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Abstract: Alteration in Land Use/Cover (LULC) considered a major challenge over the recent dec-
ades, as it plays an important role in diminishing biodiversity, altering the macro and microclimate. 
Therefore, the current study was designed to examine the past 30 years (1987–2017) changes in 
LULC and Land Surface Temperature (LST) and also simulated for next 30 years (2047). The LULC 
maps were developed based on maximum probability classification while the LST was retrieved 
from Landsat thermal bands and Radiative Transfer Equation (RTE) method for the respective 
years. Different approaches were used, such as Weighted Evidence (WE), Cellular Automata (CA) 
and regression prediction model for the year 2047. Resultantly, the LULC classification showed in-
creasing trend in built-up and bare soil classes (13 km2 and 89 km2), and the decreasing trend in 
vegetation class (−144 km2) in the study area. In the next 30 years, the built-up and bare soil classes 
would further rise with same speed (25 km2 and 36.53 km2), and the vegetation class would further 
decline (−147 km2) until 2047. Similarly for LST, the temperature range for higher classes (27 -< 30 
°C) increased by about 140 km2 during 1987–2017, which would further enlarge (409 km2) until 2047. 
The lower LST range (15 °C to <21 °C) showed a decreasing trend (−54.94 km2) and would further 
decline to (−20 km2) until 2047 if it remained at the same speed. Prospective findings will be helpful 
for land use planners, climatologists and other scientists in reducing the increasing LST associated 
with LULC changes. 
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1. Introduction 
One of the foremost environmental problems influencing the natural ecosystem is 

the increasing urbanization worldwide. Because of various socio-economic factors, urban-
ization triggers migration, altering the global urban pattern. These trends of increasing 
urbanization have both positive and negative consequences. The negative impacts include 
health issues, infrastructure burden and environmental degradation, while the positive 
impacts include job opportunities and improved quality of life [1–4]. Rapid urbanization 
also caused significant changes in biodiversity, habitat, natural landscaping, geography, 
and biophysical climate. According to a World Bank report, 3.5 billion people will live in 
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urban areas by 2030: that will be 60% of the total global population [5]. The rising pattern 
in global urbanization has provoked numerous researchers to find out the impacts of hu-
man actions on metropolitan thermal surroundings, i.e., LST and UHIs [6]. In the previous 
centuries, due to human interference the LULC [7] notably affected the terrestrial ecosys-
tem at the local, regional and global level [8–11], thus affecting the overall environment. 

The LST is the surface radiation level affected by topographical situations, 
landscaping configuration, natural vegetation and urban extension [12–14]. Increasing 
tendency of surface temperature in the region of built-up and bare soil are mainly due to 
impervious levels to come up with formation of UHIs [15]. The LST depends on LULC in 
tropical and sub-tropical municipal regions where built-up and bare soil have a higher 
LST than the arid environment [16,17]. The bare earth gains high solar radiation, thus 
leading to differences in the LST [18]. The alterations in LULC and its impact on LST has 
been broadly examined [3,19] and it has also been observed that human are responsible 
for the rising trend in LST for replacing vegetation areas with built-up regions, as the for-
mations of “UHIs” thus brings changes in LULC [20,21].The LULC is made up of several 
components, which are involved in energy transferformation between the Earth’s surface 
and the atmosphere [22]. LULC changes have an impact on this energy transformation 
[6,23]. 

