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A B S T R A C T

This paper aims to enhance the prediction accuracy of hydrogen solubility in aqueous solution, which is crucial 
for safe and efficient underground hydrogen storage (UHS). The study developed a new hybrid machine learning 
(ML) algorithm, particle swarm optimization-mixed effects random forest (PSO-MERF), and compared with 
Extreme Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), Random Forest (RF), and Equation of State 
(EOS) models. PSO-MERF demonstrated superior performance, achieving a high correlation coefficient (R) of 
0.9982, root means square error (RMSE) of 0.0015, and mean absolute error (MAE) of 0.00091, with less 
computational time (1.01 s). Among the EOS models used, Soave-Redlich-Kwong (SRK) outperformed other 
models. The results suggest that PSO-MERF hyperparameter optimization leads to more accurate hydrogen 
solubility predictions, encouraging its use in UHS design and operation for safe and sustainable hydrogen 
storage.

1. Introduction

Fossil fuels such as coal, natural gas, and oil dominate the global 
energy supply, accounting for approximately 80% of the world’s pri
mary energy consumption [1–4]. This dominant position reflects fossil 
fuels’ central role in powering industrial processes, electricity genera
tion, transportation, and heating. However, in 2023, approximately 
75–80% of total carbon emissions in the atmosphere were from the 
combustion of fossil fuels for daily use [5–8]. Despite significant growth 
in renewable energy sources like wind, solar, hydrogen, and hydro
electric power, which have increased their share of the energy mix, the 
transition to a more sustainable and less carbon-intensive energy system 
is ongoing [9–11]. The exact percentage can fluctuate slightly based on 
factors such as economic growth patterns, advancements in renewable 
energy technologies, changes in energy policy, and shifts in consumer 
behavior towards more sustainable energy sources [12,13]. Hydrogen is 
gaining significant attention as a clean and efficient energy carrier due 

to its high energy density and potential for production from renewable 
sources [14,15]. It offers nearly three times the energy content of gas
oline by weight, making it highly efficient for transportation and power 
generation [16]. Hydrogen boasts a remarkable energy density, packing 
around 140 MJ/kg compared to conventional fossil fuels. Coal comes in 
at 15–32 MJ/kg range, while oil and natural gas offer 47 MJ/kg and 54 
MJ/kg, respectively [17].The combustion of hydrogen releases water 
[18,19]. The ability to produce hydrogen through electrolysis, using 
electricity generated from renewable sources, aligns with global sus
tainability goals by providing a method to store and leverage surplus 
renewable energy. Furthermore, hydrogen’s versatility extends across 
various applications, from powering vehicles to generating electricity, 
highlighting its role in facilitating a transition to a more sustainable and 
resilient energy system [20,21].

Hydrogen storage can be broadly classified into surface and under
ground methods, each with specific advantages, applications, and lim
itations [22,23]. Surface storage involves storing hydrogen in tanks at 
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high pressure or in a liquefied state at cryogenic temperatures and 
storing it within materials like metal hydrides. This method is used for 
smaller-scale applications such as fuel cell vehicles, portable power 
systems, or local energy storage [24,25]. Underground hydrogen storage 
(UHS) emerges as a key technology for enabling large-scale, long-
duration energy storage. This is particularly valuable for future energy 
systems aiming to significantly increase their reliance on renewable 
energy sources [26,27]. It involves storing hydrogen in subterranean 
formations, such as salt caverns [28,29], depleted oil and gas fields [29,
30], or aquifers [29,31]. Each storage option has unique characteristics 
that make it suitable for different scenarios. While underground storage 
offers these advantages, it also faces challenges, including the need for 
significant upfront investment, potential environmental impacts, and 
the necessity for thorough geological assessments to ensure feasibility 
and safety. While challenges exist, underground hydrogen storage offers 
significant capacity, safety, and cost-effectiveness potential. This makes 
it a key element in building a sustainable and resilient future energy 
system centred on hydrogen as a critical energy carrier.

