modeling suggests that the Mbuo source rocks reached the gas–oil window in late
Triassic times and began expulsion in the early Jurassic while located in an immature-to-
mature zone. The GMDH–DE model effectively estimated Tmax with high coefficient of
determination (R2 = 0.9946), low root mean square error (RMSE = 0.004), and mean
absolute error (MAE = 0.006) during training. When tested on unseen data, the GMDH–
DE model yielded an R2 of 0.9703, RMSE of 0.017, and MAE of 0.025. Moreover, GMDH–
DE reduced the computational time by 94% during training and 87% during testing. The
results demonstrated the model�s exceptional reliability compared to the benchmark
methods such as artificial neural network–particle swarm optimization and principal com-
ponent analysis coupled with artificial neural network. The GMDH–DE Tmax model offers
a unique and independent approach for rapid real-time determination of Tmax values in
organic matter, promoting efficient resource assessment in oil and gas exploration.
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INTRODUCTION

East Africa has emerged as a leading oil and gas
exploration hub, drawing global attention due to its
extensive hydrocarbon reserves and promising geo-
logical formations. The region�s strategic significance
is underscored by substantial discoveries in sedi-
mentary basins such as the Mandawa Basin (Tan-
zania), Lake Albert Rift Basin (Uganda, Kenya),
and the Rovuma Basin (Tanzania, Mozambique) as
detailed by Zongying et al. (2013) and Purcell
(2014). This surge in exploration activity, fueled by
advancements in technology and the attraction of
vast reserves, has positioned East Africa as a fron-
tier for innovative exploration techniques and
international investment. Major oil companies are
engaged actively in assessing the region�s hydrocar-
bon potential, with estimates indicating reserves of
up to 2.8 billion barrels1 of oil and 2.2 billion barrels
of natural gas liquids from Tanzania�s basin alone
(Brownfield, 2016). This influx of exploration activ-
ity underscores East Africa�s emergence as a vital
player in meeting global energy demands, empha-
sizing the need for innovative exploration tech-
niques and efficient resource assessment strategies.

Recently, many researchers have focused on
utilizing new technology to minimize the time and
cost of exploration due to the expected rise in the
future energy demand. According to the Interna-
tional Energy Agency (IEA), energy demand is
projected to increase by 25% by 2040, with fossil
fuels remaining the dominant energy source and
accounting for 75% of the total energy mix (IEA,
2021). This has led to the emergence of unconven-
tional resources as a substitute. Basin modeling, a
numerical simulation technique, plays a vital role in
deciphering the complex subsurface geological pro-
cesses that govern the formation and distribution of
these valuable resources (Abdel-Fattah et al., 2017;
Ehsan et al., 2023; Feng et al., 2023b). Thermal
maturity (Tmax) prediction is a vital component of
basin modeling as it assesses the extent to which
organic matter has been converted inside a source

rock, hence influencing its capacity to produce oil
and gas (Farouk et al., 2023).

However, accurate Tmax estimation is essential
in assessing and evaluating any unconventional
hydrocarbon resources, and it is usually measured
from core samples using geochemical analysis
(Huijun et al., 2020; Kibria et al., 2020; Stokes et al.,
2023). Maturity indices, such as maturity tempera-
ture (Tmax), are used widely for assessing the Tmax
of a source rock (Zhang and Li, 2018; Yang and
Horsfield, 2020). Tmax is a crucial Tmax index that
can be used to estimate the maximum temperature
reached by a source rock during the burial history of
a basin (Albriki et al., 2022; Wu et al., 2023). Tmax is
obtained through the pyrolysis process and corre-
sponds to the S2 (remain potential of hydrocarbon
generation) peak that results from the thermal
breakdown of kerogen during temperature-pro-
grammed pyrolysis at temperatures between 300 and
600 �C (Synnott et al., 2018; Yang and Horsfield,
2020; Thana�Ani et al., 2022; Osukuku et al., 2023).

When estimating the maturity of drilled wells,
geochemical methods like pyrolysis have long been
thought to be the most reliable and accurate. How-
ever, numerous drawbacks are associated with this
method, like time-consuming, operating costs, and
inability to cover an extensive range of depth
(Wood, 2018; İnan, 2022). Moreover, several studies
have claimed that pyrolysis methods may expose
samples to air for an extended period; measure-
ments can often be inaccurate because the effect
increases the likelihood of free organic matter oxi-
dizing and escaping (Dembicki, 2022). As an alter-
native to geochemical methods, wireline logs offer
an accessible and affordable data source and have
become increasingly popular recently (Zhao et al.,
2019; Malki et al., 2023).

Numerous researchers have shown that the
evaluation of Tmax has been a primary concern in
oil and gas exploration, and various conventional
techniques have been implemented by different re-
searchers to assess it (Gu et al., 2022; Hackley et al.,
2022; Singh et al., 2022; Feng et al., 2023a; Thankan
et al., 2023; Wu et al., 2023). These techniques in-
clude the bitumen reflectance (Hackley and Lüns-
dorf, 2018; Jubb et al., 2020; Adeyilola et al., 2022),

1 1 billion barrel = 6.118 9 109 liters
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thermal alteration index (Craddock et al., 2018;
Deaf et al., 2022), Rock–Eval pyrolysis (Cheshire
et al., 2017; Chen et al., 2019; Pang et al., 2020;
Arysanto et al., 2022; Farouk et al., 2023; Sohail
et al., 2024), and fluid inclusion analysis (Petersen
et al., 2022). While conventional approaches to basin
modeling and Tmax prediction have proven valu-
able, they have significant limitations as they provide
discrete data that can be rigorous and lead to poor
evaluation of source rock (İnan et al., 2017; Katz and
Lin, 2021; Lohr and Hackley, 2021; Sadeghtabaghi
et al., 2021; Safaei-Farouji and Kadkhodaie, 2022a).
However, irrespective of the conventional solver
adopted for Tmax computation, the procedure typ-
ically involves significant computational overheads
and consumes time.