Simulation models are important to investigate the changes in LULC [24,25]. LULC-
based studies provide a significant map for sound decisions in the area of land use. Land 
Use Scenarios Dynamic model (LUSD) identified the scenario simulation of land use to 
join “bottom–up” and “top–down” approaches. Natural and manmade factors at different 
levels are responsible for LULC change [26]. The LULC studies have also extensively been 
done with remote sensing approaches [27,28]. Different research has reported that remote 
sensing satellite data is assistive to determine the relation between LST and LULC patterns 
[29,30]. Numerous methods and algorithms can be used for LULC modeling but the com-
mon LULC prediction models are Markov Chain [31], Artificial Neural Network (ANN) 
model [32] and CA model [33]. The combination of models such as CA-stochastic and CA-
ANN forecasted multi-dimensional alteration and provide appropriate outcome [9,34]. 
Many researchers focused only on LULC changes in urban and rural mountainous areas 
of Pakistan [35–38].There has been very little research conducted on LULC changes and 
their impact on associated LST patterns in the mountainous area located near the Indus 
river basin area of Northern, Pakistan. The current study employed CA-ANN model for 
LULC simulation for the year 2047. The model accuracy was validated by Kappa variation 
using simulated and observed LULC map [35]. 

The mountainous areas of northern Pakhtunkhwa valley Pakistan are very crucial for 
their beauty and natural assets. this area is home to the largest fill-kind dam in the world, 
constructed on the Indus River close to Terbella area; this is also the world’s second largest 
dam regarding reservoir potential—14.3 billion cubic meters with an installed capacity of 
4888 MW; 6298 MW (max). The dam regulates the flows of Indus basin for irrigation, hy-
droelectricity production and flood management by sustaining snowmelt and River Indus 
monsoon flow. Moreover, the construction of China and Pakistan Economic Corridor 
(CPEC) project is very susceptible to link the road between China and Pakistan, which 
will prove a very useful route for easy travelling and business. Landscaping alteration, 
natural habitat, even a massive flow of people from other regions in the previous few 
decades might have induced LULC and LST changes. Although, changes in topography 
and their consequences on LST and LULC are not identified and such research work has 
not been designed yet on the subsequent area, which will be a novel contribution for re-
search bank and environment worldwide. This shortage of knowledge created a problem 
for urban planners, climatologists, researchers and policy makers to manage a sound plan 
for indigenous communities. For that reason, the present novel project in the lower moun-
tainous area of northern Pakhtunkhwa valley, Pakistan was designed to plan the present 
LULC and LST changes and its upcoming prediction based on the following objectives: 
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(a) Investigated LULC changes and LST pattern from 1987–2017 using moderate resolu-
tion Landsat data (Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI). 

(b) To simulate changes in LULC and LST using regression analysis and CA-ANN model 
until 2047. 

2. Materials and Methods 
2.1. Study Area 

As given in Figure 1, the Terbella is situated between the Indus and Kabul River with 
geographic coordinates as 34°15′ N, 72°45′ E. The world’s largest earth dam is Terbella 
Dam, lying in the Indus Basin; it covers an area of 169,650 km2. It is located between the 
great Karakoram and the Himalayan glaciers mountain ranges, where over 90% of this 
region’s melt waters reach Terbella. The study area spreads about 1643 km2 residing over-
all population of 1,624,616 million [39]. Its boundaries are shared with districts of Buner 
in the north, Haripur in the east, Attock in the south and Mardan in the west. It is about 
70 km at distance (northwest) from the capital of Pakistan i.e., Islamabad. The highest 
elevation is about 7000 feet above sea level. The mean temperature and average rainfall 
annually are 28.2 °C and 639 mm, consequently. The range of the monsoon season starts 
from May to October while the rainy winter term prevails from December to April. July 
is considered the hottest month which mean temperature 38 °C while January is the cold-
est month, with temperatures hitting about 10 °C [40]. The month of October is known as 
summer–winter phase due to seasonal changes. The climate of the area demonstrates tem-
perature variations because of its inland position. 

 
Figure 1. Study area map (Lower Mountainous Indus Basin area Terbella, Pakistan) (a) Country, 
(b) Province, and (c) Study area Terbella. 
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2.2. Remotely Sensed Data 
The remotely sensed Landsat imageries were collected from USGS, NASA website 

with specific gap of 15 years, for example 1987, 2002 and 2017, respectively, for 30 years 
to assess the LULC and LST changes. The required images were taken over the span of 5 
days (date 19–24) in the month of May. The images were radiometric and atmospherically 
corrected using Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes 
(FLAASH) method in Envi 5.3 software [23]. The imageries were proportionate for eco-
logical variables such as temperature, humidity, scene ID and cloud cover in percentage 
and their details are available in Table 1. 

