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Abstract: The presence of two thermal bands in Landsat 8 brings the opportunity to use either
one or both of these bands to retrieve Land Surface Temperature (LST). In order to compare the
performances of existing algorithms, we used four methods to retrieve LST from Landsat 8 and
made an intercomparison among them. Apart from the direct use of the Radiative Transfer Equation
(RTE), Single-Channel Algorithm and two Split-Window Algorithms were used taking an agricultural
region in Bangladesh as the study area. The LSTs retrieved in the four methods were validated in two
ways: first, an indirect validation against reference LST, which was obtained in the Atmospheric and
Topographic CORection (ATCOR) software module; second, cross-validation with Terra MODerate
Resolution Imaging Spectroradiometer (MODIS) daily LSTs that were obtained from the Application
for Extracting and Exploring Analysis Ready Samples (AρρEEARS) online tool. Due to the absence of
LST-monitoring radiosounding instruments surrounding the study area, in situ LSTs were not
available; hence, validation of satellite retrieved LSTs against in situ LSTs was not performed.
The atmospheric parameters necessary for the RTE-based method, as well as for other methods,
were calculated from the National Centers for Environmental Prediction (NCEP) database using
an online atmospheric correction calculator with MODerate resolution atmospheric TRANsmission
(MODTRAN) codes. Root-mean-squared-error (RMSE) against reference LST, as well as mean bias
error against both reference and MODIS daily LSTs, was used to interpret the relative accuracy of LST
results. All four methods were found to result in acceptable LST products, leaving atmospheric water
vapor content (w) as the important determinant for the precision result. Considering a set of several
Landsat 8 images of different dates, Jiménez-Muñoz et al.’s (2014) Split-Window algorithm was found
to result in the lowest mean RMSE of 1.19 ◦C. Du et al.’s (2015) Split-Window algorithm resulted in
mean RMSE of 1.50 ◦C. The RTE-based direct method and the Single-Channel algorithm provided
the mean RMSE of 2.47 ◦C and 4.11 ◦C, respectively. For Du et al.’s algorithm, the w range of 0.0 to
6.3 g cm−2 was considered, whereas for the other three methods, w values as retrieved from the NCEP
database were considered for corresponding images. Land surface emissivity was retrieved through
the Normalized Difference Vegetation Index (NDVI)-threshold method. This intercomparison study
provides an LST retrieval methodology for Landsat 8 that involves four algorithms. It proves that
(i) better LST results can be obtained using both thermal bands of Landsat 8; (ii) the NCEP database
can be used to determine atmospheric parameters using the online calculator; (iii) MODIS daily LSTs
from AρρEEARS can be used efficiently in cross-validation and intercomparison of Landsat 8 LST
algorithms; and (iv) when in situ LST data are not available, the ATCOR-derived LSTs can be used
for indirect verification and intercomparison of Landsat 8 LST algorithms.
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1. Introduction

Estimation of Land Surface Temperature (LST) and the study of its changes over time is
an important topic of research because, these days, global climate is changing fast. Therefore, retrieval
of LST with new technologies has become an interesting field to explore in order to better understand
the environment all over the world. With the recent advancement in remote sensing earth observation
systems, studying LST, as well as land use and land cover (LULC), has become much easier than it
was before. Today, many sources of satellite images are available containing optical, as well as thermal,
information of earth surfaces.

LST is the thermodynamic skin temperature of land surfaces which can be studied by measuring
the infrared radiation coming from the surface [1]. With LST information, urban heat island can be
monitored [2,3] and forest fire can be detected [4]. LST information can be useful to estimate the soil
moisture [5–7]; hence, studies related to many hydrological processes can be explored from LST [8].
It can also help in different climate studies and weather forecast [8–10]. Changes in LST over time can
be related with changes in LULC types [11]. LST is related with all sorts of processes that control the
energy and water fluxes over the interfaces between the Earth’s surface and the atmosphere [12,13].
All these applications make the study of LST a crucial parameter to better understand the regional,
as well as the global, environment and its changes over time.

There are different algorithms proposed for the retrieval of LST using different sources of Remote
Sensing (RS) data [14–20]. Among those sources, Landsat has the biggest archive of free images and are
of great interest among researches for LST study. Studies with Landsat data include LST retrieval with
Landsat 5 TM (Thematic Mapper) data over an agricultural region of Spain by Sobrino et al. [21]; LST
with Landsat 7 ETM+ (Enhanced Thematic Mapper Plus) data over Maraqeh County of Iran [22]; and,
a work by Fu and Weng [23] for consistent and daily LST monitoring using Landsat images from 1984
to 2011 over the Beijing city of China. Mallick et al. [24] used Landsat 7 ETM+ data to perform LULC
and LST study over a heterogeneous urban area of India. Sahana et al. [25] studied LULC change
and its impact on LST using Landsat 5 TM data and Landsat 8 thermal infrared (TIR) data over the
Sundarban biosphere reserve in India.

Study of LST with RS data over different areas in Bangladesh is rather limited compared to
other countries of the world. Bangladesh covers an area of 147,570 km2 [26] with a huge population.
Geographically it extends from 20◦34′N to 26◦38′N latitude and from 88◦1′ E to 92◦41′ E longitude [26].
It is one of the most densely populated countries in the world [27]. Most of its population live in its
capital city. An agricultural region close to the capital city was selected as the study area for this work
(see Section 2.2).

Speaking of the limited LST research works in Bangladesh, those found in literature include
the capital city and some of its surrounding areas [28–30], and at least one work covering the whole
country [31]. Changes in LST and land cover over time, as well as future LST simulation, was studied
by Ahmed et al. [28] in the capital city of Bangladesh using Landsat 4, 5 TM, and Landsat 7 ETM+
data. Reja [29] retrieved LST using Landsat 4 TM and Landsat 7 ETM+ data. Sultana et al. [31] used
NOAA-16 (National Oceanic and Atmospheric Administration - 16) and NOAA-17 data to estimate
the minimum and maximum LSTs for six different seasons of whole country. Roni [30] studied the
relation between LST and Normalized Difference Vegetation Index (NDVI) using Landsat TM data.
Ara et al. [32] used Landsat 8, along with Landsat TM and ETM+ data, to study the effects of land
use intensity on LST in Chittagong city corporation area. Study of LST with Landsat 8 images in the
capital city or its surrounding areas in Bangladesh is not known as of the time of writing this paper.

Retrieval of LST with the precision result depends on data type, environmental conditions, and
the particular algorithm used for the calculation. LST retrieval algorithms may depend on the presence
of one or multiple thermal bands in the source RS data. Thermal channel in electromagnetic spectrum
covers the region of 10 to 12 µm. Previous Landsat missions came with only one thermal channel but
Landsat 8 has two. Sensors with more than one thermal band allow the user to extract information
from both of these bands with the possibility of better LST retrieval.
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Geostationary satellites/platforms, such as SEVIRI (Spinning Enhanced Visible and Infrared
Imager), can be used to retrieve surface emissivity and temperature simultaneously by using Kalman
filter strategy [33]. The retrieval process is physical-based and can be applied for both land- and
sea-surface temperatures with very good results compared with LST from non-geostationary satellite
observations [34]. The same Kalman filter methodology can be found to produce a very good result in
different land cover types, including arid, cultivated, and vegetated, as well as urban, areas and sea
water [35].

In this study, we used four algorithms—a Single-Channel Algorithm [36,37], two Split-Window
algorithms [37–40], and a direct method based on the Radiative Transfer Equation (RTE) [41,42]—to
retrieve LST from Landsat 8 data. All these algorithms were used for LST retrieval on a study
area covered mostly with vegetative land surfaces. Located in Bangladesh with subtropical climatic
conditions, the selected area during the period of study (February 2018) experiences pleasantly sunny
winter with minimal to no precipitation and mostly clear to partly cloudy sky conditions. All four
algorithms for Landsat 8 in this study area were found providing with acceptable LST results compared
with reference LSTs and MODerate Resolution Imaging Spectroradiometer (MODIS) daily LSTs, while
the Split-Window algorithms performed better than the other two (see Section 4). Based on the LST
results from the four methods, an intercomparison among them was made. A cross-validation study
of LSTs obtained from Landsat 8 images was performed against MODIS daily LST data. At 1 km
spatial resolution, the MODIS images produce global daily LST data [43]; hence, it can be used
for cross-validation of Landsat LST products. Available online at https://lpdaacsvc.cr.usgs.gov/
appeears/, the Application for Extracting and Exploring Analysis Ready Samples (AρρEEARS) can be
used to extract daily or 8-day composite MODIS LSTs [44,45].

This paper is organized as follows: Section 2 describes materials and methods, including the
details about remote sensing data used in this study. A unified methodology flowchart involving
different steps in LST retrieval with four algorithms is also presented in this section. Section 3 provides
the theoretical aspects of LST study from Landsat 8 with brief description of four algorithms. It also
describes the estimation of normalized difference vegetation index, proportion of vegetation cover, land
surface emissivity, top-of-atmosphere (ToA) brightness temperature, and the processing of input data
for LST algorithms. Section 4 presents the results of LSTs retrieved with four algorithms, including
their validation results against reference LST, as well as the intercomparison study, among them.
Results from the cross-validation study of Landsat 8 LSTs against MODIS daily LSTs are also presented
in this section. Section 5 summarizes the findings and concluding remarks of this work.