Recently, due to the advancement of technol-
ogy, various machine learning techniques have be-
come the focal point of researchers and have been
adopted to predict the Tmax of source rock (Abdi-
zadeh et al., 2017; AlSinan et al., 2020; Ehsan and
Gu, 2020; Shalaby et al., 2020; Tariq et al., 2020;
Amosu et al., 2021; Barham et al., 2021; Aliakbar-
doust et al., 2024; Li et al., 2024). Hybrid methods
have been reported to be more accurate in predict-
ing different source rock parameters (Ahangari
et al., 2022; Safaei-Farouji and Kadkhodaie, 2022b;
Saporetti et al., 2022; Mkono et al., 2023). However,
a group method of data handling (GMDH) method
was suggested by Mulashani et al. (2021) as an
alternative method for predicting total organic car-
bon (TOC) from well logs. The methods include
input factors such as neutron porosity, spontaneous
potential, gamma-ray, resistivity log, sonic travel
time, and bulk density. Compared to ANN and log
R, the results demonstrated that the methods accu-
rately estimate TOC from log data. However, the
study of organic matter Tmax estimation was not
presented in detail.

In addition, some studies have been reported to
predict Tmax using hybrid methods (Tariq et al.,
2020; Barham et al., 2021). In their research, Tariq
et al. (2020) used a hybrid technique of artificial
neural network–particle swarm optimization (PSO–
ANN) to predict Tmax from well log. Another re-
searcher, Barham et al. (2021), applied ANN cou-
pled with principal component analysis (ANN–
PCA) to predict Tmax from geophysical well logs.
These methods have shown some limitations that
lead to inaccurate estimation of Tmax (Table 1). For
this, a hybrid of group method of data handling
(GMDH) neural network and differential evolution

(DE) algorithm (i.e., GMDH–DE) is proposed in
this study to overcome the drawbacks of previously
utilized hybrid methods used in predicting Tmax.

This study presents, for the first time, an inte-
gral technique of basin modeling with a novel hybrid
GMDH–DE method to enhance the computational
process, assess the kerogen type, and simplify the
estimation of Tmax in source rocks. The GMDH–
DE serves as an improved neural network model for
estimating Tmax as a maturity index using geo-
physical well logs. During the training phase, the
GMDH–DE exhibits a remarkable self-organizing
characteristic that automatically adjusts model
parameters and generates an ideal model structure.
Unlike previous hybrid machine learning models for
predicting Tmax, the GMDH–DE eliminates the
need to manually adjust learning parameters to
achieve optimal results. Hence, the performance of
the proposed GMDH–DE model in forecasting
Tmax is an adequate improvement compared to that
of previously employed hybrid machine learning
algorithms, namely PCA–ANN and PSO–ANN.
Moreover, this study performed a sensitivity analysis
to determine how much each input parameter af-
fected the suggested GMDH–DE model in the
estimation of Tmax. The results of this study ranked
the GMDH–DE model as a reasonably new com-
putational intelligent learning model for the reliable
estimation of Tmax. This research contributes to
advancing exploration techniques and efficient re-
source assessment strategies, making it a valuable
asset for the oil and gas industry�s ongoing efforts to
meet global energy demands.

GEOLOGICAL SETTING

The Mandawa Basin is a sedimentary basin in
southeastern Tanzania. It is bounded to the north by
the Rufiji Trough, to the south by the Ruvuma Ba-
sin, to the west by the metamorphic basement, and
to the east by offshore basins (Fig. 1). The basin
covers an area of approximately 16,000 km2 (Fos-
sum, 2020; Abay et al., 2021). The basin was formed
during the Permo–Triassic rifting event, which re-
sulted in the separation of East Gondwana from
West Gondwana (Hudson, 2011; Hudson and Ni-
cholas, 2014; Godfray and Seetharamaiah, 2019).
The rifting event began in the Late Permian and
continued into the Early Triassic. The sediments
deposited during this time are known as the Pindiro
Group, which comprises various lithologies, includ-
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Table 1. Summary of previous hybrid methods� strength and limitation in predicting Tmax

Model Strength Limitation

PSO–ANN Has the ability to identify better solutions than tradi-

tional ANN�s ability to use fewer neurons and con-

nections than a traditional ANN

Computationally expensive and time-consuming (Li

et al., 2014; Devi et al., 2015; Jahed Armaghani et al.,

2017; Pooria et al., 2022; Kedia et al., 2023). It is dif-

ficult to determine the optimal number of parameters.

It can be easily trapped in local minima. High com-

putational complexity and slow convergence

PCA–ANN It uses fewer training samples and is more efficient than

a single ANN model. It allows for improved gener-

alization performance compared to using a single

ANN model

It can be computationally intensive and requires much

processing power to run. It can be affected by the

curse of dimensionality. It may be affected by outliers.

It is not suitable for datasets with nonlinear relation-

ships between variables (Gallo & Capozzi, 2019;

Mostaar et al., 2019; Bayatvarkeshi et al., 2020)

Figure 1. Location of the Mandawa Basin and position of the Mbate, Mbuo, and Mita Gamma Wells (map modified from Hudson (2011)

and Barth et al. (2016)).
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ing sandstones, mudstones, and limestones (Gama &
Schwark, 2022, 2023). The rifting event ended in late
Triassic, and the Mandawa Basin entered a period of
relative stability. During this time, the basin was
filled with shallow marine sediments known as the
Mavuji Group, which is composed of sandstones,
mudstones, and limestones. In the Late Cretaceous,
the Mandawa Basin was uplifted and eroded (Hou,
2015; McCabe, 2021). This uplift resulted in the
formation of a series of cuestas and valleys. The
cuestas are long, sloping ridges that are formed by
resistant sandstones. The valleys are low-lying areas
formed by softer mudstones and limestones (Einvik-
Heitmann, 2016).