There are several mechanisms in which hydrogen can be stored in 
underground formations, such as structural trapping [32–34], capillary 
trapping [32], solubility (dissolution) trapping [32,34], mineralization 
trapping [32,35], and adsorption trapping mechanisms [32,36]. Solu
bility trapping, where hydrogen dissolves in underground structures’ 
formation water or brine, offers a potentially higher efficiency for 
hydrogen storage with reduced operational demands. This mechanism’s 
efficiency systems are based on the natural and passive nature of the 
dissolution process, which doesn’t require continuous pressure or active 
management to maintain the stored hydrogen in its dissolved state. Once 
hydrogen is dissolved, it is less prone to escape or migrate, reducing the 
risk of leakage and the need for ongoing monitoring and maintenance 
compared to mechanisms like capillary trapping [27,37]. This mecha
nism is particularly relevant in aquifers, where large volumes of water 
can dissolve significant amounts of hydrogen, thus enhancing storage 
security through gradual dissolution [38]. When hydrogen is stored 
underground, its solubility in the surrounding brine or geological ma
terials can affect how much hydrogen can be injected and retrieved. 
High solubility might lead to hydrogen dissolving into the surrounding 
fluids, potentially complicating recovery or leading to losses. 
Conversely, low solubility, particularly in formations like salt caverns 
where the hydrogen is stored in a gaseous state under high pressure, can 
facilitate more straightforward injection and extraction, maximizing the 
efficiency and effectiveness of the storage system [35]. Therefore, un
derstanding and managing hydrogen solubility in different underground 
contexts is vital for optimizing these storage solutions for energy reli
ability, efficiency, and sustainability [39].

Storing hydrogen in water as a solution emerges as a promising op
tion for underground hydrogen storage (UHS), offering a notable solu
bility rate of about 0.179 g per liter under a pressure of 10 atm and a 
temperature of 25 ◦C [40]. This approach stands out for its high energy 
density and affordability compared to alternative storage methods. 
However, accurately determining hydrogen solubility in water presents 
complexities, as its affected by various factors, including temperature, 
pressure, and the composition of the water, which can significantly alter 
the solubility dynamics. Researchers indicate that factors such as tem
perature, pressure, and the salt content of the reservoir significantly 
influence hydrogen solubility in the context of UHS. In general, a rise in 
pressure and temperature tends to enhance hydrogen dissolution, 
whereas higher salinity levels in the brine are associated with reduced 
hydrogen solubility [32].

Two main methods are used to obtain hydrogen solubility in pure 
water, hydrocarbons, and saline water: experimental methods and 
equation of state (EOS) models. These models include Soave-Redlich- 
Kwong (SRK) [41,42], Peng Robinson (PR) [41,42], Redlich-Kwong 
(RK) [42,43], Zudkevitch-Joffe (ZJ) [42], van der Waals [44], Statisti
cal Associating Fluid Theory (SAFT) [45,46], Electrolyte Cubic [47], 
Non-Random Two-Liquid [48], PC-SAFT [49,50] etc. Moreover, EOS 

with molecular dynamic simulation is proposed for hydrogen solubility 
determination in heavy hydrocarbons at high pressures and tempera
tures [51]. However, experiments for hydrogen solubility measurements 
are expensive, time-consuming, and limited in scope. At the same time, 
EOS models can be complex, require specialized knowledge, and might 
not handle the varying salinity levels of underground hydrogen storage 
[52].

Machine learning (ML) has emerged as a highly effective tool for 
predicting hydrogen solubility more accurately than traditional methods 
due to its ability to process and learn from vast datasets encompassing 
diverse materials, experimental results, and conditions. By identifying 
complex, nonlinear relationships that are often invisible to conventional 
approaches, ML models can adapt to predict hydrogen solubility across 
various contexts with high precision [53,54]. This adaptability and 
rapid prediction capabilities significantly reduce the need for 
time-consuming and expensive experimental setups. Furthermore, as 
more data become available, ML models can continuously improve, 
refining their predictions and offering valuable insights into the un
derlying physics of hydrogen solubility. This makes ML an indispensable 
asset in accelerating the development of hydrogen storage technologies 
and understanding material behavior in energy applications.