Mathematical notations of parameters involved in LST determination are found in literature with
not-so-uniform expressions. In this paper, TToA,i denotes the top-of-atmosphere (ToA, or at-sensor)
brightness temperature for channel i; LToA,i is the ToA spectral radiance for channel i; Bi(Ti) is the ToA
thermal radiance; ρλ,LS is the reflectance from the surface; LSEi is the Land Surface Emissivity for band
i; and Pv is the proportion of vegetation. Because of the stray light effect observed in band 11 images
of Landsat 8 [46,47], we used RTE-based direct method and Single-Channel method for band 10 only.
In Split-Window algorithms, however, both thermal bands were used.

2. Materials and Methods

Landsat 8 images were used as the primary sources of data to retrieve the LST products. Two
Split-Window algorithms, a Single-Channel Algorithm, and an RTE-based direct method were used.
The Landsat 8 satellite-retrieved LST products obtained in four methods were validated against
reference LSTs and MODIS daily LSTs. The idea is to perform an intercomparison, and study the
relative performances of four existing LST algorithms from Landsat 8. The reference LST was retrieved
with the Atmospheric and Topographic CORection (ATCOR) module. The MODIS daily LST products
were extracted using the AρρEEARS online tool. A study area in an agricultural region of Bangladesh
was selected for this research.

https://lpdaacsvc.cr.usgs.gov/appeears/
https://lpdaacsvc.cr.usgs.gov/appeears/
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2.1. Dataset

Landsat 8, the primary source of data in this work, travels on the descending (daytime) node
from north to south and crosses the equator at 10:11 a.m. ±15 min mean local time. For our study area,
primarily one Landsat 8 image was downloaded from the USGS earth explorer website. The image was
taken on 21 February 2018—the actual date on which the authors conducted a field work in the study
area—with Operational Land Imager (OLI) and Thermal Infrared (TIR) scanners onboard Landsat 8,
and has Path 137 and Row 44. The TIR bands were used to retrieve LSTs, along with the red (band 4)
and infrared (band 5) channels for estimating NDVI. The shapefiles necessary for our study were
downloaded from the Database of Global Administrative Areas (GADM—https://gadm.org/).

In order to test the LST algorithms on other Landsat 8 images, a set of four Landsat 8 scenes of
different dates were downloaded. Two of them were images taken before 21 February 2018, while
the other two images were taken after 21 February. We did not use the image of 5 February 2018
because this image was found covered with 77.4% cloud. The amount of cloud cover in percentage
is available in the Landsat 8 image metadata file as CLOUD_COVER. The approach used for the cloud
classification in Landsat 8 images involve multiple algorithms. It is collectively known as the Cloud
Cover Assessment (CCA) and includes the Automated Cloud Cover (ACCA), See-5 CCA, Cirrus CCA,
AT-ACCA, etc., algorithms [48] to classify clouds. The CCA analysis results are then merged into the
final L1 quality band and the cloud cover amount is made available in the image metadata file. Further
details regarding the cloud detection algorithms of Landsat 8 can be found in Reference [48].

To perform cross-validation of Landsat 8 LST products with MODIS daily LST data, we downloaded
Terra MODIS LST products using the AρρEEARS online application. We extracted the daily MODIS
LSTs of different dates by uploading the shapefiles of our study area in the online module. Details of all
Landsat 8 and MODIS images used in this study are presented in Table 1.

Table 1. Landsat 8 and Terra MODerate Resolution Imaging Spectroradiometer (MODIS) image data
used in this study.

Landsat 8 Images MODIS Images

Image Date Scene Identifier Path Row Image Date Identifier Data Type

4 January 2018 LC81370442018004LGN00 137 44 5 January 2018 MOD11A1.006 LST_Day_1km
20 January 2018 LC81370442018020LGN00 137 44 21 January 2018 MOD11A1.006 LST_Day_1km

21 February 2018 LC81370442018052LGN00 137 44 22 February 2018 MOD11A1.006 LST_Day_1km
9 March 2018 LC81370442018068LGN00 137 44 10 March 2018 MOD11A1.006 LST_Day_1km
25 March 2018 LC81370442018084LGN00 137 44 26 March 2018 MOD11A1.006 LST_Day_1km

2.2. Study Area

The study area selected for the verification and intercomparison of four LST algorithms is
Chandina sub-district under Cumilla district in Bangladesh. Cumilla district is adjacent to the capital
city of Bangladesh. Located in South Asia, Bangladesh is virtually surrounded by India and the Bay of
Bengal to the south [49]. It is a low-lying country with huge count of rivers.

Cumilla district is situated in the south eastern part of Bangladesh [50]. It has an area of
3085.17 km2, and located in between 23◦2′N to 24◦47′N latitudes and in between 92◦39′ E to 91◦22′ E
longitudes [51]. There are 17 Upazilas (sub-districts) in this district, among which Chandina is one.
Figure 1 shows the location of this sub-district as our study area.

Chandina sub-district is an area of about 201 km2, with mostly vegetative land surfaces. A visit to
the study area was arranged as part of this research, and it was found that different types of vegetables
are grown in this area.

The study area observation was conducted in two consecutive days, 21 and 22 February in 2018,
under clear sky conditions, starting the visit in the morning at around 8:30 local time till 15:30 in the
afternoon. There were no radiosounding instruments available surrounding the study area; hence,
in situ LST data were not monitored. It was found that the local experts usually monitor the LST with

https://gadm.org/
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soil thermometers in these areas, which may not be a good measurement of in situ LSTs compared to
radiometer-retrieved in situ LSTs. Therefore, the intercomparison study of four LST algorithms from
Landsat 8 was carried out against ATCOR-derived reference LSTs and AρρEEARS-derived MODIS
daily LSTs.

Figure 1. Chandina sub-district of Cumilla district in Bangladesh (from left to right, not to scale).
Compiled from References [50–52].

2.3. Research Methodology

The methodology to perform the intercomparison of different LST algorithms requires the
estimation of LSTs from Landsat 8 images using each of these algorithms. A flowchart representing
different steps in LST estimation with four algorithms is shown in Figure 2. As shown in this flowchart,
processing of the remote sensing data starts with the level-1 product of Landsat 8 images. Then, the
first step is to remove the cloud and haze from level-1 DN values, which is a part of the atmospheric
correction. In this study, we used the ATCOR module for atmospheric correction, which uses MODerate
resolution atmospheric TRANsmission (MODTRAN) codes to classify and remove cloud and haze
from a Landsat 8 scene.

Once the remote sensing images are atmospherically corrected, both optical (OLI) and thermal
(TIR) bands are necessary to determine the LST. Using optical bands, band 4 (red) and band 5 (infrared)
in particular, NDVI is estimated. From the NDVI, first the proportion of vegetation (Pv), then land
surface emissivity (LSE) is determined.

Using both thermal bands of Landsat 8 data, top-of-atmosphere radiance (LToA) is first determined.
Then, top-of-atmosphere temperature (TToA) is estimated. After that, using appropriate LST algorithm
with its mathematical formula and its coefficient values (see Section 3), LST can be retrieved using
emissivity and TToA as shown in the flowchart.

Once LSTs with different algorithms are estimated, they can be validated against in situ LSTs or
reference LSTs. In this study, the algorithm-retrieved LSTs from Landsat 8 were validated comparing
them with reference LSTs retrieved using the ATCOR module. Validation of algorithm-retrieved LST
against ATCOR-retrieved LST can be called as indirect verification [53]. The indirect verification was
chosen because the in situ LST data were not available due to the absence of radiosounding instruments
in the study area. In addition to the indirect verification, cross-validation of Landsat 8 LSTs obtained
from different algorithms was performed comparing them with MODIS daily LSTs. Intercomparison
study of four Landsat 8 LST algorithms was performed against reference LSTs and MODIS daily LSTs.
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Table 5

LSE retrieval

LSETIR 10, LSETIR 11
eq. (29), (30)

LST retrieval

with SC algorithm

eq. (4)

LST retrieval

with RTE

eq. (3)
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Reference

LST (LSTref)
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Figure 2. Algorithm flowchart for Land Surface Temperature (LST) retrieval with four methods
and their intercomparison study from Landsat 8 thermal infrared (TIR) data. OLI = Operational
Land Imager; LUT = Look Up Table ; DN = Digital Number; NDVI = Normalized Difference
Vegetation Index; SW = Split-Window; NCEP = National Centers for Environmental Prediction;
ToA = Top-of-Atmosphere; NIR = Near-Infrared; LSE = Land Surface Emissivity; SC = Single-Channel;
TIR = Thermal Infrared.

3. Four Methods to Retrieve Land Surface Temperature from Landsat 8

The thermal channels of Landsat 8 images are band 10 and band 11, also known as TIR 1 and
TIR 2 channels, respectively. First of these two has thermal window of 10.60 to 11.19 µm, and the
latter 11.50 to 12.51 µm [48]. Since objects or land surfaces transmit radiation in different amounts
depending on the wavelength of the channel window, reflected radiation recorded from two thermal
bands contain different information about the land surface.