Table 1. Source origin of downloaded images(United States Geological Survey). 

Collection Date Path/Row Cloud (%) Sensors Scene ID 
24 May 1987 150/36 6 Landsat 5 TM LT51500361987114ISP00 
19 May 2002 150/36 8 Landsat 7 ETM + LT71500362002139SGS00 
20 May 2017 150/36 13 Landsat 8 OLI LC81500362017140LGN00 

2.3. Data Processing and Analysis 
Pre-processing was used for satellite data before LULC classification and LST re-

trieval. Pre-treatment contains radiometric calibration, atmospheric corrections and line 
removal in QGIS, ArcMap and method of Support Vector Machine (SVM). The ENVI soft-
ware was also used for LULC maps of different years (1987, 2002 and 2017) while the LST 
was measured from the derived thermal bands of the particular images [41]. 

2.4. LULC Classification and Accuracy Assessment 
The Anderson classification method was used for the LULC grouping [42,43]. The 

Landsat-acquired images were used for LULC classification using Support Vector 
Machine(SVM) method in ENVI 5.3 software [41]. A total of 40 training ground truth sam-
ples from each LULC classes collected during the field survey were used to evaluate the 
LULC classification’s accuracy. During the field survey, the GPS system was used to 
gather the points. The training samples were created using spectral, spatial, and other data 
from Google Earth images in order to improve the accuracy of LULC classification. The 
LULC classification accuracy was frequently evaluated using the confusion matrix ap-
proach. The accuracy of LULC classification was measured using confusion matrix 
method. The confusion matrix method produced Kappa coefficient values, which were 
used for assessing the LULC classification accuracy [44] Figure 2. 
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Figure 2. Flow chart for Land Use Land Cover and Land (LULC) and Land Surface Temperature 
(LST) methodology. 

2.5. LST Estimation 
The Landsat satellite images were derived for LST from the geometrically and radi-

ometrically corrected thermal bands. By applying standard RTE method, LST was col-
lected from Landsat images of thermal bands the 5-TM and 7-ETM+ [45]. The Percentage 
Vegetation (PV), Normalized Difference Vegetation Index (NDVI), Surface Emissivity of 
Land applied in RTE technique (LSE). Equation (1) was applied for the NDVI calculation 
formula: 

NDVI = NIR + RED/NIR − RED (1)

In the above equation, NIR stands for near-infrared band (band 5) while RED indi-
cates the band red in (band 4) in Landsat-8 OLI. On the other hand, band 4 and 3 indicated 
the NIR and RED in Landsat-5 TM (0.64–0.67 mm) whereas band-4 (0.85–0.88 mm) in 
Landsat-8 OLI were somewhere constant with band-4 (0.77–0.90 mm) and band 3 (0.63–
0.69 mm) in Landsat-5 and used for same results. Equation (2) was applied to examine PV 
that relied on NDVI minimum and maximum values. 

PV = (NDVI − NDVImin/NDVImax − NDVImin)2 (2)

LSE is necessary for LST retrieval; that is, the measurement part and maintaining the 
radiance of a black body (Planck’s Law) to predict discharge radiance [46]. Third equation 
was applied to calculate LSE: 

LSEBi = Es (1 − FVC) + Ev FVC (3)

In equation, Bi indicates the number’s band and C indicates the rough surface(C-0 
for plain surface) with regular significance of 0.005 while Es and Ev showed soil emissivity 
and foliage standards. The values were fixed at 0.971 and 0.987 for Es and Ev band 10 and 
0.977 and 0.989 for band 11, respectively [47]. There is an adequate method for LST 
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retrieval from Landsat 7 and 8, which used to make the body heat of the thermal band 
bloom at sensor level. Moreover, brightness temperatures derived from thermal bands 
composed of radiance estimation rely on the impact of Digital Number (DN) by utilizing 
the (NASA) data center. The fourth equation was used from the DN of satellite data. 