There are limited literatures on estimating H2 solubility in an 
aqueous solution for UHS purposes compared to other gases using ML 
models. Exploring this area has the potential to revolutionise UHS by 
enabling more efficient, safe, and cost-effective hydrogen storage solu
tions. For instance, Thanh et al. [55] utilized four ML algorithms to 
estimate H2 solubility in an aqueous solution for optimizing the UHS 
process. Experimental data were collected from literature with pressure, 
temperature, and salinity as inputs. It was found that Adaboost out
performed other ML models such as RF, XGBoost, and GB by having a 
high coefficient of determination (R2) of 0.994 and minimum errors, i.e., 
root mean square error (RMSE) of 0.0535 and mean absolute error of 
0.0266, during the testing phase. However, Adaboost has several limi
tations: 1) It struggles with imbalanced datasets. The algorithm might 
focus too much on the minority class, leading to poor performance on 
the majority class.2) Adaboost performance is highly dependent on the 
choice of weak learners. The performance may suffer if the weak 
learners are not appropriate for the given problem.3) If the initial weak 
learners perform poorly, Adaboost may assign large weights to certain 
instances early on, potentially skewing the learning process. Also, Cao 
et al. [56] used a GA to estimate H2 solubility in an aqueous solution for 
UHS purposes. The inputs for the model were pressure, temperature, and 
salinity, which were experimental data collected from the literature. To 
assess its effectiveness, the GA algorithm was compared with FBP, ANN, 
and RBF. It was found that GA outperformed other ML models by having 
R2 of 0.9998 and 0.9184, RMSE of 0.003716 and 0.003201, standard 
deviation (STD) of 0.000014 and 0.00001, and absolute average relative 
deviation (AARD) of 183.25% and 62.13%, during training and testing, 
respectively. Nevertheless, GA faces several limitations: 1) GA are 
generally good at finding approximate solutions but may not always 
provide exact or optimal solutions, especially in problems where precise 
predictions are required.2) GA rely on stochastic processes, which 
means that different algorithm runs can produce different results. This 
variability can make it difficult to reproduce results consistently and 
may require multiple runs to obtain reliable outcomes.3) GA can have 
slow convergence rates, especially when fine-tuning solutions in the 
final stages of the algorithm. This can be inefficient for problems that 
require fast or real-time predictions, etc. Further, Ansari et al. [42] 
compared equations of state (EOS) and ML algorithms in predicting H2 
solubility in pure and saline water for UHS purposes. Experimental 
datasets were collected from the literature. RBF and LSSVM algorithms 
were optimized with different optimizers such as BBO, CA, ICA, and 
TLBO. EOSs used include SRK, PR, RK, and ZJ. It was found that RBF-CA 
outperformed other models with RMSE of 0.000176 and a correlation 
coefficient (R) of 0.972. Among EOS models, SRK performed better than 
other models. Though, RBF-CA has various limitations: 1) The 
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combination usually leads to a more complex system that is harder to 
implement, tune, and understand than using each method individu
ally.2) The parameters of the RBF network and the cultural algorithm 
interact in non-trivial ways, making the optimization process more 
challenging.3) The integration of cultural mechanisms can increase the 
computational cost of the algorithm. The management and updating of 
cultural knowledge require additional computational resources etc.