Retrieval methods of LST from thermal bands are based on the Radiative Transfer Equation (RTE).
This equation can be used directly to estimate LST; or Single-Channel, Split-Window etc. methods can
be used. The RTE-based direct method requires the information of atmospheric parameters for the
study area. On the other hand, Single-Channel or Split-Window methods do not require the direct
input of those parameters but use some coefficient values obtained through simulation calculations.

While LST can be estimated using one thermal band, the calculation of differential absorption in
multiple TIR bands minimizes the atmospheric effects and has the potential to provide better results
compared to the use of one thermal band [54]. This idea of using more than one thermal bands is called
Split-Window technique [10,14]. Split-Window algorithms for Landsat 8 thermal bands were proposed
by many researchers including Rozenstein et al. [55], Jiménez-Muñoz et al. [37], Yu et al. [41], and Du
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et al. [40]. In this study, we used Split-Window algorithms developed by Jiménez-Muñoz et al. [37]
and by Du et al. [40] because: (i) these two algorithms were found providing good performances in
different w ranges [40], and (ii) first of these two requires direct input of w value, whereas the second
comes with algorithm coefficients for several w sub-ranges. Therefore, it would be interesting to see
how these two algorithms perform by making use of w in different ways.

When a Single-Channel or Split-Window algorithm is developed, using the MODerate resolution
atmospheric TRANsmission (MODTRAN) or other radiative transfer codes, algorithm coefficients are
estimated and made available to users so that they can be input directly in the mathematical expression
of the algorithm to study LST for different areas of the world. Among various atmospheric profile
databases that can be used in MODTRAN codes, examples include the Thermodynamic Initial Guess
Retrieval (TIGR) profile constructed by the Laboratoire de Météorologie Dynamique [40], the Global
Atmospheric Profiles from Reanalysis Information (GAPRI) database [37,56], the SAFREE database
and the Cloudless Land Atmosphere Radiosounding (CLAR) database [56], the National Centers for
Environmental Prediction (NCEP) database [57], etc.

The MODTRAN radiative transfer codes take atmospheric parameters and surface parameters as
inputs. Spectral parameters needed for the MODTRAN codes are obtained from the spectral response
functions of given TIR sensors [37,40,58]. Surface parameters for the MODTRAN codes may include
emissivity [57], viewing geometry, etc. The atmospheric parameters retrieved from these codes include
the transmittance (τ), up-welling path radiance (Lup), and down-welling path radiance (Ldown) for the
given thermal channel. In the following, we provide short description of four LST retrieval methods
for Landsat 8 that were used for intercomparison in this study.

3.1. Radiative Transfer Equation and Atmospheric Parameters to Retrieve Land Surface Temperature

The formula to retrieve land surface temperature using Radiative Transfer Equation (RTE) can be
expressed as [41]:

LST =
c2

λi · ln
(

c1·τiεi
λ5

i ·(Bi(Ti)−Lup−τi(1−εi)·Ldown)
+ 1
) , (1)

where λi is the effective wavelength of band i; Bi(Ti) is the ToA thermal radiance, τi is the band
average atmospheric transmittance, and εi is the emissivity of the same band; Lup and Ldown are the
upwelling and downwelling radiance in the atmosphere obtained in band i; c1 and c2 are Planck’s
first and second radiation constants, respectively, with c1 = 1.191 04× 108 W µm4 m−2 sr−1 and
c2 = 1.438 77× 104 µm K. To retrieve LST with RTE using Equation (1) three atmospheric parameters
are needed: τi, Lup, and Ldown; besides these parameters, land surface emissivity (εi) is necessary.

The λi in Equation (1) (or λeff) for a given band can be estimated as [41,42]:

λeff =

∫ λ2
λ1

λ f (λ)dλ∫ λ2
λ1

f (λ)dλ
, (2)

where f (λ) is calculated as the function of the spectral responsivity of thermal bands; λ1 and λ2 are
the lower and upper limit of f (λ). As shown in Figure 3, the λeff for Landsat 8 band 10 is 10.8 µm and
for band 11 is 12 µm.

For Landsat 8 TIR band 10, Equation (1) can be rewritten as

LST =
c2

λeff,TIR10 · ln
(

c1·τTIR10·LSETIR10
λ5

eff·(LToA 10−Lup−τTIR10(1−LSETIR10)·Ldown)
+ 1
) . (3)

The atmospheric parameters needed to retrieve LST using Equation (3) can be estimated with local
radiosounding instruments (if available) or from global atmospheric profiles using simulation codes.
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Figure 3. Effective wavelengths of Landsat 8 TIRS bands; 10.8 µm for TIR band 10, and 12 µm for TIR
band 11. Source: Reference [59] (relabeled by the authors).

The online atmospheric correction calculator used in this study to estimate atmospheric
parameters is available at https://atmcorr.gsfc.nasa.gov/ [57,60]. This calculator extracts required
parameters from NCEP database using MODTRAN codes and spectral response curve of Landsat 8,
Landsat 7, or Landsat 6. Coll et al. [61] have validated this web-based tool against ground
measurements for Landsat 7 and reported that the atmospheric correction from this tool is comparable
with correction from local radiosonde profiles. The tool was also used to validate a newly proposed
pixel-by-pixel atmospheric correction method called SBAC for Landsat 7 in Reference [62]. The
online atmospheric correction tool requires the user to input some mandatory data including location
(longitude and latitude), date, and time for which the atmospheric parameters are to calculate.
Optionally some surface conditions can be input, but if left empty, are assumed from the atmospheric
database. The calculated parameters (τi, Lup, and Ldown) are sent to the user via email.

3.2. Single-Channel Algorithm by Jiménez-Muñoz et al. (2014) with Coefficients

In the Single-Channel algorithm, only one thermal band is used to retrieve LST. For Landsat 8,
either band 10 or band 11 can be used. The SC algorithm used in this study was developed by
Jiménez-Muñoz and Sobrino [36] and was validated for AVHRR channels 4 and 5, ATSR2 channels 1
and 2, and Landsat TM band 6 data. Later this method was adapted for Landsat 8 by Jiménez-Muñoz
et al. [37]. According to them, the SC algorithm for Landsat 8 can be expressed as

LST = γ

[
1
ε
(ψ1Lλ, ToA + ψ2) + ψ3

]
+ δ, (4)

where ε is the land surface emissivity (LSE); ψ1, ψ2, and ψ3 are atmospheric functions (AFs). The
symbols δ and γ represent two parameters that can be estimated from linear approximation of Planck
functions as [21]:

γ =

{
c2 · Lλ,ToA

T2
ToA

[
λ4 · Lλ,ToA

c1
+

1
λ

]}−1

. (5)

The above equation can be rewritten for simplification as

γ =
c1 · λ · T2

ToA
c2 · Lλ,ToA(λ5 · Lλ,ToA + c1)

, (6)

where c1, c2, and λ holds same meaning as described in Section 3.1. The parameter δ in Equation (4)
can be calculated according to Reference [21] as

δ = −γ · Lλ,ToA + TToA. (7)

https://atmcorr.gsfc.nasa.gov/
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The AFs (ψ1, ψ2, and ψ3) can be approximated with a second-order polynomial fit against
atmospheric column water vapor content (w). If atmospheric function Ψ is considered as a function
of water vapor content W as Ψ = CW, the matrix notation to determine the values of AFs can be
expressed according to Reference [42] asψ1

ψ2

ψ3

 =

c11 c12 c13

c21 c22 c23

c31 c32 c33


w2

w
1

 , (8)

where cij are coefficients that were determined by Jiménez-Muñoz et al. [37] for Landsat 8 TIR band 10
using the GAPRI_4838 database as

C =

 0.04019 0.02916 1.01523
−0.38333 −1.50294 0.20324

0.00918 1.36072 −0.27514

 . (9)

Combining Equations (8) and (9), we can write

ψ1 = 0.04019w2 + 0.02916w + 1.01523, (10)

ψ2 = −0.38333w2 − 1.50294w + 0.20324, (11)

ψ3 = 0.00918w2 + 1.36072w− 0.27514. (12)

Using Equations (10)–(12), for a given water vapor content (w) the atmospheric functions (AFs) for
Single-Channel algorithm can be calculated and then input in the algorithm expressed in Equation (4)
to retrieve LST from Landsat 8. Considering different amounts of water vapor content (w), the values
for ψ1, ψ2, and ψ3 can be calculated as shown in Table 2.

It should be mentioned here that the Equation (4) gives LST products in K (Kelvin) unit when
Equation 32 is used to calculate the ToA brightness temperature (TToA). In order to get the LST in ◦C
(degree Celsius) unit, the TToA needs to be calculated in ◦C unit using Equation 33, which involves the
subtraction of 273.15. This TToA should then be used to compute the γ and δ parameters. Another way
to get the LST products in ◦C unit is to subtract 273.15 directly in Equation (4).