Moreover, according to the geological setting of
the Mandawa Basin, it contained and exposed the
Kilwa Group, a succession of Late Cretaceous to
Paleogene age. The group comprises four forma-
tions: the Nangurukuru, Kivinje, Masoko, and Pande
Formations (Nicholas et al., 2006). The Nangu-
rukuru Formation seems to be the oldest. It is
composed of variably lithified sandstones, mud-

stones, and shales, while the Kivinje Formation is
composed of marine shales and mudstones that
contain abundant fossils of planktonic foraminifera
(McCabe et al., 2023). The Masoko Formation
comprises shallow marine sandstones and mud-
stones with abundant fossils of benthic foraminifera
and ostracods (Fossum et al., 2019). The youngest
Pande Formation is composed of fluvial sandstones
and mudstones with abundant fossils of land plants
(Zhou et al., 2013). The source rock of the Mandawa
Basin is the Mbuo Claystone in the late Triassic
Pindiro Group and Nondwa evaporites in the early
Jurassic Pindiro Group (Maganza, 2014) (Fig. 2).

METHODOLOGY

Data Description and Pre-processing

This study was conducted on three wells in the
Mandawa Basin. The source rocks in the study area
are composed mainly of Jurassic shale and Triassic

Figure 2. Lithostratigraphic details of the Pindiro Group in the Mandawa Basin (modified from Gama & Schwark, 2022).
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claystone, both from the Nondwa and Mbuo For-
mations of the Pindiro Group (Mshiu et al., 2022;
Gama & Schwark, 2023). The input variables used to
develop the model included the well log suite of
deep lateral resistivity log (LLD), neutron porosity
(NPHI), sonic travel time (DT), gamma-ray (GR),
spontaneous potential log (SP), and bulk density log
(RHOB). The holdout validation method was used
to split the dataset into two parts: 70% of the data
were used to train the model (data from Mbate Well
and Mbuo Well), while 30% were used to validate
the model�s performance (data from Mita Gamma
Well).

During data processing, feature selection was
conducted to remove outliers that have the potential
to compromise the accuracy of an estimating model
or diminish its predictive performance. The relative
impact of the input parameters was evaluated using
the Pearson correlation coefficient (R), thus:

b ¼ 1

n

XN

i¼1
bi ð1Þ

where Ra;b is the Pearson correlation coefficient of

variables a and b, a ¼ 1
n

PN

i¼1

ai is the mean of a, and

b ¼ 1
n

PN

i¼1

bi is the mean of b. The Ra,b is calculated to

measure the linear association between two vari-
ables. It ranges from � 1 to 1, with � 1 indicating a
strong negative correlation and 1 indicating a strong
positive correlation. The coefficient is calculated by
dividing the covariance of the two variables by the
product of their standard deviations. This calcula-

tion can be done for both normal and binary re-
sponses and can also be extended to fuzzy numbers
(Cohen et al., 2009; Zhou et al., 2016).

The measured Tmax and well log data were
normalized to a scale from 0 and 1 to reduce
redundancy and improve data integrity. The nor-
malization process was performed as:

XNORM ¼ x� xmin

x minmax � 1
ð2Þ

where x is the original value, XNORM represents the
normalized value in a dataset, xmax is the maximum
value, and xmin is the minimum value. Table 2 pre-
sents the statistical features for the three well suites:
Mbate, Mbuo, and Mita Gamma.

Geochemical Analysis

Eighty-three core samples from the Mandawa
Basin were collected for geochemical analysis. Fifty-
nine core samples from Mbuo and Mbate Wells
were used as training data, and the remaining 24
core samples from Mita Gamma Well were used as
testing data. The depth intervals of the core samples
were 1058–2135 m in Mbate Well, 1661–3145 m in
Mbuo Well, and 1630–2150 m in Mita Gamma Well
(Fig. 3). The samples were collected and brought to
a laboratory for examination. A sample weighed
67.5 g and was subjected to crushing, sieving, and
subsequent extraction and analysis using Rock–Eval
pyrolysis, which employed a 25 �C min � 1 tem-
perature schedule, with pyrolysis oven temperatures
exceeding 750 �C and oxidation oven temperatures

Table 2. Statistical features of the input datasets

Statistical features DT (ls/m) GR (API) LLD (Ohm.m) NPHI (v/v) RHOB (gm/cc) SP (mV)

Mbate Well

Minimum 59.31 33.18 1.52 3.12 2.23 52.48

Maximum 127.73 88.65 22.15 37.79 2.47 80.33

Mean 95.63 62.61 6.29 19.24 2.37 66.71

Standard deviation 15.19 13.84 5.05 8.92 0.08 9.90

Mbuo Well

Minimum 185.57 5.70 0.88 0.09 2.14 � 31.06

Maximum 439.10 84.08 6.33 0.42 2.58 � 5.61

Mean 285.17 53.43 2.96 0.29 2.35 � 23.16

Standard deviation 76.98 28.42 1.73 0.08 0.14 7.89

Mita Gamma Well

Minimum 217.33 57.95 0.68 0.14 1.78 � 32.43

Maximum 444.30 125.54 43.08 0.39 2.61 � 2.56

Mean 307.75 85.38 8.35 0.28 2.39 � 19.21

Standard deviation 54.46 16.79 10.94 0.07 0.21 7.39

C. N. Mkono et al.



Figure 3. Lithostratigraphic column of the Mbuo Well.
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above 800 �C. The Rock–Eval pyrolysis results for
Tmax and hydrogen index (HI) are presented in
Table 3.

Basin Modeling

Basin modeling is a tool used to predict matu-
ration, hydrocarbon generation, expulsion, and
migration in exploration geology (Abdel-Fattah
et al., 2017). It involves building 1D models to
analyze burial and temperature histories, as well as
maturity and hydrocarbon generation and expulsion.
This study utilized 1D basin modeling through Pet-
roMod software (version 2012) to analyze the Tmax
of the Pindiro Group. Essential parameters, includ-
ing formation names, depths, thicknesses, and

deposition ages, were used as inputs (Allen & Allen,
2013; Ahmed et al., 2019). Tmax and vitrinite re-
flectance were measured for model calibration. A
constant heat flow of 64 mW/m2 was employed as
described by Wygrala (1989), while the Burnham
and Sweeney (1989) kinetic model was utilized due
to the oil/gas-prone nature of the source rock. Rel-
ative petroleum system elements were assigned to
each formation, along with TOC and HI parameters
as input.