Furthermore, Mohammadi et al. [49] used ML algorithms and EOS 
models to predict hydrogen solubility in hydrocarbons for UHS storage. 
Experimental datasets were collected from the literature with molecular 
weight, critical pressure, and critical temperature of solvents, as well as 
pressure and temperature as inputs. The ML algorithms used in their 
study include XGBoost, AdaBoost-SVR, CatBoost, LightGBM, and MLP 
optimized by the LM algorithm, while the EOS models used include SRK, 
PR, RK, ZJ, and PC-SAFT. It was found that XGBoost surpassed other ML 
models with a minimum AAPRE of 1.81%. Among EOS models, PC-SAFT 
has the best performance, followed by the ZJ model. Although, XGBoost 
faces several limitations: 1) XGBoost is sensitive to noisy data. While it 
has built-in mechanisms to handle outliers and noise, the algorithm can 
still be influenced by noise, potentially leading to suboptimal perfor
mance.2) The algorithm has many hyperparameters that must be tuned 
to achieve optimal performance. This complexity can be overwhelming 
for beginners and requires extensive experimentation and understand
ing to get right.3) Despite its regularization techniques, XGBoost can still 
overfit the training data, especially if not properly tuned. This is 
particularly true if the model is too complex or has insufficient training 
data. Moreover, Lv et al. [57] utilized different ML models in predicting 
hydrogen solubility in aqueous solutions, which were compared with 
cubic EOS (SRK, PR, RK, and ZJ).ML methods used include 
AdaBoost-DT, AdaBoost-SVR, GB-DT, GB-SVR, KNN, GEP, GP, and 
GMDH. Experimental datasets from the literature include pressure, 
temperature, and salt concentration as model inputs. It was revealed 
that AdaBoost-SVR outperformed other ML and cubic EOS models in 
hydrogen solubility prediction with RMSE of 0.000115 and R2 of 0. 
9973. Still, Adaboost-SVR has various limitations: 1) Sensitivity to noise 
and outliers. 2) Overfitting. 3) Both AdaBoost and SVR require careful 
tuning of multiple hyperparameters. When combined, the hyper
parameter space becomes even more complex, making the tuning pro
cess more challenging and time-consuming.

Further, Zhou et al. [58] used the ML algorithm to predict H2 solu
bility in different alcoholic solvents from experimental data. The 
model’s inputs include pressure, temperature, critical pressure, and 
acentric factors. It was found that ANFIS2 outperformed other models 
such as LSSVM, ANN, SRK, PC-SAFT, and PR with R2 of 0.998896, MSE 
of 6.9 × 10− 4, and RAD of 3.32%. Similarly, Jiang et al. [59] utilized 
ANFIS to estimate H2 solubility in aromatic compounds, which was 
compared with LSSVM, ANN, MLPNN, CFFNN, GRNN, and RBFNN. The 
models’ input includes temperature, pressure, critical pressure, critical 
temperature, and acentric factor. It was revealed that ANFIS out
performed other models with R2 of 0.99664, RMSE of 0.0052, RD of 
7.88%, RAE of 5.05%, MSE of 2.75 × 10− 5, and MAE of 0.0023. How
ever, ANFIS faces various limitations: 1) Highly sensitive to the initial
ization of membership functions and rule parameters. Poor initialization 
can lead to suboptimal training and performance. 2) Overfitting.3) 
Inherently designed for unsupervised learning etc. Moreover, Tatar et al. 
[60] employed four ML algorithms (DT, RF, GB, and ET) to predict H2 
solubility in hydrocarbons. The models’ input includes pressure, 
dimensionless pressure, dimensionless temperature, critical pressure, 
critical temperature, type of n-alkane, boiling point, and acentric factor. 
It was revealed that GB surpassed other ML models with high accuracy 
with R2 of 0.9826 and RMSE of 0.0086. Though, GB has several limi
tations:1) Have many hyperparameters (like learning rate, number of 
trees, maximum depth of trees, etc.) that need to be tuned carefully. 2) 
Prone to overfitting, especially when the number of trees is large or 
when the trees are deep.3) Sensitive to noisy data etc. In addition, 
Hadavimoghaddam et al. [61] used GMDH to estimate H2 solubility in 