Table 2. Atmospheric functions calculated for different amount of water vapor contents following
Equations (10)–(12).

w (g cm−2) ψ1 ψ2 ψ3

0.5 1.039858 −0.6440625 0.407515
1.0 1.08458 −1.68303 1.09476
1.5 1.149398 −2.913663 1.786595
2.0 1.23431 −4.33596 2.48302
2.5 1.339317 −5.949922 3.184035
3.0 1.46442 −7.75555 3.88964
3.5 1.609618 −9.752843 4.599835
4.0 1.77491 −11.9418 5.31462
4.5 1.960298 −14.32242 6.033995

3.3. Split-Window Algorithm by Jiménez-Muñoz et al. (2014) with Coefficients

The Split-Window Algorithm by Jiménez-Muñoz et al. (2014) is based on the mathematical
structure by Sobrino et al. [38]; it was later modified by Sobrino and Raissouni [63]. The same
mathematical expression was used by Jiménez-Muñoz and Sobrino [58] to retrieve LST from different
low-resolution thermal data. Then, it was adapted for Landsat 8 by Jiménez-Muñoz et al. [37].
According to this Split-Window algorithm, LST can be estimated with the following expression:
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LST = Ti + c0 + c1
(
Ti − Tj

)
+ c2

(
Ti − Tj

)2
+ (c3 + c4w) (1− εm) + (c5 + c6w)∆ε, (13)

where Ti and Tj are ToA brightness temperature for band i and band j. For Landsat 8, these two
bands are band 10 and band 11, respectively; εm is the mean land surface emissivity of two bands
and is calculated with 1

2 (LSE10 + LSE11); ∆ε is the difference in LSE of two bands, calculated as
∆LSE = LSE10 − LSE11; c0, c1, . . . , c6 are algorithm coefficients derived from atmospheric simulation
codes; w is the total atmospheric water vapor content in g cm−2 unit. For Landsat 8 TIR bands 10
and 11, Equation (13) can be rewritten as

LST = TToA 10 + c0 + c1 (TToA 10 − TToA 11) + c2 (TToA 10 − TToA 11)
2

+ (c3 + c4w) (1− LSEmean) + (c5 + c6w)∆LSE. (14)

The coefficients (c0, c1, . . . , c6) for this algorithm, specifically for Landsat 8 data, are given by
Jiménez-Muñoz et al. [37]. They have used the GAPRI database to estimate the coefficients using
MODTRAN simulation codes. Further details regarding GAPRI database can be found in [37];
determination procedure for algorithm coefficients from different atmospheric databases can be
found in [42,58].

The seven coefficient values for Jiménez-Muñoz et al.’s Split-Window algorithm are presented
in Table 3. The atmospheric water vapor content (w) is not included during the determination of
coefficients; it has to be put in the mathematical Expression (14) of the algorithm directly.

Table 3. Split-Window Algorithm coefficients for Jiménez-Muñoz et al.’s (2014) algorithm as obtained
from numerical simulation. Source: Reference [37]. RMSE = Root-mean-squared-error.

Coefficient Value RMSE
c0 −0.268
c1 1.378
c2 0.183
c3 54.30 0.984
c4 −2.238
c5 −129.20
c6 16.40

3.4. Split-Window Algorithm by Du et al. (2015) with Coefficients

The Split-Window Algorithm for Landsat 8 data proposed by Du et al. (2015) [40] is based on the
generalized Split-Window algorithm by Wan [39], which was developed for MODerate Resolution
Imaging Spectrometer (MODIS) data. The Du et al. algorithm was developed specifically for Landsat 8
data; they named this method as practical Split-Window Algorithm. The mathematical expression of
the algorithm is [40]:

LST = b0 +
(

b1 + b2
1−εm

εm
+ b3

∆ε
ε2

) Ti+Tj
2 +

(
b4 + b5

1−εm
εm

+ b6
∆ε
ε2

) Ti−Tj
2 + b7

(
Ti − Tj

)2 . (15)

where b0, b1, . . . b7 are algorithm coefficients derived from atmospheric profile dataset using simulation
codes. All other parameters in Equation (15) are same as in Equation (13), except the w in Equation (13),
which is absent in Equation (15).

Equation (15) for Landsat 8 data, with more specific expressions, can be rewritten as

LST = b0 +

(
b1 + b2

1− LSEmean

LSEmean
+ b3

∆LSE
(LSE)2

)
TToA 10 + TToA 11

2

+

(
b4 + b5

1− LSEmean

LSEmean
+ b6

∆LSE
(LSE)2

)
TToA 10 − TToA 11

2
+ b7 (TToA 10 − TToA 11)

2 . (16)
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Other than the algorithm coefficients, parameters in this equation are same as in Equation (14). The
coefficients (b0, b1, . . . b7) for this algorithm were estimated by Du et al. [40] under different atmospheric
and surface conditions, through numerical simulation, and using atmospheric profiles. As atmospheric
profile they have used the TIGR database; and to perform the numerical simulation they used the
MODTRAN 5.2 atmospheric transmittance/radiance codes. They used water vapor content (w) divided
into five sub-ranges to calculate the coefficients. Under different atmospheric conditions, users can
use the coefficients for their needed sub-ranges. Further details regarding the procedure of algorithm
coefficients’ estimation can be found in [40]. The coefficients for Du et al. algorithm covering different
w sub-ranges are presented in Table 4.

Table 4. Split-Window Algorithm coefficients for Du et al.’s (2015) method as estimated from numerical
simulation. Source: Reference [40].

w (g cm−2) b0 b1 b2 b3 b4 b5 b6 b7 RMSE (K)

[0.0, 2.5] −2.78009 1.01408 0.15833 −0.34991 4.04487 3.55414 −8.88394 0.09152 0.34
[2.0, 3.5] 11.00824 0.95995 0.17243 −0.28852 7.11492 0.42684 −6.62025 −0.06381 0.60
[3.0, 4.5] 9.62610 0.96202 0.13834 −0.17262 7.87883 5.17910 −13.26611 −0.07603 0.71
[4.0, 5.5] 0.61258 0.99124 0.10051 −0.09664 7.85758 6.86626 −15.00742 −0.01185 0.86
[5.0, 6.3] −0.34808 0.98123 0.05599 −0.03518 11.96444 9.06710 −14.74085 −0.20471 0.93
[0.0, 6.3] −0.41165 1.00522 0.14543 −0.27297 4.06655 −6.92512 −18.27461 0.24468 0.87

Using the two Split-Window LST retrieval algorithms in Equations (14) and (16), along with their
respective coefficients, LST can be determined once the column water vapor (w) of the study area, ToA
brightness temperature (TToA) for both thermal bands, and LSE information is available. The TToA is
usually estimated from the thermal bands of remote sensing data while the LSE is determined using
optical bands as described in the following sections.

3.5. Normalized Difference Vegetation Index and the Proportion of Vegetation Cover

In scientific studies of land resources, vegetation index is often used to express the amount of
living plant coverage on lands. The term to mathematically express this indication is called Normalized
Difference Vegetation Index, or NDVI for short. It is calculated from the visible red and near-infrared
(NIR) light reflected by vegetation and can be expressed as

NDVIDN =
NIR− Red
NIR + Red

, (17)

where the subscript “DN” stands for “Digital Number”; it implies that the calculation was made
using level-1 DN values stored in remote sensing images. As remote sensing images are subject to
cloud covers, atmospheric scattering effects, viewing angle problem, etc., the raw RS data need to be
converted into surface reflectance values correcting those effects. In practice, the level-1 DN values are
first converted into top-of-atmosphere (ToA) spectral reflectance (ρλ,ToA). It is a unitless quantity and
can be calculated from OLI data of Landsat 8 as [48]:

ρλ,ToA(θ) = Mρ ×Qcal + Aρ, (18)

where Mρ is the reflectance multiplicative scaling factor for the given band, available in the image
metadata file as REFLECTANCE_MULT_BAND_n, with n being 1 through 9; Aρ is the reflectance additive
scaling factor for the given band, available in the same file as REFLECTANCE_ADD_BAND_n, with n being 1
through 9; Qcal is the level-1 pixel value stored as DN values in the image for both OLI and TIR bands;
the θ on left hand side means that this reflectance (ρλ,ToA(θ)) does not involve the correction for sun
elevation angle.
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Making the correction for sun elevation angle, we can exclude the θ from reflectance notation and
express the reflectance as [48]:

ρλ,ToA =
ρλ,ToA(θ)

sin θ
, (19)

where ρλ,ToA(θ) is the ToA spectral reflectance without sun elevation angle correction as calculated in
Equation (18); θ is solar elevation angle, which is the local sun elevation angle at the time of satellite
overpass available in the image metadata file of Landsat 8 as SUN_ELEVATION. This value needs to be
checked for each Landsat 8 scene. The sun elevation angle can be related with solar zenith angle (θz)

using cosine function as

ρλ,ToA =
ρλ,ToA(θ)

cos(θz)
, (20)

where θz is the solar zenith angle with θz = 90◦ − θ. Combining Equations (18) and (19), we can
calculate ToA spectral reflectance as

ρλ,ToA =
Mρ ×Qcal + Aρ

sin θ
. (21)

To determine NDVI, we need the reflectance values for red and near-infrared bands; this translates
to band 4 and band 5 of Landsat 8 image, respectively. The red band in Landsat 8 covers 0.636 to
0.673 µm and NIR band 0.851 to 0.879 µm in the electromagnetic spectrum [48]. For band 4 and band 5,
Mρ value is 2.0000× 10−5, and Aρ value is −0.100000 [48], as given in the image metadata file.