Back-Propagation Neural Network (BPNN)

Wang et al. (2019) reported the back-propaga-
tion approach as a supervised learning algorithm
commonly used in neural networks. This approach

Table 3. Rock pyrolysis data of Tmax and HI of the Mandawa Basin

Mbate Well Mbuo Well Mita Gamma Well

Depth (m) Tmax (�C) HI (mg/g TOC) Depth (m) Tmax (�C) HI (mg/g TOC) Depth (m) Tmax (�C) HI (mg/g TOC)

1058 426 36 1661 425 64 1630 447 825

1128 434 25 1691.5 429 72 1661 446 689

1241 432 26 1710 419 610 1691.5 446 527

1298 429 27 1722 418 825 1710 446 389

1320 431 43 1813.5 419 689 1722 450 646

1348 431 51 1820 433 527 1764 435 272

1417 433 30 1844 433 389 1820 447 760

1445 425 92 1859 434 646 1844 440 997

1472 433 92 1874.5 436 272 1859 440 1017

1475 417 36 1905 432 64 1874.5 447 119

1606 425 34 1935 436 760 1905 448 78

1622 429 53 1942 430 997 1935 433 91

1661 419 153 1981 433 1000 1942 436 74

1715 418 153 1996 457 76 1981 436 44

1759 419 87 2003 446 318 1996 436 61

1832 433 171 2012 458 108 2003 441 45

1844 433 76 2012 441 99 2012 443 63

1859 434 216 2017 422 182 2017 433 188

1881 436 43 2026.5 445 96 2026.5 446 257

1887 433 153 2057 448 52 2057 437 139

1905 437 43 2057.5 473 575 2070.5 446 13

1935 443 35 2070.5 447 69 2089 444 16

1942 445 285 2089 435 58 2118 443 69

1981 441 120 2118 432 88 2150 445 197

1996 446 66 2148.5 442 69

2017 432 65 2889 437 390

2057 430 175 3068 441 66

2076 426 228 3090 446 54

2103 435 65 3145 432 215

2135 433 79

C. N. Mkono et al.



adjusts the network weights to minimize the error
between estimated and actual output (Titus et al.,
2022). It is based on the gradient descent method
that calculates the error gradient in response to the
weight using the chain rule (Wu & Tong, 2022). It
has been shown that the bias concept often works as
a set of weights where the signals are sent in oppo-
site directions during the back-propagation learning
phase (Sun et al., 2021; Dai, 2023). BPNN was built
as a way to solve the multilayer perceptron training
problem. However, the two main improvements of
the BPNN were the addition of a differentiable
function at each node and the internal network
weight change due to back-propagation error after
each training epoch (Che Nordin et al., 2021).

Group Method Data Handling (GMDH)

GMDH is the association of a multilayer algo-
rithm that generates a network of layers and nodes
by utilizing several inputs from the analyzed data
stream (MolaAbasi et al., 2021). It includes proba-
bilistic, analogs complexing parametric, rebinariza-
tion, and clusterization techniques. Modeling of
complex processes, function approximation, nonlin-
ear regression, and pattern recognition are the core
applications of GMDH (Lal and Datta, 2021). The
self-organizing inductive propagation algorithm is a
technique that can solve complex problems (Rosh-
ani et al., 2020; Lv et al., 2023). In addition, it is
possible to derive a mathematical model from data
samples, which can then be used for pattern recog-
nition and identification.

Most GMDH algorithms employ polynomial
reference functions. Volterra�s series function, the
discrete analog of the Kolmogorov–Gabor polyno-
mial, can describe a generic relation of output–input
(Nelles, 2020).

u ¼ aþ
Xn

i¼1

bixi þ
Xn

i¼1

Xn

j¼1

cijxixj

þ
Xn

i¼1

Xn

j¼1

Xn

k¼1

dijkxixjxk þ ::: ð3Þ

where x1; x2; x3:::f g represents the inputs,
a; b; c; d:::f g are the coefficients of the polynomials,

and u is the output node.

GMDH Optimized by Differential Evolution (DE)

The GMDH–DE method is a novel approach
for solving optimization problems, particularly those
involving nonlinear systems. This method combines
the strengths of the GMDH algorithm and DE
algorithm to produce efficient and reliable solutions
(Onwubolu, 2008). The GMDH algorithm is a self-
organizing method that generates a hierarchical
structure of models, starting with simple linear
models and gradually building up to more complex
nonlinear models (Aljarrah et al., 2022). On the
other hand, the DE is an innovative parallel direct
search optimization technique introduced by Price
and Storn (1995). It uses a population for each
generation made up of NP parameter vectors. The
DE was reworked to address permutative issues
even though it was initially intended for continuous
domain space formulation (Storn & Price, 1995;
Pourghasemi et al., 2020). The DE configuration is
usually expressed in DE/x/y/z form, given that x is
the perturbation solution, y is the difference vector�s
number used to modify x, and z represents the
recombination operator used, such as exp for expo-
nential and bin for binomial. The GMDH–DE can
effectively handle complex nonlinear relationships
and improve predictive performance. The basic
equation for the method is:

x� ¼ argmin F xð Þ ð4Þ

where x* is the optimal solution, F(x) stands for the
objective function, while the population of solutions
is represented by x.

In the GMDH–DE, the process starts with the
creation of an initial population of candidate models
using the GMDH algorithm. These models are then
evaluated based on their fitness, typically using a
performance metric like mean squared error or
correlation coefficient, to determine their effective-
ness in predicting Tmax. The DE algorithm is then
applied to evolve and optimize the parameters of the
candidate models, such as the coefficients of the
polynomial regression, to further improve accuracy.
This iterative process continues until a satisfactory
model with optimized parameters is obtained, pro-
viding a reliable prediction of Tmax in geological
formations. Table 4 summarizes the workflow steps
followed by the GMDH–DE to predict Tmax.