hydrocarbons, which was compared with the GP algorithm. The models’ 
input includes pressure, temperature, carbon weight percentage, H2 
weight percentage, molecular weight, and hydrogen/carbon ratio. It 
was found that GMDH outperformed GP in H2 solubility estimation with 
R2 of 0.9641 and RMSE OF 0. 053,302.Further, it was found that pres
sure, temperature, and H2 weight percentage have highest impacts on H2 
solubility in hydrocarbons. Although, GMDH faces several limitations:1) 
Overfitting the data, especially when the dataset is small or has a lot of 
noise. 2) Choosing the right parameters (such as the number of layers, 
neurons per layer, and selection criteria) is difficult and require signif
icant trial and error. Improper parameter selection can lead to subop
timal models.3) GMDH uses a local optimization approach, which means 
it may find local rather than global optima. This can sometimes result in 
suboptimal models that do not represent the best possible solution.

Hence, this paper developed a new hybrid ML algorithm, i.e., particle 
swarm optimization - mixed effects random forest (PSO-MERF), to 
predict H2 solubility in aqueous solution for UHS purposes to solve prior 
ML limitations. This innovative methodology synergistically combines 
the robust predictive capabilities of MERF with the global optimization 
strength of PSO, addressing the multifaceted and complex nature of 
hydrogen solubility dynamics in variable salinity conditions. The MERF 
component of the model incorporates both fixed and random effects, 
enabling it to account for the inherent variability and hierarchical 
structure of environmental data, such as temperature, pressure, and 
salinity gradients, which traditionally challenge solubility models. 
Concurrently, the PSO algorithm optimizes the hyperparameters of the 
MERF model, ensuring the model is finely tuned to the peculiarities of 
the dataset, thus enhancing predictive accuracy and model generaliz
ability. Further, another uniqueness of the PSO-MERF model is its ability 
to systematically navigate and model the complex, nonlinear relation
ships inherent in UHS systems, leveraging the collective intelligence of 
the PSO swarm to explore the hyperparameter space efficiently and the 
MERF’s capacity to model complex data structures. This dual-strength 
strategy offers a significant advancement in the predictive modelling 
of hydrogen solubility, contributing to the enhancement of UHS design 
and management by providing reliable, high-fidelity predictions crucial 
for the operational efficiency and safety of storage facilities. To assess its 
effectiveness, PSO-MERF was compared with EOS and other ML models, 
which are KNN, XGBoost, and RF. This paper comprises four sections: 
introduction, methodology, results and discussion, and conclusions and 
recommendations.

2. Methodology

This section discusses four methods utilized in this paper to predict 
hydrogen solubility in aqueous solution, specifically K-Nearest Neigh
bors (KNN), Extreme Gradient Boosting (XGBoost), Random Forest (RF), 
and newly developed method, i.e., Particle Swarm Optimization-Mixed 
Effects Random Forest (PSO-MERF) algorithm.