Li = RADIANCEMULTBi × DN + RADIANCEADDBi (4)

Li is sensor spectral radiance (m W cm−2 sr−1 µm−1); RADIANCEADD and RADI-
ANCEMULT are stable bands, occurring in the header file. From the fifth equation, we 
assessed the temperature vividness. 

TsBi = K2Bi/log ((K1Bi/Li) +1) − 273.15 (5)

In this equation, Ts denotes temperature brightness in band I in Kelvin whereas K1 
and K2 are stable. The technique was conducted by USGS to assess brightness tempera-
ture to calculate the LST from Kelvin to Celsius assumption: 273.15 from the findings [48]. 
Estimating LST, spectral radiance and TOA must be authentic to gain radiance spectral 
surface. Moreover, the atmospheric affect is also very crucial to study the temperature 
[42]. In the present research, we used an appropriate RTE technique suggested by [49] 
given in Equation (6). 

LSTRTEBi = EiTi + ((1 − Ei) Down welling) + Upwelling (6)

In this equation, Ei shows the emissivity surface of one band, Ti denotes the radiance 
spectral, while upwelling and down welling are path radiance. To calculate the down 
welling & upwelling the 5.0 MORTON radioactive transforms code using US strong at-
mospheric profile by selecting the Urban Aerosol Model. Base radiance (Ti) assessed by 
applying the law of Planck: 

Ti = C1/Wavelength 5 Bi (exp (C2/wavelength Bi × Ts) − 1) (7)

Mentioned in the equation, C1 andC2 are Planck radiation stables (C1 is 1.19104 × 108 
Wµm4 m-2 sr-1 and C2 is 14,387.7 µm k), wavelength denoted band (band-10 = 10.602 and 
band 11 = 12.511), whereas Ts denotes the surface temperature derived from Equation (5). 
RTE technique was used for single bands (10 and 11). The sixth equation results for every 
band were used in equation seven to assess the average surface temperature of land. We 
applied thermal bands 6 and 10 of Landsat-5 and 8 images because of supplementary val-
ues to assess LST outcome. Band 11 was overlooked because of LST error assessment and 
water vapor absorption effect proposed in the earlier studies [5]. 

2.6. LST Change Relative Detection 
To correlate the impact of LULC on the thermal environment, relative LST was used 

for the years 1987, 2002, and 2017. Participation of relative LST from LULC (decreased/in-
crease) changes prevailed; the mean LST of a particular region through every pixel value 
is given in Equation (8): 

RLSTij = LSTij − LSTi mean (8)

RLSTij denotes the temperature pixel of j of class I; LST expresses the temperature 
cell j of class i, and LSTi indicates the average LST value for landscaping. When RLSTji is 
greater than 0, the pixel shows +ve contribution of configuration of LULC. When RLSTji 
is lesser than 0, then it shows –ve impact thermal circumstances [50,51]. 

2.7. Standardization of LST 
When LST maps were produced for distinct 3 years and then they were normalized 

prior to further study. The 2017 LST image was made as a base to guide this standardiza-
tion method. So, the Z-score approach was used as in [52], as: 

LSTnj = (LST − LSTJ/LSTσj) LSTσi + LSTi (9)
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This shows that the LSTnj is the pixel-particular standardized LST for the mentioned 
years (1987 or 2002); while LSTJ is the average image-proper values of the LST initial image 
proceeding to standardization. LSTJ is the normal image-particular LST-values for 1987 
or 2002; LSTσj is the standard deviation of the particular image for the values of LSTfor 
1987 and 2002, whereas LSTσj is the standard deviation for the base year (2017); and finally 
LSTi is the average image value of LST for the year 2017. 