A Novel Hybrid Machine Learning Approach



RESULTS AND DISCUSSION

1D Basin Modeling Analysis

A change in heat flow ranging from 50 to
70 mW/m2 leads to a depth difference of approxi-
mately 1 km for the 100 �C isotherm, often consid-
ered as the lower limit for the oil generation
window. This variation in heat flow across a basin
can significantly influence the maturity stages of
potential source rocks, resulting in considerable
differences in their thermal evolution. It is essential
to calibrate the thermal and maturity history in basin
modeling by utilizing borehole temperature data and
the vitrinite reflectance (Ro) measurements of
source rocks (Hantschel & Kauerauf, 2009).
According to 1D burial profiles, the source rock
from the early Jurassic period shows a maximum
burial depth that is comparable to the current day
(2001–2287 m). As shown in Figure 4a, modeling
and calibration data agreed well. Based on the
Sweeney and Burnham (1990) classification, the
analysis revealed that the Mbuo Formation�s source

Table 4. Workflow of the GMDH–DE algorithm

No. Working

1. Start

2. Initialize the inputs

3. Setting GMDH�s parameters

4. Adjust the hidden layers

5. Modify the hidden layer�s neuron count

6. Selection of GMDH�s learning algorithm

7. Selection of learning rate

8. Training the GMDH model, followed by testing

9. Determine the minimum convergence value by evaluating

the objective function

10. Determine the trained model�s weights and biases

11. Initialize the DE algorithm�s parameters

12. Limit sample search space for extracted weights and biases

13. Use the retrieved weights and biases as the starting popu-

lation in a DE method

14. Continue iteratively until the stopping criterion* is met

15. Select the optimal global solution

16. Set optimum weights and biases from the globally best

model in the network for the estimation of Tmax

parameters

17. Ends

Figure 4. Tmax history showing (a) the fitness of calibrated and measured Ro; (b) temperature vs. depth.

C. N. Mkono et al.



rock displayed vitrinite reflectance levels of 0.50–
0.68% Ro (Fig. 4a), indicative of temperatures
ranging from 90 to 103.3 �C (Fig. 4b). This suggests
that the source rock spans the immature to mature
stages of hydrocarbon generation, specifically within
the gas–oil window.

Evidence from the Mbuo Well indicates that
the Mbuo Formation�s base has been heated to
103.3 �C throughout 0.17 Ma, having descended to a
depth of 2287.69 m (Fig. 5). The generation started
during the late Triassic to the early Jurassic in both
Mbuo Claystone and Mbuo Sandstone and contin-
ues up to recent. Other overlying formations such as
the Nondwa evaporites (intercalated with shales)
and minor claystone in the Mihambia Formation are
immature based on the modeling result. The mea-
sured data for Ro and temperature are provided in
the Appendix along with different inputs used for
basin modeling. The beginning of the immature
stage (0.50% Ro) of the Mbuo Formation was noted
in the Mbuo Well at a depth of 1728 m during the
Paleogene period (62 Ma). At a depth below
1965 m, during the middle Paleogene (42 Ma), the
source rock of interest had its early oil window

(0.56% Ro). In the Neogene period (0.69 Ma), at a
depth of 2287.7 m, the primary oil window began
(Fig. 6)

GMDH–DE Model Development

The GMDH–DE model comprised six input
neurons and two hidden layers, namely, h1, h2, h3,
and h4 in the first layer and v1 and v2 in the second
layer. The output of the model was represented as y.

Figure 7 presents a neural network structure of
the proposed model in predicting Tmax. The equa-
tions for the layer of the neural network model
needed to provide the Tmax estimation are pre-
sented in Table 5.

Performance Indicators

The GMDH–DE, GMDH, and BPNN models
were coded and implemented in MATLAB R2022a
on an AMD Ryzen 5 5600U with Radeon Graphics
2.30 GHz running Windows 10 operating system.

Figure 5. Burial depth history with temperature variation curve for the Triassic source rock in the Mandawa Basin.
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Figure 6. Burial depth history with calibrated vitrinite reflectance for the Triassic source rocks in the Mandawa Basin.

Figure 7. The GMDH–DE network structure.
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The coefficient of determination (R2), root mean
square error (RMSE), and mean absolute error
(MAE) were the evaluation metrics used to assess
the performance of the estimation models. The
values of R2 vary between 0 and 1; a model is more
effective when its R2 value is higher, and when a
model�s R2 score is higher than 0.8 and close to 1, it
is regarded as effective (Chicco et al., 2021; Mula-
shani et al., 2022). At the same time, RMSE is a
measure of the differences between predicted values
and observed values. Excellent model accuracy is
defined by RMSE of< 10%, good model accuracy
by RMSE of 10–20%, fair model accuracy by RMSE
of 20–30%, and poor model accuracy by RMSE
of> 30% (Yao et al., 2021; Hussain et al., 2023).
Moreover, MAE is a metric used to measure the
average magnitude of errors in a regression model; a
lower MAE indicates better performance, as it
represents a smaller average error between esti-
mated and actual values (Ali et al., 2023). The R2,
RMSE, and MAE mathematical expressions can be
presented, respectively, as follows (Chong et al.,
2022; Ramos et al., 2023):

R2 ¼
Pn

i¼1 ai � að Þ Pi � pð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ai � að Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Pi � pð Þ2

q
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n

s

ð6Þ

MAE ¼ 1

n

Xn
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���� ð7Þ

where Pi is the estimated Tmax value from each
model, ai represents the actual value of Tmax mea-

sured from core samples, a and P are the true mean
and estimated mean values for Tmax, respectively,
and n represents the number of samples.