2.1. Data collection

The data utilized in this study to predict H2 solubility were collected 
from published literature. A comprehensive review of peer-reviewed 
journals, conference proceedings, and reputable industry reports was 
conducted to identify relevant studies pertaining to H2 solubility in 
aqueous solutions. The search strategy involved keywords such as “H2 
solubility”, “H2 storage”, “experiments H2 solubility,” and related terms 
to ensure the inclusion of pertinent literature. Additionally, databases 
such as Scopus, Web of Science, and Google Scholar were extensively 
searched to gather various studies from various sources. Several inclu
sion criteria were applied during the literature selection process to 
ensure the robustness and reliability of the data. Firstly, only studies that 
explicitly reported H2 solubility values or provided sufficient data for H2 
solubility prediction were considered. This criterion ensured that the 
selected literature directly contributed to developing the H2 solubility 
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prediction model. Secondly, emphasis was placed on selecting studies 
that employed experimental techniques or rigorous simulation methods 
for H2 solubility determination, thus prioritising accuracy and credi
bility in the collected data. Each identified study underwent a thorough 
review to extract relevant data points. Careful attention was paid to 
ensure data consistency and validity, with any discrepancies or ambi
guities resolved by referring back to the original literature sources. In 
this paper, a total of 350 experimental datasets were collected from 
published literature [55,62–72], consisting of pressure (P) in bar, tem
perature (T) in K, and salinity (S) in (%wt) as inputs and hydrogen 
solubility (HS) in mole as output.The detailed data sources are sum
marized in Table 1. The selection of pressure, temperature, and salinity 
as input variables for predicting hydrogen solubility is firmly rooted in 
fundamental chemical principles and corroborated by extensive 
research in previously published literature [37,55,69,73]. These factors 
are the primary determinants of gas solubility in aqueous solutions, and 
their inclusion ensures a comprehensive and accurate predictive model. 
Our study aims to build upon this established knowledge base to provide 
a robust and reliable tool for predicting hydrogen solubility in varying 
conditions.

2.2. Data preprocessing

The collected data contains outliers detected by the box plot tech
nique, as shown in Fig. 1. Addressing outliers effectively can ensure the 
ML models learn from the most representative data and achieve better 
performance on unseen data. In this paper, the Z-score method was used 
to remove outliers by capping technique, which involves replacing 
outlier values in the datasets within a predefined threshold value, i.e., 
the maximum and minimum outliers in the datasets were replaced with 
upper and lower limits, respectively, calculated by Z-score method. The 
capping technique is a better choice than the trimming technique when 
preserving all data points, which is essential and can mitigate their 
impact. In contrast, trimming involves completely removing outlier data 
points from the dataset [83,84]. Normalization is a vital preprocessing 
step in ML, paving the way for better model performance, interpret
ability, and overall robustness. Firstly, it helps to ensure that features are 
on a similar scale, preventing certain features from dominating others 
during training. Secondly, normalization aids in speeding up the 
convergence of iterative optimization algorithms, leading to faster 
training times. Moreover, it can improve the performance of models by 
making them more robust to outliers and noise in the data. Additionally, 
normalization facilitates the interpretation of model parameters since 
the scale of the features no longer affects the magnitude of the weights 
[85,86].In this paper, all the data were normalized from 0 to 1 using Eq. 
(1) before model training. Descriptive statistics for the data used for 
training and testing the models are shown in Table 2. The correlation 
heat map of the data used in model training and testing is given in Fig. 2, 
in which pressure and temperature positively correlate with hydrogen 
solubility. In contrast, salinity has a negative correlation with hydrogen 

solubility. 

yʹ
i =

yi − ymin

ymax − ymin
(1) 

Where ýi, yi, ymin, ymax are the normalized value of yi, the value to be 
normalized, the minimum value of yi, and the maximum value of yi, 
respectively.

2.3. K-nearest neighbors (KNN)

KNN is a supervised ML technique utilized for regression and clas
sification problems [87–89]. It was first introduced by Fix and Hodges 
[90]. It’s a lazy, non-parametric learning approach that doesn’t learn a 
particular model throughout training or make any assumptions about 
the distribution of the underlying data. Rather, it records all accessible 
data points and generates outputs by comparing fresh data points to 
pre-existing ones [91–93]. Given a dataset D =

{
(x1, y1), (x2, y2),…,

(
xn, yn

)}
where xi represents the feature vector of the ith sample and yi 

represents its corresponding label, then the KNN algorithm works as 
follows: For classification to classify new data (xnew), the algorithm 
computes the distance between xnew and all other data points in the 
training set. It then selects the k nearest data points (nearest neighbors) 
to xnew based on some distance metric (usually Euclidean distance). 
After that, it assigns the class label by a majority vote among its k nearest 
neighbors. In contrast, for regression, it computes the average (or 
weighted average) of the predicted values of its k nearest neighbors. The 
most commonly used distance metric in KNN is the Euclidean distance, 
which is calculated as [94,95]: 

d
(
xi, xj

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

l=1

(
xi,l − xj,l

)2

√

(2) 

Where xi,l and xj,l are the components of the feature vectors xi and xj, 
respectively, and m is the dimensionality of the feature space.