2.8. Zone-Wise Temperature Classification 
The LST were divided into various zones: <15 °C; 15 to <21 °C; 21 to <24 °C; 24 to <27 

°C; 27 to <30 °C; 30 to <35 °C; and =>35 °C. Evaluations were made possible to quantify 
the ratio of area under every temperature zone. The greatest temperature zone was set as 
equal to or above 35 °C whereas the lowest considered was less than 15 °C. 

LSTs = LST − LSTu/LSTΩ (10)

where LSTs = Standardized LST; LSTu = Mean LST calculated from 1987, 2002, and 2017; 
LSTΩ = LST standard deviation calculated from 1987, 2002, and 2017. 

2.9. LULC Simulation 
There are several methods which were used for modeling LULC changes, utilizing 

driving variables and past changes [53]. For the current study, integrated CA-ANN model 
was used for LULC simulation in QGIS 2.8 software [54]. The CA-ANN model was 
selected for LULC simulation to the current study because of its high accuracy [23]. Ini-
tially, it forecasted the ANN-transformation potential matrix and then simulates prospec-
tive LULC alterations by utilizing CA model in the MOLUSCE tool in QGIS. The CA 
model is an appropriate model to wrap the dynamic and static characteristic of LULC 
trends, which were applied to forecast land cover changes due to clear precision [24]. Dif-
ferent variables such height and space from the main roads and slopes were used as fea-
tures of land use. 

The distance from the road was estimated by applying data vector of the particular 
region relating to space’s role in the software of ArcGIS. Firstly, the ANN method was 
used for training and modeling of past LULC changes then CA model have been applied 
to simulate LULC changes for the period of 2047 with the help of MOLUSCE tool in QGIS 
2.8 software. The validation of the CA-ANN model is important; therefore, CA-ANN 
model was validated by comparing simulated LULC for 2017 with estimated LULC of 
2017 using MOLUSCE QGIS validation. 

2.10. LST Simulation 
The foremost issue for public planners and administrators is the phenomena of global 

warming that increasing the LST in urban areas [55]. A multi-dimensional Artificial Neu-
ral Network method in MATLAB [35] was used to forecast and simulate upcoming LST 
alteration by using the past patterns in study area. Using Many-Layer Perceptron (MLP), 
ANN responds directly to parameter of network that enhances the changes in network 
model. The MLP algorithm is reliant on error correction—learning ideas. In MLP, once 
the system obtains a string, its phenomenon possibly produces a low-accuracy random 
result. The prediction of LST depends upon the record system from 1987 to 2017. The re-
gion was subcategorized into georeference grids 500 m × 500 m to display the point range 
of spatial units applying QGIS. This size of grid is preferred due to the lower area where 
properties of single point can have a crucial effect. The example data were utilized to con-
struct ANN in MATLAB for simulation. Furthermore, latitude and longitude of the exam-
ple spatial unit were used to increase the modeling effectiveness. The greater the input 
parameters, the more accurate the system model. The forecasting of LST results contained 
the construction of network, training of network, performance of group assessment, and 
forecasting. Mean Square Error (MSE), parallel coefficient (R), and standard measure the 
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system assurance. The regression study yield produces an assessment of how the target 
data set describes the result of conclusion. When the significance is 1, then the output data 
sets are completely linked. On the other hand, it is very difficult to obtain a value of 1. The 
Graphic User Interface (GUI) was produced to examine the routine indication before net-
work implementation and finally it was determined to be okay and saved for further pre-
diction. 