Hyperparameters Tuning

Hyperparameter tuning refers to adjusting the
parameters of a machine learning model to optimize
its performance. These parameters, known as
hyperparameters, are set before training and not
learned during training (Pravin et al., 2022).
Hyperparameter tuning is essential because the
performance of a machine learning model can be
significantly affected by the values of its hyperpa-
rameters (Yang & Shami, 2020). It involves experi-
menting with different combinations of
hyperparameters to find optimal values that produce
the best performance. In this study, hyperparame-
ters optimization was done using the DE algorithm,
a parallel direct search technique for determining
the structure of polynomial neurons in the GMDH.
The DE generates improved values for the hyper-
parameters in each model loop and then inputs them
to the GMDH to assess the model�s performance on
the testing data. The performance of the GMDH
was re-evaluated in the following phase. If it was
satisfactory, the optimization was terminated;
otherwise, the process continued until the stopping
criteria were met, and the optimal hyperparameters
were obtained. The hyperparameter configuration
yielding optimal results comprised a population size
of 70 individuals, a mutation rate of 0.7, and a cross-

Table 5. Proposed equations for Tmax estimation

Layers Neurons Equations

1 h1 h1 ¼ �631:8285þ 38:8594x1 � 752:9471x3 � 0:0179x21 þ 456:0425x23 � 14:4068x1x3
h2 h2 ¼ �1334:1104� 13:7616x2 þ 57:5324x4 þ 0:0905x22 � 0:4525x24 þ 0:1442x2x4
h3 h3 ¼ 45065:4234� 172:3706x3 � 35171:0970x6 þ 0:1667x23 þ 6930:8268x26 þ 67:7218x3x6
h4 h4 ¼ 338:0869þ 17:8998x5 þ 2:4854x6 � 0:0019x25 � 0:0149x26 � 0:2579x5x6

2 v1 v1 ¼ 0:2037þ 65:2220h1 � 65:7311h2 � 0:1553h21 � 0:0063h22 þ 0:1650h1h2
v2 v2 ¼ 0:0059þ 3:2159h3 � 2:5669h4 þ 0:0069h3 þ 0:0138h4 � 0:0198h3h4

Output (y) y ¼ �0:0119þ 15:4842v1 � 14:8671v2 þ 0:0249v21þ0:0591v22 � 0:0832v1v2

where x1 is sonic travel time (DT), x2 is gamma-ray (GR), x3 is deep lateral resistivity log (LLD), x4 is neutron porosity (NPHI), x5 is bulk

density log (RHOB), and x6 is spontaneous potential log (SP). At the same time, h1, h2, h3, h4, v1, and v2 are the neurons for the hidden

layers.
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over rate of 13. This configuration fostered a bal-
anced exploration of the solution space, facilitating
the discovery of robust models. The choice of two
layers with 17 neurons each effectively captured
complex relationships within the data, enhancing the
model�s capacity to discern patterns indicative of
Tmax. By setting a stopping criterion of 300 itera-
tions, the model achieved convergence while miti-
gating the risk of overfitting. Additionally,
employing a moderate learning rate of 0.1 ensured
stable and efficient training, allowing the model to
effectively learn from the data without diverging or
stagnating. Overall, the setting optimally balanced
exploration and exploitation, thereby facilitating
accurate estimation of the Tmax index in the
GMDH–DE model. The optimal hyperparameter
setting for the GMDH–DE estimation model is
shown in Table 6.

Estimation of Tmax during Training Performance

The training results summarized in Table 7
showcase the superior performance of the GMDH–
DE model in estimating Tmax compared to tradi-
tional models like GMDH and BPNN. This is evi-
denced by its notably higher R2 of 0.995 (Fig. 8),
indicating strong correlation between estimated and
observed values, coupled with lower error metrics
including RMSE (0.004) and MAE (0.006) (Fig. 9)
and a substantially shorter computational time of
0.2 seconds. The success of the GMDH–DE model
can be attributed to its adeptness in mitigating

overfitting, a common challenge in model training.
The choice of a moderate learning rate (0.1) and a
stopping criterion of 300 iterations effectively regu-
lated the model�s complexity and prevented it from
overfitting noise in the data, as discussed above in
the context of the hyperparameter settings. More-
over, in the geological setting of the Mandawa Ba-
sin, where variations in Tmax are influenced by
complex interactions of organic matter and geolog-
ical processes, the GMDH–DE model�s capacity to
capture intricate patterns and nonlinear relation-
ships between input variables and Tmax is particu-
larly advantageous. Its ability to adaptively select
features and construct hierarchical models aligns
well with the complex nature of geological systems,
thereby facilitating more accurate and robust pre-
dictions compared to the simpler architectures of
GMDH and BPNN. Consequently, the GMDH–DE
model emerges as the preferred choice for Tmax
estimation in such a geological environment, offer-
ing superior predictive performance and computa-
tional efficiency.

Estimation of Tmax During Testing Performance

The results of the Tmax estimation during
model testing (Table 8) reveal notable performance
differences among the models considered. The
GMDH–DE model exhibited superior performance,
achieving R2 of 0.970 (Fig. 10), low RMSE of 0.017,
and minimal MAE of 0.025 (Fig. 11), all within a
remarkably short computational time of 0.5 seconds.
Contrastingly, the traditional GMDH and BPNN
models demonstrated inferior performance, with
lower R2 values accompanied by higher RMSE and
MAE, and longer computational times. The efficacy
of the GMDH–DE model can be attributed to its
hyperparameter settings, notably the learning rate
and stopping criterion, which contributed to the
model�s generalizability. By employing a learning
rate of 0.1 and a stopping criterion of 300 iterations,
the GMDH–DE model effectively balanced the
trade-off between model complexity and overfitting,

Table 6. Hyperparameter settings for the GMDH–DE model

Hyperparameters Selected optimum values

Population size 70

Mutation rate 0.7

Cross-over rate 13

Number of layers 2

Number of neurons in each layer 17

Stopping criterion 300 iterations

Learning rate 0.1

Table 7. Value of R2 for the fitted equations per model during the training phase

Model Equation R2 RMSE MAE Computational time (s)