Once the reflectance is corrected for the sun elevation angle, it needs another correction—the
atmospheric correction because the ToA spectral reflectance includes atmospheric scattering effects and
therefore does not represent the true reflectance of land surfaces. In order to get the reflectance from
the surface (ρλ,LS), we need to correct atmospheric effects including the cloud cover and atmospheric
gases. This correction can be made using some atmospheric correction modules available in various
image processing software. Then, surface reflectance can be determined using Equation (21).

To simplify the notation of surface reflectance, in the following we used ρ in place of ρλ,LS.
According to this notation, the NDVI of land surface (NDVILS) can be expressed as

NDVILS =
ρNIR − ρred
ρNIR + ρred

. (22)

For Landsat 8 image data, Equation (22) takes the form:

NDVILS =
ρband 5 − ρband 4
ρband 5 + ρband 4

. (23)

Using NDVILS values as in Equation (23), the proportion of vegetation cover can be calculated as [64]:

Pv =

(
NDVILS −NDVImin

NDVImax −NDVImin

)2
, (24)

where NDVImax = 0.5 indicates the presence of vegetation on lands, and NDVImin = 0.2 represents
only bare soil on land surfaces. NDVI value less than 0 indicates the water, and NDVI value greater
than 0.5 indicates full vegetation [65]. When NDVI value ranges between 0.2 and 0.5, the surface is
considered as a mixture of soil and vegetation, requiring the calculation of Pv using Equation (24).
Using the Pv, the emissivity of the mixed land surface is then estimated as described in the following
Section.

3.6. Land Surface Emissivity Determination

Quantitatively, emissivity is the ratio of the thermal radiation from a surface to the radiation from
an ideal black surface at the same temperature as given by the Stefan–Boltzmann law [1]. To retrieve
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LST from ToA brightness temperature (see Section 3.7), we must consider emissivity from land surfaces.
The term Land Surface Emissivity (LSE) is used to indicate emissivity from land surfaces that are
composed of different types of materials (soils, vegetation, water etc.). One way to get LSE is through
normalized difference vegetation index since NDVI represents the greenness of land surfaces, giving
an idea of types of materials comprising the land surfaces. Thus, different values of NDVI represent
different materials of land surfaces. If the NDVI value is less than 0.2, then it represents only bare soil.
In this case, the emissivity can be calculated from reflectivity values in red region of the image. If the
NDVI value is greater than 0.5, then the land surface is composed of vegetation only. If that is the case
in a real study, a constant value of emissivity, typically 0.99, can be used [21]. But in situations when
NDVI lies between 0.2 and 0.5, LSE for a given band i can be related with NDVI and proportion of
vegetation (Pv) as [41]:

LSEi =


aiρred + bi NDVI < 0.2

εv,iPv + εs,i(1− Pv) + Ci 0.2 ≤ NDVI ≤ 0.5

εv,i + Ci NDVI > 0.5,

(25)

where εv,i is the emissivity of fully vegetated surfaces and εs,i is emissivity of barren soil, in the band i;
Pv is the proportion of vegetation as calculated in Equation (24); ai, bi are the coefficients that can
be estimated from laboratory spectra of soils using statistical fits, assuming that the emissivity and
the reflectivities in red band have a linear relationship [66]. The symbol Ci in the above equation
denotes the roughness of land surfaces [65]. For plain and homogeneous land surfaces, this Ci can be
neglected [21], and considered Ci = 0 [65]. For rough and heterogeneous surfaces, i.e., soil-vegetation
mixed pixels, Ci denotes the increment in emissivity resulted from the cavity effect and multiple
scattering in the mixed pixels [67].

Taking emissivity values of soil and vegetation into account, and assuming that NDVI values of
earth surfaces range from around 0.2 to 0.5, the emissivity of land surfaces (LSE) can be calculated
according to the NDVI-threshold method as [41,66]:

LSE = εvPv + εs(1− Pv) + C. (26)

The C in the above equation is the same as in Equation (25), which can be found also as dε in
literature [21].

According to Equation (26), to calculate LSE for Landsat 8 thermal bands, we need the εs and εv

values estimated for both TIR bands. Yu et al. [41] estimated these values using the MODIS UCSB
(University of California, Santa Barbara, CA, USA) emissivity library (https://icess.eri.ucsb.edu/
modis/EMIS/html/em.html), as presented in Table 5.

Table 5. Emissivity values of soil and vegetation for TIR band 10 and band 11. Source: Reference [41].

Emissivity Values

TIR Band Vegetation (εv) Soil (εs)

band 10 0.9863 0.9668
band 11 0.9896 0.9747

In Equation (26), an approximation of C is given by [41,68]:

C = (1− εs)(1− Pv) Fεv, (27)

where F is a shape factor [69]. Sobrino et al. [21] considered this shape factor (F) under different
geometrical distributions having a mean value of 0.55.

https://icess.eri.ucsb.edu/modis/EMIS/html/em.html
https://icess.eri.ucsb.edu/modis/EMIS/html/em.html
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Taking Equations (26) and (27) into account, the LSE can be calculated as

LSE = m Pv + n, (28)

with
m = εv − εs − (1− εs) Fεv and n = εs + (1− εs) Fεv.

Based on the emissivity values in Table 5 and the mathematical expression in Equation (28),
the LSE for both TIR bands of Landsat 8 data can be calculated. To do so, we first need to calculate the
m and n values for these bands. For TIR band 10, we get

mTIR 10 = 0.9863− 0.9668− (1− 0.9668)× 0.55× 0.9863 ≈ 0.0015,

nTIR 10 = 0.9668 + (1− 0.9668)× 0.55× 0.9863 ≈ 0.9848.

Thus, using Equation (28), we get the LSE for TIR band 10 as

LSETIR 10 = 0.0015 Pv + 0.9848. (29)

Similarly, for TIR band 11, we get

mTIR 11 = 0.9896− 0.9747− (1− 0.9747)× 0.55× 0.9896 ≈ 0.0011,

nTIR 11 = 0.9747 + (1− 0.9747)× 0.55× 0.9896 ≈ 0.9885.

Therefore, LSE for TIR band 11 can be expressed as

LSETIR 11 = 0.0011 Pv + 0.9885. (30)

Using the proportion of vegetation cover as described in Section 3.5 and expressed in Equation (24),
LSE for TIR band 10 and band 11 can be calculated using Equations (29) and (30), respectively.

3.7. Top-of-Atmosphere (ToA) Brightness Temperature Determination

Determination of ToA brightness temperature (TToA) can be described as a two-step process. The
first step includes the conversion of level-1 DN values of Landsat 8 thermal infrared data to at-satellite
(or at-sensor, or ToA) spectral radiance values. This is the spectral radiance in wavelength of a surface,
which is expressed with Lλ,ToA and has a unit of watt per meter squared per steradian per micro meter
(W m−2 sr−1 µm−1). The formula to convert level-1 DN values in RS images to spectral radiance is [48]:

Lλ,ToA = ML ×Qcal + AL, (31)

where ML is the radiance multiplicative scaling factor for the given band, available in the image
metadata file as RADIANCE_MULT_BAND_n, with n being 1 through 11; AL is the radiance additive scaling
factor for the given band, available in the same file as RADIANCE_ADD_BAND_n, with n being 1 through 11;
Qcal is the level-1 pixel value stored as DN values in the image, available for both OLI and TIRS bands.
The ML value for both TIR bands (band 10 and band 11) is 3.3420× 10−4; and AL value for both of
these bands is 0.10000. Spectral radiance can be obtained for both OLI and TIR bands but in order to
retrieve LST from Landsat 8 thermal bands, radiance from only thermal bands is necessary. For both
TIR bands, LToA 10 and LToA 11 can be estimated following Equation (31).

The second step to determine TToA involves the use of Lλ,ToA image data from Equation (31).
Then, TToA in K (Kelvin) unit can be calculated by inverting Planck’s radiation equation as [48]:

TToA =
K2

ln
(

K1
Lλ,ToA

+ 1
) , (32)
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where K1 and K2 are the thermal conversion constants for the given band, available in the image
metadata file as K1_CONSTANT_BAND_n and K2_CONSTANT_BAND_n, respectively, with n being 10 or 11;
Lλ,ToA is the ToA spectral radiance calculated for band 10 or band 11 with Equation (31). The K1 and K2

are numerical constant values for TIR bands of Landsat 8; for band 10 the values are 774.8853 and
1321.0789, respectively; for band 11 they are 480.8883 and 1201.1442, respectively.

The ToA brightness temperature in ◦C (degree Celsius) unit can be estimated by subtracting 273.15
in Equation (32) as

TToA =
K2

ln
(

K1
Lλ,ToA

+ 1
) − 273.15. (33)

According to Equation (33), the TToA 10 and TToA 11 for both TIR bands of Landsat 8 can be estimated in
◦C unit.