Numerous hidden layers were set based on MSE and R. The hidden layers are crucial 
as they permit the network to show non-linear behavior, which affects the results. A recent 
study was chosen with three hidden layers, where the first is the learning rate (µ), which 
was set at 0.1 and the decay time (β) was used to maintain it during the research. The 
hidden layers were chosen based on MSE and R and are crucial as they permit the network 
to show a non-linear attitude to affect the results. The typical decay rate at the level of 0–
1 (0 < β) and the 0.9 decay rate was applied to enhance the understanding, which was 
expressed if the function error between past and present was rising and the β promoted 
the learning limit µ with division if it was falling, then multiplied it to reanalyze the µ. 
The indices of LULC were used for LST forecasting year 2047 [56]. After LULC indices 
derivation, correlation (bivariate) assessment between LST and indices were used to index, 
which has strong correlation with LST. The index NDVI indicated significant correlation 
with LST (p is lesser than 0.05) and the RMSE and R values were set 2.942 and 0.485, re-
spectively. The selected index, such as NDVI with regression model, was then applied to 
simulate LST for the year 2047. The regression analyses were performed between LST and 
NDVI to create regression equation. 

LST = 30.10 + (2.14 × NDVI) LST = 24.24 + (12.20 × NDVI) 

Different indices were applied to calculate the LST shifts; NDBaI, NDVI, NDBI and 
UI which formulas are given in Table 2. 

Table 2. Formulas for various LULC indices. 

Indices name Equations Landsat (TM, ETM +, and OLI) 
NDVI Near Infrared-Red/Near Infrared + Red 
UI SWR2-Near Infrared/SWR2+ Near Infrared 
NDBaI SWRI-Thermal Infrared/SWRI + Thermal Infrared 
NDBI SWRI-Near Infrared/SWRI+Near Infrared 

The NDVI index was rearranged so it could predict <15 °C, 15 to <21 °C, 21 to <24 °C, 
24 to <27 °C, 27 to <30 °C, and equal to or above 30 °C. The chosen index for NDVI for the 
year 2017 was applied using the CA-ANN model to simulate the changes during 2017–
2047. Lastly, for LST modeling for 2047, regression equation and NDVI index were per-
formed. 

3. Results 
We identified the past LST and LULC changed pattern, and then simulated for the 

upcoming 30 years (i.e., 2047). 

3.1. Previous Variations Patterns in LULC Classes 
The entire study region was divided into five groups for the selected years. The re-

sults indicated that the built-up and bare soil types were 32 km2 and 251.2 km2 in 1987, 
while they increased to 44.9 km2 and 340.45 km2, respectively, in 2017. The vegetation 
showed a decreasing trend that covered an area of 396.76 km2 in 1987 and reduced to 253 
km2 in 2017, as given in (Figures 3 and 4). The LULC classification accuracy was above 
90% for all three images, i.e., 1987, 2002, and 2017 (Table 3). Different factors may relate to 
LULC changes such as the rise in the built-up and bare soil due to anthropogenic activities 
and population explosion. Other reasons are natural disasters, due to which, for example, 
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people from neighboring areas migrated to the studied area after the earthquake (2005). 
The Himalayan zone might be considered as urban area based on its population size and 
density. 

Table 3. Accuracy assessment of the classified land cover maps for 1987, 2002, and 2017. 

Year 
User Accuracy 

(%) 
Producer  

Accuracy (%) 
Overall  

Accuracy (%) 
Kappa  

Coefficient 
1987 96.34 93.15 94.96 0.92 
2002 96.34 86.24 92.26 0.88 
2017 93.67 92.84 91.35 0.87 

 
Figure 3. Past LULC maps of the years a (1987), b (2002), and c (2017). 
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Figure 4. Classification of LULC classes during (1987–2017). 

3.2. Past Changes in LST (1987 to 2017) 
The study area images were classified into six major LST groups. The highest tem-

perature range was set at 35 °C or above, while the lowest was considered 15 °C, which 
demonstrated the LULC shifts over different years, 1987, 2002, and 2017. The higher clas-
ses temperature area (27–30 °C and equal or greater than 35 °C) were 219.88 km2 and 67.51 
km2 in 1987, which increased to 259.71 km2 and 200.31 km2 in 2017. On the other hand, the 
lower class in the range of <15 °C decreased from 104.85 km2 to 86.8 km2in area during the 
study period (Figures 5 and 6). Mostly, a lower-temperature area changed into ahigher-
temperature area due to changes in climate, urbanization, and indicated growing trends 
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in the LST. The proposed study indicated that constructed and bare soils have greater LST 
than that of other classes such as water bodies, agriculture, and vegetation. 