GMDH–DE y = 37.731 + 0.9313x 0.995 0.004 0.006 0.2

GMDH y = 68.510 + 0.8424x 0.928 0.013 0.018 3.5

BPNN y = 100.096 + 0.7688x 0.812 0.039 0.043 5.2
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allowing it to generalize well to unseen data. This is
particularly crucial in geological settings such as the
Mandawa Basin, characterized by diverse and intri-
cate geological processes influencing Tmax. Addi-
tionally, the GMDH–DE model�s adaptive and self-
organizing nature enabled it to capture complex
nonlinear relationships inherent in geological data,

thereby outperforming traditional models like
GMDH and BPNN. Moreover, the success of the
GMDH–DE model in Tmax estimation is linked to
the capacity to reveal the hierarchical connections
within the data through the multilayer structure and
evolutionary optimization process. This enables the
model to effectively leverage the geological features

Figure 8. Cross-plots of actual Tmax vs. Tmax predicted by (a) GMDH–DE, (b) GMDH, and (c) BPNN during training.
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specific to the Mandawa Basin, thus enhancing its
predictive accuracy. Overall, the GMDH–DE mod-
el�s robust hyperparameter settings, coupled with its
adaptive nature and ability to capture complex
geological processes, culminated in its superior
performance compared to traditional models in
estimating Tmax in the Mandawa Basin.

Comparison with Previous Studies

Generally, the results of the proposed GMDH–
DE were further compared with the previously
developed hybrid models of PSO–ANN and PCA–
ANN, which were used in the estimation of Tmax
(Table 9). The GMDH–DE performed better than
both models suggested by Tariq et al. (2020) and
Barham et al. (2021) during training by obtaining
higher R2 of 0.995, while the PSO–ANN and PCA–
ANN had R2 of 0.917 and 0.88, respectively. Like-
wise, during testing, the GMDH–DE performed
better by obtaining higher R2 of 0.9703, followed by
PSO–ANN with R2 of 0.918 and PCA–ANN with R2

of 0.8518 (Fig. 12).

SHAP (SHapley Additive exPlanations)

In this study, the GMDH–DE model estimated
Tmax and provided valuable insights into feature
relevance through SHapley Additive exPlanations
(SHAP) values. The SHAP values calculate each
feature�s average marginal contribution to the
model�s prediction for every combination of features
that may be present (Kannangara et al., 2022; Zhao
et al., 2022). The SHAP parameter importance in
Fig. 13 highlighted the substantial impact of the SP
parameter on the GMDH–DE model�s Tmax esti-
mation, with mean SHAP value of 4.29. Addition-
ally, the DT, GR, RHOB, and LLD parameters had
a moderate impact on Tmax estimation, as indicated
by their mean SHAP values of 1.76, 1.26, 1.04, and
0.91, respectively, reflecting their role in conveying
information about clay content in the Wangkwar
Formation. NPHI contributed the least to Tmax
estimation, with mean SHAP value of 0.35. More-
over, Figure 14 illustrates that an increase in SP, DT,
and GR led to an increase in Tmax, while higher
values of RHOB, LLD, and NPHI resulted in a
decrease in Tmax.

Assessment of Kerogen Type and Maturity Stage

Based on the results estimated by GMDH–DE,
kerogen classification diagrams were constructed
using the HI vs. Tmax plot utilized by the earliest
researcher to determine the maturity stage and
kerogen type (Fig. 15). Overall, the findings indi-
cated that most of the analyzed samples from the
Triassic–Jurassic source rocks in the Mbate and
Mbuo Wells are typically plotted in the immature
zone of Types I to III kerogens with Tmax of<
435 �C belonging to the gas–oil generation window
and signifying the incapability of the rocks to gen-
erate hydrocarbons (Tissot & Welte, 2013; Al-Areeq
et al., 2018). These findings correspond to the one
attained from basin modeling analyzed from the
PetroMod. Their HI values justify this in the 52–

Figure 9. RMSE and MAE of GMDH, GMDH–DE, and

BPNN models for Tmax estimation during training.

Table 8. Value of R2 for the fitted equations per model during the testing phase

Model Equation R2 RMSE MAE Computational time (s)

GMDH–DE y = 49.877 + 0.9079x 0.970 0.017 0.025 0.5

GMDH y = 94.135 + 0.7816x 0.898 0.031 0.037 3.8

BPNN y = 168.820 + 0.6178x 0.759 0.056 0.064 5.6
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1017 mg HC/g TOC range. Moreover, the results
revealed that very few samples from Mbate and
Mbuo Wells are plotted in mature zones of Types II
to III kerogens as indicated by their Tmax of 435–
460 �C and HI of 13–285 mg HC/g TOC. In Fig-
ure 15, most samples from the Mita Gamma Well

are plotted in the mature zone of the Types II to III
kerogens field as indicated by higher Tmax of 440–
460 oC, which are in line with the result from the
classification suggested by Peters (1986) and Peters
and Cassa (1994). In contrast, only a few samples are
plotted in an immature zone of Types I to III

Figure 10. Cross-plots of actual Tmax vs. Tmax predicted by (a) GMDH–DE, (b) GMDH, and (c) BPNN models during the testing.
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kerogens as indicated by the Tmax of< 435 �C
(Fig. 15).

CONCLUSIONS

The study has shown the proposed GMDH–DE
Tmax model, as an independent novel approach, can
be adopted for rapid real-time assessment of Tmax
values of the organic matter of source rock. There-
fore, based on this study, the following conclusions
can be drawn:

1. One-dimensional Tmax modeling suggests that
the lower Jurassic Mbuo source rocks entered
the gas–oil window in late Triassic times and
reached the expulsion onset during the early
Jurassic. The Tmax thermal maturation and ba-
sin modeling vitrinite reflectance showed that
Mbuo source rocks are immature to mature.

2. The Tmax estimation using the GMDH–DE
model was compared to that using GMDH and
BPNN. The GMDH and BPNN models under-
estimated the Tmax values significantly. In con-
trast, the GMDH–DE outperformed the other
models with estimates very close to the mea-
sured values. Therefore, the model accurately
and precisely estimated the organic matter of the
source rock and can be used in different case
studies for positive results.