3.8. Preparation and Processing of Data for LST Retrieval from Landsat 8

In order to perform atmospheric corrections of Landsat 8 data, as well as for other processing of
raster images, different computer tools were used in this study. First, appropriate Landsat 8 images
were downloaded from the website of USGS earth explorer. Vector shapefiles were downloaded from
the GADM website (http://gadm.org/data.html). Spatial subset of the raster image was created
using the shapefile for our study area in QGIS [70] software. Atmospheric corrections including the
removal of cloud and haze from the level-1 Landsat 8 data were done using the ATCOR module in
PCI Geomatica 2016 software. From the atmospherically corrected subset image data, NDVI was
determined using raster calculator of QGIS. Other calculations, for example, proportion of vegetation
cover, LSE, LST, etc. were also estimated with the same tool. The LST maps were exported using
the print composer function of QGIS. Statistical analyses and all types of plots and histograms were
created using the R program [71] with substantial help from the raster [72], rgdal [73], ggplot2 [74],
and caret [75] libraries.

4. Results and Discussion

The LST products retrieved from all four algorithms were validated against reference LST (LSTref)
and cross-validated against MODIS daily LST (LSTMOD). The RMSE (root-mean-squared-error) was
used to measure the accuracy of LST retrieved with four methods comparing them against reference
LST and MODIS LST. The reference LSTs for all Landsat 8 images were estimated using the ATCOR
module available in PCI Geomatica 2016 software. The MODIS daily LST was retrieved using the
AρρEEARS online application from the Terra MODIS images. The online atmospheric correction calculator
(https://atmcorr.gsfc.nasa.gov/) was used for the estimation of atmospheric parameters, including the
water vapor content. For several locations in the study area, a total of 48 calculations of w for each
Landsat 8 scene were made using the online tool and the w range was found to be 0.6 to 3.0 g cm−2

considering all five Landsat 8 images. Therefore, we have used several values of w for LST retrieval.
The LST result retrieved with the RTE-based direct method is denoted as LSTRTE, LST with

Single-Channel algorithm as LSTSC, and LSTs with two Split-Window algorithms as LSTJim (for
Jiménez-Muñoz et al.’s method), and LSTDu (for Du et al.’s method). In the following, the LST results
from all four algorithms for the Landsat 8 image of 21 February 2018 (Sections 4.1–4.4) are presented
along with an intercomparison study among them (Section 4.5). In addition, variation in LST results
with varied amount of w is discussed in Section 4.6. Intercomparison results from the cross-validation
of Landsat 8 LSTs against MODIS daily LSTs are presented in Section 4.7.

4.1. Results from RTE Method using TIR Band 10

The atmospheric parameters required to retrieve LST in direct method using RTE (3) were
obtained using the online atmospheric correction calculator for six specific locations of the study
area as presented in Table 6. The values in several observations were found to be close to each other.

http://gadm.org/data.html
https://atmcorr.gsfc.nasa.gov/
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In order to compute the RMSE, we first calculated ∆LST comparing the RTE-retrieved LST and the
reference LST. The validation results are represented with histograms in Figure 4 including the RMSE
values. The smallest RMSE for LSTRTE was found to be 1.95 ◦C, with the largest being 2.67 ◦C.

Table 6. Atmospheric parameters retrieved through online atmospheric correction calculator for the
Landsat 8 image of 21 February 2018 (Lup and Ldown are in W m−2 sr−1 µm−1 unit).

Location Atmospheric Parameters

Latitude Longitude τ Lup Ldown w (g cm−2)

23◦20′N 91◦0′ E 0.76 1.97 3.23 1.87–2.32
23◦20′N 91◦22′ E 0.78 1.85 3.04 1.68–2.32
23◦27′N 90◦57′ E 0.77 1.91 3.14 1.87–2.43
23◦24′N 90◦55′ E 0.77 1.92 3.16 1.87–2.43
23◦28′N 91◦0′ E 0.76 1.94 3.19 1.87–2.32
23◦21′N 90◦56′ E 0.77 1.93 3.17 1.87–2.41

0

2000

4000

6000

0 1 2 3

F
re

q
u

e
n

c
y

0

2000

4000

6000

Frequency

∆LST (◦C)

RMSE

1.95 ◦C

(a)

0

2000

4000

6000

0 1 2 3 4

F
re

q
u

e
n

c
y

0

2000

4000

6000

Frequency

∆LST (◦C)

RMSE

2.54 ◦C

(b)

0

2000

4000

6000

0 1 2 3 4

F
re

q
u

e
n

c
y

0

2000

4000

6000

Frequency

∆LST (◦C)

RMSE

2.25 ◦C

(c)

0

2000

4000

6000

0 1 2 3 4

F
re

q
u

e
n

c
y

0

2000

4000

6000

Frequency

∆LST (◦C)

RMSE

2.34 ◦C

(d)

0

2000

4000

6000

0 1 2 3 4

F
re

q
u

e
n

c
y

0

2000

4000

6000

Frequency

∆LST (◦C)

RMSE

2.67 ◦C

(e)

0

2000

4000

6000

0 1 2 3 4

F
re

q
u

e
n

c
y

0

2000

4000

6000

Frequency

∆LST (◦C)

RMSE

2.43 ◦C

(f)

Figure 4. Histograms of temperature difference between the reference LST (LSTref) and LST from
Radiative Transfer Equation (RTE)-based algorithm (LSTRTE) for Landsat 8 image of 21 February 2018;
(a) τ = 0.76, Lup = 1.97, Ldown = 3.23, (b) τ = 0.78, Lup = 1.85, Ldown = 3.04, (c) τ = 0.77, Lup = 1.91,
Ldown = 3.14, (d) τ = 0.77, Lup = 1.92, Ldown = 3.16, (e) τ = 0.76, Lup = 1.94, Ldown = 3.19, and
(f) τ = 0.77, Lup = 1.93, Ldown = 3.17 (Lup and Ldown are in W m−2 sr−1 µm−1 unit).

4.2. Results from Single-Channel Algorithm using TIR Band 10

The LST retrieved with Single-Channel algorithm from band 10 of Landsat 8 uses Equation (4)
and atmospheric functions calculated for different values of water vapor content as given in Table 2.
For our study area, we retrieved LSTs for w range of 0.5 to 3.0 g cm−2 with an interval of 0.5 g cm−2.
This gives LST calculations for six values of w. All LST products obtained in this method were then
validated against reference LST as shown in Figure 5 with their RMSEs. The smallest RMSE was found
to be 4.16 ◦C for w = 3.0 g cm−2, whereas the largest RMSE was 4.17 ◦C for w = 0.5 g cm−2.
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Figure 5. Histograms of temperature difference between the reference LST (LSTref) and LST from
Single-Channel algorithm (LSTSC) for Landsat 8 image of 21 February 2018; (a) w = 0.5 g cm−2,
(b) w = 1.0 g cm−2, (c) w = 1.5 g cm−2, (d) w = 2.0 g cm−2, (e) w = 2.5 g cm−2, and (f) w = 3.0 g cm−2.

4.3. Results from Jiménez-Muñoz et al.’s Split-Window Algorithm

The coefficient values in Jiménez-Muñoz et al.’s (2014) algorithm (see Table 3) do not include the
water vapor content (w); instead, the algorithm in Equation (14) takes the w as a direct input from
the user. Like in Single-Channel algorithm, we used six values of w to retrieve LSTs in this method
(LSTJim). To compute RMSEs, all observations of LSTJim were validated against reference LST and
presented as histograms in Figure 6. The smallest RMSE for LSTJim was found to be 0.74 ◦C when
w = 0.5 g cm−2, with the largest RMSE being 0.94 ◦C when w = 3.0 g cm−2.
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Figure 6. Histograms of temperature difference between the reference LST (LSTref) and LST from
Jiménez-Muñoz et al.’s Split-Window algorithm (LSTJim) for Landsat 8 image of 21 February 2018;
(a) w = 0.5 g cm−2, (b) w = 1.0 g cm−2, (c) w = 1.5 g cm−2, (d) w = 2.0 g cm−2, (e) w = 2.5 g cm−2, and
(f) w = 3.0 g cm−2.
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4.4. Results from Du et al.’s Split-Window Algorithm

As it is mentioned previously, the coefficient values in Du et al.’s (2015) algorithm were estimated
using water vapor contents (w) of various sub-ranges (see Table 4). Therefore, LSTs were estimated
with this algorithm (LSTDu) using algorithm coefficients given for w sub-ranges of 0.0 to 2.5 g cm−2,
2.0 to 3.5 g cm−2, 3.0 to 4.5 g cm−2, 4.0 to 5.5 g cm−2, 5.0 to 6.3 g cm−2, and 0.0 to 6.3 g cm−2. All six LSTs
were then validated against reference LST and RMSEs were computed (Figure 7). The smallest RMSE
(1.13 ◦C) was found when LST was estimated using w in 0.0 to 6.3 g cm−2 while in w range of 2.0 to
3.5 g cm−2 the LST was found with abnormally the largest RMSE (11.05 ◦C). This error could be due to
the wrong use of w amount (see Section 4.6).
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Figure 7. Histograms of temperature difference between the reference LST (LSTref) and LST from
Du et al.’s Split-Window algorithm (LSTDu) for Landsat 8 image of 21 February 2018; (a) w = 0.0 to
2.5 g cm−2, (b) w = 2.0 to 3.5 g cm−2, (c) w = 3.0 to 4.5 g cm−2, (d) w = 4.0 to 5.5 g cm−2, (e) w = 5.0 to
6.3 g cm−2, and (f) w = 0.0 to 6.3 g cm−2.