 
Figure 5. LST previous pattern for the respective years (a) 1987, (b) 2002, and (c) 2017. 
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Figure 6. Distribution of different temperature ranges in area km2 for the years 1987, 2002 and 2017. 

3.3. LULC Simulation for 2047 
The findings of the following studies indicated that the LULC changed from 1987 to 

2017 and as well as for the projected year 2047. The projected outcome showed that the 
vegetation class was 253 km2 in 2017, which will decrease to 249 km2 in 2047 while built-
up class will increase from 44.9 km2 to 70.08 km2, respectively, from 2017 to 2047 in the 
study area (Table 4 and Figure 7). The LULC modeling accuracy was assessed by percent 
correctness value which was above 70% (Table 5). 

Table 4. Land use land cover condition projection for the year 2047. 

Class Name Area (km2) 2047 Area (%) 
Built up 070.08 06.79 
Water 120.27 11.65 

Vegetation 249.32 24.16 
Agriculture 288.26 27.93 

Bare soil 303.92 29.45 
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Figure 7. LULC simulation map for the year 2047. 

Table 5. Validation of CA-ANN model for LULC changes for the year 2047. 

Validation of CA-ANN Model in QGIS Software 
Validation Parameters (K Parameters) and % Correctness 

K location K histogram Overall kappa % Correctness 
0.60 0.98 0.59 71.60 

3.4. Simulation of LST for 2047 
The LST was substantially altered in the study area, just like the LULC groups. There-

fore, the LST was also simulated to assessed the strong correlation between the existing 
and forecasted accuracy prediction. Results indicated the increasing trend of higher-tem-
perature series in range of, i.e., 27 to <30 °C, and the decreasing trend in the lower-tem-
perature range (i.e., 21 to <24 °C) (Table 6 and Figure 8). This may be due to air tempera-
ture, global warming, and Urban Heat Islands (UHIs) affecting the LST of the study area 
(Table 6 and Figure 8). 
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Table 6. LST Simulation for the 2047. 

Temperature Range Area (km2) 2047 Area (%) 
<15 °C 129.0 12.50 

21 to <24 °C 09.80 00.95 
24 to <27 °C 76.24 07.38 
27 to <30 °C 68.80 74.50 

≥30 °C 47.98 04.65 

 
Figure 8. LST simulation map for the year 2047. 

4. Discussion 
4.1. Past LULC Changes 

Natural disasters might be chief reason for why an abundant number of people from 
neighboring areas left their region after the earthquake of 2005 in the western and eastern 
Himalayan areas, which may considered a remarkable source of urbanization. The 
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consequences of such study supported the achievements of [57]. It was also reported in 
some other studies that economical, technological, geopolitical, and environmental pa-
rameters are responsible for urbanization [58]. Changes in the LULC are a major issue 
(FAO, 1999), and are the driving force of environmental changes. Rapid migration from 
rural areas to metropolitan areas causes instantaneous changes in the ecosystem of urban 
areas, biodiversity, universal landscaping, topography, and the biophysical environment 
[2]. There has already been available research in which it is mentioned that enlargement 
of LST is directly related to expansion of urban areas, especially in less-developed coun-
tries [59]. The metropolitan areas’ expansions have expressed an impact on the enlarge-
ment of bare earth surfaces [60,61]. Additionally, Past research has pointed out that vege-
tation land can cause soil moisture to recede LST [62]. 