However, this method has several disadvantages, such as being 
computationally expensive during testing, especially for large datasets, 
sensitive to the choice of distance metric, and performance can degrade 
with high-dimensional data.

2.4. Extreme gradient boosting (XGBoost)

XGBoost stands out as a powerful and efficient implementation of 
gradient boosting, a ML technique known for its effectiveness in various 
prediction tasks. Its speed and strong performance have made it a pop
ular choice, particularly in competitions focused on structured data 
analysis. It is designed to be distributed efficiently and has the flexibility 
to handle various types of predictive modelling problems. It builds a 
group of decision trees (ensemble learning) to create a final model, with 
each tree focusing on areas where previous ones struggled (gradient 
boosting). This approach helps prevent overfitting (regularization) and 

Table 1 
Details on utilized data sources.

Pressure range (bar) Temperature range (K) Salinity range (% wt) Solubility range (mol fraction) Data points Reference (s)

29.272–121.706 323.18–372.73 0–1 0.000309–0.001544 37 Chabab et al. [74]
19.884–216.205 323.18–372.78 1–3 0.000201–0.002132 17 Torín-Ollarves and Trusler [75]
11.64–229.72 323.15–423.15 2.5–5 0.000127–0.004557 25 Jáuregui-Haza et al. [64]
5–110 273.15–423.15 0 0.002016–0.9131 40 Kling and Maurer [65]
5–110 333.15–363.15 0 0.03828–0.68979 18 Ruetschi and Amlie [76]
5–110 273.15–423.15 0–1 0.027–0.97881 54 Wiebe and Gaddy [77]
5–25 273.15–373.15 1–3 0.01336–0.14601 23 Crozier and Yamamoto [78]
5–25 273.15–373.15 3–5 0.00668–0.09292 23 Gordon et al. [79]
4.6–101.4 273.15–373.15 0–5 0.01291–0.791533 53 Morrison and Billett [80]
1.01325 278.2–298.2 0–3 0.00061–0.00084 42 Braun [81]
1.01325 274.15–303.15 0–4 0.000681–0.000817 18 Wiesenburg and Guinasso [82]

Total 350

G.C. Mwakipunda et al.                                                                                                                                                                                                                       International Journal of Hydrogen Energy 87 (2024) 373–388 

376 



works well with big data (scalability). XGBoost can handle missing 
values and offers some interpretability through feature importance, 
making it a flexible and user-friendly tool for various ML projects to 
tackle regression, classification, and ranking tasks. The mathematical 
foundation of XGBoost, incorporating gradient boosting with regular
ized objectives, provides a robust framework for predictive modelling.

Let’s consider a dataset (D) with n data points and m features 

D={(xi, yi : i=1,…, n, xi ∈Rm, yi ∈R)} (3) 

Suppose ŷi is the predicted value given as [96,97]: 

ŷi =
∑K

i=1
fk(xi), fk ∈ F (4) 

Where K represent regression number trees, xi stands for sample i fea
tures, F is regression trees space are, and fk is the weight of the leaf for 
node j. In XGBoost, the goal is to minimize an objective function, which 
can be expressed as [96,97]: 

Obj=
∑n

i=1
l(yi, ŷi)+

∑K

k=1
Ω(fk) (5) 

Ω(f)= γT +
1
2

λ‖ω‖2 (6) 

Where 
∑n

i=1l
(
yi, ŷi

)
stands for training loss function, γ is the degree of 

regularization, K stands for the number of trees, λ is the regularization 
coefficient, ω represents leaf weight, and Ω(f) serves to constrain the 
model’s complexity, mitigating the risk of overfitting. To achieve the 
best model performance, ft is added in the objective function in Eq. (5), 
in which ŷt

i and i-th stands for model output and the number of itera
tions, as presented in Eq. (7) [96,97]. 