4.5. Intercomparison of Four Algorithms to Retrieve LST from Landsat 8 Against Reference LSTs

The LST results as estimated from the Landsat 8 image of 21 February 2018 with all four algorithms
(see Sections 4.1–4.4) were compared among them validating the results against reference LST by
means of RMSE computation and R2 (coefficient of determination). In addition, algorithm-retrieved
LSTs were also observed against reference LST by means of mean bias error (Biasref).

Except for LSTRTE, a sub-range of w was considered for the average LST values for three other
methods (LSTSC, LSTJim, and LSTDu). Considering the water vapor content of 1.68 to 2.43 g cm−2 for
the 21 February 2018 Landsat 8 image, as retrieved from the NCEP database with MODTRAN codes,
a w range of 1.5 to 3.0 g cm−2 was considered as the possible mean of w for LSTSC and LSTJim methods.
For the LSTDu method, the algorithm coefficients available in w range of 0.0 to 6.3 g cm−2, that is, the
entire range of w was considered.

The minimum and maximum LST, along with the statistical mean and standard deviation of
LST retrieved with four methods, and the reference LST are presented in Table 7. The RMSE and R2,
as well as the mean bias (Biasref) of algorithm-retrieved LSTs computed against reference LST, are
also presented.
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Table 7. Intercomparison results of LSTs retrieved with four algorithms from Landsat 8 data (21
February 2018) against reference LSTs.

LST Estimates (◦C) Comparison Results

LST Method w (g cm−2) MIN MAX MEAN SD RMSE (◦C) R2 Bias ref (◦C)

LSTref – 25.00 34.00 27.80 0.8237 – – –

LSTRTE(avg) 1.68–2.43 24.00 31.33 25.50 0.7081 2.20 0.77 2.30

LSTSC 0.5 22.38 28.13 23.65 0.5542 4.17 0.76 4.15
1.0 22.38 28.14 23.65 0.5545 4.17 0.76 4.15
1.5 22.38 28.14 23.66 0.5548 4.17 0.76 4.15
2.0 22.38 28.15 23.66 0.5552 4.17 0.76 4.14
2.5 22.38 28.15 23.66 0.5557 4.16 0.76 4.14
3.0 22.38 28.16 23.66 0.5562 4.16 0.76 4.14
3.5 22.38 28.17 23.66 0.5568 4.16 0.76 4.14
4.0 22.38 28.18 23.66 0.5575 4.16 0.76 4.14
4.5 22.38 28.19 23.67 0.5583 4.16 0.76 4.14

LSTSC(avg) 1.5–3.0 22.38 28.15 23.66 0.5555 4.17 0.76 4.14

LSTJim 0.5 24.99 32.83 27.13 0.7106 0.74 0.86 0.67
1.0 24.94 32.75 27.09 0.7103 0.78 0.86 0.71
1.5 24.93 32.63 27.04 0.7101 0.82 0.86 0.76
2.0 24.87 32.70 27.00 0.7098 0.86 0.86 0.80
2.5 24.83 32.65 26.96 0.7095 0.90 0.86 0.84
3.0 24.80 32.61 26.92 0.7093 0.94 0.86 0.88
3.5 24.76 32.57 26.87 0.7090 0.93 0.86 0.93
4.0 24.73 32.52 26.83 0.7088 1.02 0.86 0.97
4.5 24.69 32.48 26.79 0.7085 1.06 0.86 1.01

LSTJim(avg) 1.5–3.0 24.86 32.65 26.98 0.7097 0.88 0.86 0.82

LSTDu 0.0–2.5 21.94 30.24 24.18 0.7514 3.63 0.87 3.62
2.0–3.5 35.97 45.41 38.85 0.8432 11.05 0.86 −11.05
3.0–4.5 35.06 45.06 38.18 0.8929 10.39 0.85 −10.38
4.0–5.5 26.75 37.23 30.01 0.9350 2.24 0.85 −2.21
5.0–6.3 27.51 39.98 31.76 1.1160 3.99 0.82 −3.96
0.0–6.3 24.23 33.23 26.72 0.8070 1.13 0.86 1.08

As seen in Table 7, the mean RMSE was found 2.20 ◦C for LSTRTE; 4.17 ◦C for LSTSC; 0.88 ◦C for
LSTJim; and 1.13 ◦C for LSTDu. The average correlation of coefficient (R2) for LSTJim and LSTDu is
0.86; it is 0.77 for LSTRTE, and 0.76 for LSTSC method. This indication implies that all four algorithms
perform efficiently compared to reference LST. The mean bias against reference LST (biasref) is the
smallest in LSTJim (0.82 ◦C) and largest in LSTSC (4.14 ◦C), with LSTDu (1.08 ◦C) and LSTRTE (2.30 ◦C)
being in between. Considering all these observations, the best performing LST algorithm in our study
is LSTJim, with the other three methods staying in close agreement.

The box plots in Figure 8 represent LST results of four algorithms in terms of RMSE, giving
a visual aid for intercomparison. As seen in this figure, variation in RMSE is lowest for LSTJim, with
LSTRTE and LSTSC being next to it and LSTDu having the highest variation. The rather different RMSE
variation in LSTDu is probably due to the wrong use of w, which is described in Section 4.6.

The LST maps created using all four methods and with ATCOR module (LSTref) are shown in
Figure 9. We presented the maps with LST results that were found very close to the reference LST,
considering the possible amount of w present in our study area. This makes the LST maps for LSTSC
and LSTJim computed with w = 2.0 g cm−2, and LSTDu computed with w range of 0.0 to 6.3 g cm−2.
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Figure 8. Box plots showing RMSEs of four LST retrieval algorithms as estimated on the Landsat 8
image of 21 February 2018.
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Figure 9. LST maps of the agricultural study area (Landsat 8 image of 21 February 2018): (a) RTE-based
method using TIR band 10 (τ = 0.76, Lup = 1.94 W m−2 sr−1 µm−1, Ldown = 3.19 W m−2 sr−1 µm−1),
(b) Single-Channel algorithm using TIR band 10 (w = 2.0 g cm−2), (c) Du et al.’s [40] Split-Window
algorithm (w = 0.0 to 6.3 g cm−2), (d) Jiménez-Muñoz et al.’s [37] Split-Window algorithm (w =

1.0 g cm−2), and (e) using the ATCOR module (the reference LST).

Similar intercomparison study was performed on four additional Landsat 8 images. The box plots
representing the intercomparison results of four LST algorithms on Landsat 8 images of different dates
are shown in Figure 10. As seen in this figure, the LST results of different algorithms obtained for
several Landsat 8 images agree with the results obtained for Landsat 8 image of 21 February 2018 (see
Figure 8).
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Figure 10. Box plots showing RMSEs of four LST retrieval algorithms as obtained from four Landsat 8
images: (a) 4 January 2018 image, (b) 20 January 2018 image, (c) 9 March 2018 image, and (d) 25 March
2018 image.

Considering all five Landsat 8 images used in this intercomparison study, the average RMSE is
found to be 2.47 ◦C for the LSTRTE method; 4.11 ◦C for LSTSC; 1.19 ◦C for LSTJim; and 1.50 ◦C for the
LSTDu algorithm (not shown in Table). It can be mentioned here that the w values retrieved from the
NCEP database were different for Landsat 8 images of different dates (see Table 8). The corresponding
w ranges were taken into consideration for the calculation of LSTs with different methods.

4.6. Variation in LST Results due to Wrong Amount of Water Vapor Contents

The Single-Channel algorithm and the two Split-Window algorithms used to retrieve LST from
Landsat 8 are dependent on atmospheric water vapor content (w). Therefore, it is necessary to
study their performance in different amounts of w. To perform this study, we retrieved LSTs for the
Single-Channel algorithm and Jiménez-Muñoz et al.’s Split-Window algorithm for w amount up to
4.5 g cm−2, that is, three more observations than it is seen in Table 7. For Du et al.’s Split-Window
algorithm, we used the LSTs retrieved for all w sub-ranges.

The variation in RMSEs of LST results for three algorithms was plotted against varied amount
of w as shown in Figure 11. Since the algorithms for LSTSC and LSTJim require direct input of w, the
two plots (Figure 11a,b) share w values in same intervals. On the other hand, RMSE variation for the
LSTDu algorithm is shown with several sub-ranges of w (Figure 11c).
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Figure 11. Variation of RMSEs with water vapor content: (a) using Single-Channel algorithm for
Landsat 8 TIR band 10, (b) Split-Window algorithm and coefficients according to Jiménez-Muñoz et al.,
and (c) Split-Window algorithm and coefficients according to Du et al.