4.2. Past LST Changes 
The proposed study indicated that built-up and bare soils have a greater LST then 

that of other classes such as water bodies, agriculture, and vegetation. Mostly lower-tem-
perature areas changed into higher-temperature zones because of climate change, urban-
ization, and the indicated growing trend in the study area’s LST. The same findings have 
been reported by different researchers in previous studies [19,63]. Furthermore, [64] also 
stated that heat discharge from the Himalayan plateau is a significant point of precipita-
tion, as temperature variation is produced between the air at upper and lower elevations, 
but it has less impacted at lower-altitudinal regions, such as our study area [65]. The warm 
insulation and humid air between the Polar and subtropic region is one more significant 
factor that affects the Himalayan area’s climate. Current studies are focused on LULC 
changes (rather than climate changes) as local heating impacts of air temperature in the 
lower mountainous areas, which consequently shifts the temperature and moistening of 
air in the boundary area [66]. 

4.3. LULC Simulation 
The past LULC trends indicated a drastic alteration in the proposed area during 1987 

to 2017, which is why simulation of LULC dynamics is very significant for upcoming time. 
However, if the results remained the same as they were in the past, it would directly or 
indirectly affect the biodiversity and microclimate of the study area [67]. The CA-ANN 
model precision indicated the accuracy value of 70%, considered a permissible limit of 
accuracy. The forecasted result showed the decreasing trend in vegetation and increasing 
trends in the built-up and bare soil areas. Such a finding, also reported by [15] in Beijing, 
informs us that a population bomb is the main cause for intensifying these changes. Prec-
edent management is needed to protect the study area from drastic alteration, as 49.91% 
of people live in urbanized areas, and this is estimated to reach 60% of people worldwide 
by 2030. In addition, the number of large cities will reach to 100 by 2025 [4]. 

4.4. LST Simulation (2047) 
The projected results indicate the rising drift (409 km2) in the higher-temperature 

zone (i.e., 27 to <30 °C), whereas the lower-temperature zone in range of (i.e., 12 to <21 °C) 
showed a decreasing trend, which is (42 km2). Several elements such as global warming, 
greenhouse gases, and changes in surface features directly or indirectly affect the LST of 
the area [68,69]. Similarly, the expansion in built-up areas may also be the reason for the 
expansion in temperature [70]. The LST expansion badly affects the land cover thermal 
command that leads to UHIs from land surface changes that graciously left heat from an-
thropogenic sources [71]. The phenomena specifically increase the urban temperature 
[72], which is the foremost ecological problem for humans and the variety of life forms 
[73]. The warming trend in South Asia is probably greater than the global mean [74]. Ad-
ditionally, the effect of global warming could be measured by land cover area close to 
construction [75,76]. 
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5. Conclusions 
A variation in LST related to LULC changes affected the normal functions of the eco-

system. This study found significant changes in LULC, especially in the area covered by 
built-up and bare soil, which has influenced the LST. The LST variations related to the 
physical properties of the surfaces, such as built-up and bare soil, have a greater contribu-
tion in increasing LST, while water and vegetation keep the environment cool. The simu-
lation outcome showed that this will continue by the year 2047, if the same trends remain 
as the past. Overall, the study findings provide significant insights for landscape planners 
to act for monitoring the unplanned urban development and related UHIs formations. 
The crucial alarm is about the recently built link road under the China Pakistan Economic 
Corridor (CPEC) project, and famous earth-filled dam in the Indus basin passing through 
the environmentally sensitive lower mountainous study areas that may have a bad effect 
on LULC features. Some important steps should be taken before conducting further stud-
ies. 

The high-resolution satellite imageries such as (IKONOS-2, OrbView-3, and histori-
cal SPOT data) could be used for further studies. 

The study findings could be used for better LULC planning as well as UHI mitigation 
in the study area. 

The study could be more comprehensive by combining climate data with LULC and 
LST dynamics in the study area. 

Future LULC and LST simulation should be done in 15-year of intervals for better 
understanding of LULC and LST changes. 
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