3. The results of the proposed GMDH–DE model
were compared with those of the previously
developed hybrid models of PCA–ANN and
PSO–ANN; the former model performed better
than the latter models. The sensitivity analysis
also showed that well log parameters of LLD,

Figure 11. RMSE and MAE of GMDH, GMDH–DE, and

BPNN models for Tmax estimation during testing.

Table 9. Comparison of the proposed model with the previously

developed hybrid models for predicting Tmax

Model Training Testing References

R2 RMSE R2 RMSE

GMDH–DE 0.995 1.840 0.970 1.540 This study

PSO–ANN 0.917 0.258 0.918 0.428 Tariq et al.

(2020)

PCA–ANN 0.880 – 0.852 – Barham

et al. (2021)

Figure 12. Comparison of models from the present study,

Tariq et al. (2020) and Barham et al. (2021), for predicting

Tmax in terms of R2.

Figure 13. Input parameter importance for Tmax estimation.
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RHOB, and GR had the most significant con-
tribution to the performance of the GMDH–DE
model in Tmax estimation.

4. The GMDH–DE model outperformed the
GMDH, BPNN, PSO–ANN, and PCA–ANN
models in predicting Tmax values from well logs.
Therefore, exploration and development of oil
and gas resources might be significantly facili-
tated using the proposed hybrid GMDH–DE
technique.

5. Source rocks analysis showed that the Mbate,
Mbuo, and Mita GammaWells have fair-to-good

generation potential, as indicated by HI and
Tmax values. The HI values characterize kerogen
Types II and III. The wells lie in the immature-
to-mature window zone indicated by the HI vs.
Tmax plot. Therefore, it could be expected that
the wells may have generated oil and gas.
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APPENDIX See (Table 10).
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M., Li, D., Wang, W., Tian, X., & Song, Z. (2023). The or-
ganic petrology of vitrinite-like maceral in the Lower Pale-
ozoic shales: Implications for the thermal maturity

A Novel Hybrid Machine Learning Approach



evaluation. International Journal of Coal Geology, 274,
104282.

Wu, Y., & Tong, G. (2022). The evaluation of agricultural
enterprise�s innovative borrowing capacity based on deep
learning and BP neural network. International Journal of
System Assurance Engineering and Management, 13, 1111–
1123.

Wygrala, B.P., (1989). Integrated study of an oil field in the
southern Po basin, northern Italy.

Yang, L., & Shami, A. (2020). On hyperparameter optimization of
machine learning algorithms: Theory and practice. Neuro-
computing, 415, 295–316.

Yang, S., & Horsfield, B. (2020). Critical review of the uncertainty
of Tmax in revealing the thermal maturity of organic matter
in sedimentary rocks. International Journal of Coal Geology,
225, 103500.

Yao, B., He, H., Xu, H., Zhu, T., Liu, T., Ke, J., You, C., Zhu, D.,
& Wu, L. (2021). Determining nitrogen status and quantify-
ing nitrogen fertilizer requirement using a critical nitrogen
dilution curve for hybrid indica rice under mechanical pot-
seedling transplanting pattern. Journal of Integrative Agri-
culture, 20, 1474–1486.

Zhang, M., & Li, Z. (2018). Thermal maturity of the Permian
Lucaogou Formation organic-rich shale at the northern foot
of Bogda Mountains, Junggar Basin (NW China): Effective
assessments from organic geochemistry. Fuel, 211, 278–290. h
ttps://doi.org/10.1016/j.fuel.2017.09.069.

Zhao, P., Ostadhassan, M., Shen, B., Liu, W., Abarghani, A., Liu,
K., Luo, M., & Cai, J. (2019). Estimating thermal maturity of
organic-rich shale from well logs: Case studies of two shale
plays. Fuel, 235, 1195–1206.

Zhao, X., Chen, X., Huang, Q., Lan, Z., Wang, X., & Yao, G.
(2022). Logging-data-driven permeability prediction in low-
permeable sandstones based on machine learning with pat-
tern visualization: A case study in Wenchang a sag, Pearl
River Mouth Basin. Journal of Petroleum Science and Engi-
neering, 214, 110517.

Zhou, H., Deng, Z., Xia, Y., & Fu, M. (2016). A new sampling
method in particle filter based on Pearson correlation coef-
ficient. Neurocomputing, 216, 208–215.

Zhou, Z., Tao, Y., Li, S., & Ding, W. (2013). Hydrocarbon
potential in the key basins in the East Coast of Africa. Pet-
roleum Exploration and Development, 40, 582–591.

Zongying, Z., Ye, T., Shujun, L., & Wenlong, D. (2013). Hydro-
carbon potential in the key basins in the East Coast of Africa.
Petroleum exploration and development, 40, 582–591.

Springer Nature or its licensor (e.g. a society or other partner)
holds exclusive rights to this article under a publishing agreement
with the author(s) or other rightsholder(s); author self-archiving
of the accepted manuscript version of this article is solely gov-
erned by the terms of such publishing agreement and applicable
law.

C. N. Mkono et al.

https://doi.org/10.1016/j.fuel.2017.09.069
https://doi.org/10.1016/j.fuel.2017.09.069

	A Novel Hybrid Machine Learning Approach and Basin Modeling for Thermal Maturity Estimation of Source Rocks in Mandawa Basin, East Africa
	Abstract
	Introduction
	Geological Setting
	Data Description and Pre-processing
	Geochemical Analysis
	Basin Modeling
	Back-Propagation Neural Network (BPNN)
	Group Method Data Handling (GMDH)
	GMDH Optimized by Differential Evolution (DE)

	Results and Discussion
	1D Basin Modeling Analysis
	GMDH--DE Model Development
	Performance Indicators
	Hyperparameters Tuning
	Estimation of Tmax during Training Performance
	Estimation of Tmax During Testing Performance
	Comparison with Previous Studies
	SHAP (SHapley Additive exPlanations)
	Assessment of Kerogen Type and Maturity Stage

	Conclusions
	Funding
	References