As seen in Figure 11a, for LSTSC the RMSE decreases with increasing w, whereas in Figure 11b,
RMSE for LSTJim increases with increasing w. The decrease of RMSE for LSTSC in lower w is quite
abrupt compared to its change in higher w (Figure 11a). For the LSTJim, the increase in RMSE with
increasing w is almost constant (Figure 11b). On the other hand, for LSTDu (Figure 11c), LST error is very
high when w = 0.0 to 4.5 g cm−2; it is lowest when w lies in 4.0 to 6.3 g cm−2; it is considerably better
when w = 0.0 to 6.3 g cm−2, that is, algorithm coefficients for the entire w range. It is understandable
from these plots that the use of wrong w value may result in unacceptable LST estimation, especially
for the LSTDu algorithm. Therefore, it is very important to estimate the w of the study area with
great precision.

4.7. Cross-Validation and Intercomparison of Landsat 8 LSTs Against MODIS Daily LSTs

As mentioned previously, MODIS daily LSTs for the study area were extracted using the
AρρEEARS online tool. We considered the nearest available LSTs compared with Landsat 8 images
of different dates used in this study. Since there are missing values for daily LSTs due to the effects
of clouds and other atmospheric conditions, we retrieved MODIS LSTs for the dates of: (a) 5 January
2018, (b) 21 January 2018, (c) 22 February 2018, (d) 10 March 2018, and (e) 26 March 2018. The statistical
values including the median and mean MODIS LSTs retrieved for these dates are presented in Figure 12
using box plots.

For cross-validation of Landsat 8 LSTs that were retrieved with four algorithms, as well as with the
ATCOR module, the MODIS daily LSTs were converted into ◦C unit from K unit. Then, LST mean bias
was computed for each Landsat 8 LST retrieval method against MODIS mean LST. The cross-validation
and intercomparison results between Landsat 8 and MODIS daily LSTs are presented in Table 8.
The Landsat 8 mean LST is denoted with LSTL8, MODIS mean LST with LSTMOD, and the mean LST
bias between them is denoted with BiasMOD–L8.

As seen in Table 8, the mean bias (BiasMOD–L8) between LSTL8 and LSTMOD is always lower for
the LSTJim algorithm among four Landsat 8 LST algorithms. The LSTDu algorithm performs very
close to the LSTJim method. The LSTRTE shows higher LST bias while the LSTSC has the highest bias
among these four methods. It suggests that the best performing LST retrieval method for Landsat 8
is the LSTJim Split-Window algorithm, with LSTDu method being the next, and LSTRTE having better
performance than the LSTSC method. These cross-validation and intercomparison results agree with
the intercomparison results obtained for different Landsat 8 LST methods when validated against
LSTref (see Section 4.5). It also reveals that the reference LST estimated from ATCOR module (LSTref)
performs efficiently showing a very small mean bias (from −0.58 to −0.29 ◦C) for most images and the
lowest mean bias for the first three Landsat 8 images (Table 8) used in this study (the only exception is
the Landsat 8 image of 25 March 2018 with its corresponding MODIS daily LST where the mean bias is
considerably higher).
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Figure 12. Box plots representing daily LSTs retrieved from the Terra MODIS images of different dates:
(a) 5 January 2018 image, (b) 21 January 2018 image, (c) 22 February 2018 image, (d) 10 March 2018
image, and (e) 26 March 2018 image. The parameter n indicates the total number of values/pixels;
the boxes show the interquartile range (IQR) along with median, mean (in parentheses) values; the
whiskers represent the lowest and highest datum within 1.5 IQR of the lower- and upper-quartile,
respectively (all LST values are in K unit).

Table 8. Cross-validation and intercomparison results of Landsat 8 LSTs retrieved with four algorithms
and with the Atmospheric and Topographic CORection (ATCOR) module against Terra MODIS LSTs.
All LST values are in ◦C; image acquisition dates are in yy-mm-dd format. Notations for different LST
retrieval methods from Landsat 8 data are the same as in previous sections.

Landsat 8 LSTs Terra MODIS LSTs

Image Date LST Methods MEAN LSTL8 w (g cm−2) Image Date MEAN LSTMOD BiasMOD–L8

2018-01-04 LSTRTE 19.65 0.5–2.0 2018-01-05 21.31 1.66
LSTSC 18.84 2.47
LSTJim 20.56 0.75
LSTDu 19.67 1.64
LSTref 21.60 −0.29

2018-01-20 LSTRTE 21.31 0.5–2.0 2018-01-21 23.20 1.89
LSTSC 20.41 2.79
LSTJim 22.54 0.66
LSTDu 21.67 1.53
LSTref 23.58 −0.38

2018-02-21 LSTRTE 25.64 1.5–3.0 2018-02-22 28.27 2.63
LSTSC 23.66 4.61
LSTJim 26.98 1.29
LSTDu 26.72 1.55
LSTref 27.80 0.47

2018-03-09 LSTRTE 26.89 1.0–2.5 2018-03-10 29.35 2.46
LSTSC 25.51 3.84
LSTJim 28.97 0.38
LSTDu 28.94 0.41
LSTref 29.93 −0.58
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Table 8. Cont.

Landsat 8 LSTs Terra MODIS LSTs

Image Date LST Methods MEAN LSTL8 w (g cm−2) Image Date MEAN LSTMOD BiasMOD–L8

2018-03-25 LSTRTE 28.93 3.0–4.5 2018-03-26 28.99 0.06
LSTSC 25.70 3.29
LSTJim 29.74 −0.75
LSTDu 30.23 −1.24
LSTref 31.66 −2.67

5. Conclusions

Landsat 8 data are great sources of high resolution remote sensing images with two
thermal bands that can be efficiently used to retrieve LST. An intercomparison study among the
existing LST algorithms for Landsat 8 was performed against ATCOR-derived reference LSTs and
AρρEEARS-derived Terra MODIS daily LSTs. According to the observation of this study, the
Single-Channel algorithm can be used in LST retrieval for Landsat 8 images, but use of a good
Split-Window algorithm has the potential of ensuring greater accuracy. The challenges with a good,
practical, and feasible Split-Window algorithm development can be the precise estimation of coefficient
values and determination of atmospheric water vapor content of the study area.

Taking all Landsat 8 images used in this study under consideration against reference LST,
the RTE-based method (LSTRTE) gives LST results better than the Single-Channel method (LSTSC) with
an average RMSE = 2.47 ◦C; but it (LSTRTE) performs worse compared to the Split-Window algorithms.
Since the RTE-based direct algorithm depends heavily on various atmospheric parameters, precision
calculation of those parameters can be the determinant of LST accuracy. The use of NCEP database
and MODTRAN codes through the online atmospheric correction calculator seems promising for
this method.

The LST results with Single-Channel algorithm provide larger RMSE (average RMSE = 4.11 ◦C)
than the RTE-based method. In contrast, Jiménez-Muñoz et al.’s Split-Window Algorithm (LSTJim)
shows the best performance (average RMSE = 1.19 ◦C) among other methods. These two LST
algorithms (LSTSC and LSTJim) can be chosen when: (a) actual water vapor content is precisely
measured, and (b) other atmospheric parameters are not available as they are not necessary in these
two methods. Especially for the Single-Channel algorithm, it is not advisable to use this method for
images that have more than one thermal band.

The Du et al.’s Split-Window Algorithm (LSTDu) with its coefficients available for w range 0.0 to
6.3 g cm−2 can be applied for an area where the actual amount of water vapor content cannot be
determined or very uncertain for precision determination. The reasons behind this recommendation
are: (a) this algorithm gives good LST results compared to other methods with RMSE = 1.50 ◦C as
found in this study, and (b) other three LST algorithms require either the direct input of water vapor
content (LSTSC and LSTJim methods) or several atmospheric parameters (LSTRTE method). On the
other hand, the potential problem with this method is that the w range of 0.0 to 6.3 g cm−2 is too much
of generalization and could give unsatisfactory results in areas with different atmospheric conditions
than observed in this study.

The cross-validation and intercomparison results of Landsat 8 LSTs with different algorithms
against MODIS daily LSTs were found to agree with the intercomparison results against reference LSTs.
The mean bias (BiasMOD–L8) here for the LSTJim algorithm was found always lower compared to other
Landsat 8 LST algorithms. The ATCOR-derived Landsat 8 LST was found with even lower BiasMOD–L8

for the first three images used in this study revealing that the ATCOR-derived LSTs can be used as
references for the indirect verification of Landsat 8 LST algorithms.

The in situ LSTs were not available in this study; therefore, ground validation of Landsat 8
LST algorithms was not performed. Monitoring of in situ LST data with precision radiosounding
instruments or radiometers correcting for the effects of emissivity and synchronizing with the actual
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time of satellite overpass could be taken into consideration to perform the ground validation of
LST algorithms.

Although the NCEP atmospheric profile database was found providing with good estimation
of atmospheric parameters, other databases (e.g., TIGR, GAPRI, CLAR, etc.) can be used to study
their relative performances. Land surface emissivity from MODIS or ASTER remote sensing images
can be compared against NDVI-based emissivity in the retrieval of precision LST. Cross-validation
of LST from Landsat 8 with MODIS daily LST retrieved using the AρρEEARS online tool was found
promising in the intercomparison study of different Landsat 8 LST algorithms. Other sources of remote
sensing data can be used in the cross-validation study to further enhance the verification of Landsat 8
LST products.
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