Objt =
∑n

i=1
l
(

yi, ŷ
(t− 1)
i + ft(xi)

)
+ Ω(ft) (7) 

Incorporating the greedy algorithm enhances the model’s effective
ness by integrating feature transformation. Subsequently, the 

Fig. 1. Data outliers in using boxplots.

Table 2 
Descriptive statistics of the utilized data.

Statistical 
parameters

Inputs Output

Pressure 
(P) in (bar)

Temperature 
(T) in (K)

Salinity (S) 
in (% wt)

Hydrogen 
solubility (HS) in 
(mole fraction)

Mean 49.6743 378.5691 1.6321 0.1931
Standard 

deviation
51.3967 47.2391 1.8954 0.2793

Minimum 3.9 273.15 0 0.000121
25% 15 303.15 0 0.01857
50% 25 333.15 1 0.0703
75% 66.6345 372.75 3 0.2883
Maximum 233.6523 473.14 5 0.9788

Fig. 2. The correlation heatmap between inputs and output.
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performance of the model is optimized in every iteration through the 
reduction of the fitness function expressed as [96,97]: 

ŷ(t)
i = ŷ(t− 1)

i + ft(Xi) (8) 

2.5. Random forest (RF)

RF is a powerful ensemble learning method that leverages the com
bined strength of multiple decision trees to enhance prediction accuracy 
and achieve greater robustness in its results [98–101]. It belongs to the 
family of bagging algorithms and is known for its effectiveness in clas
sification and regression tasks [102–104]. It was first discovered by 
Breiman [105] and later modified by Liaw and Wiener [106]. It achieves 
its accuracy by combining the predictions of multiple decision trees, 
overcoming the limitations of individual trees by introducing random
ness and averaging. RF builds multiple decision trees during training. 
Each tree is trained on a random subset of the training data, drawn with 
replacement (bootstrap samples). Bootstrap sampling involves 
randomly selecting data points from the original dataset to form a new 
dataset of the same size. Since sampling is done with replacement, some 
data points may be selected multiple times, while others may not. The 
model’s performance can be estimated using these Out-of-Bag (OOB) 
samples, eliminating the need for a dedicated validation set. This 
randomness in the training process helps to mitigate overfitting by 
introducing variation among the trees. It also contributes to the unpre
dictability of the model, making it more robust and less prone to 
memorising the training data [99,107–109]. In addition to the bootstrap 
sampling strategy, random forest introduces randomness in the training 
process in two main ways:1) Random selection of features: At each de
cision tree node, only a random subset of features is considered for 
splitting. This helps to decorate the trees in the forest and prevent them 
from all making the same splits.2) Random generation of training 
samples: The training samples for each tree are randomly generated with 
replacements from the bootstrap sample. This means that each tree sees 
a slightly different subset of the data, leading to diversity among the 
trees in the forest. To create robust and accurate predictions, RF lever
ages a combination of techniques: bootstrap aggregating (bagging), 
random feature selection, and random training sample generation. This 
ensemble approach builds a collection of diverse decision trees, each 
trained on a random subset of features and data points. By combining 
the predictions from these trees, RF achieves improved generalizability 
and reduces the risk of overfitting [110–112]. For classification tasks, 
the class predicted by each tree is tallied, and the class with the most 
votes is assigned as the final prediction [103]. In regression problems, 
the model combines the predictions from all trees to arrive at a final 
prediction, typically by averaging them by Eq. (9) [95,113]. 

f
B
rf =

1
B
∑B

b=1

T(x,Ob) (9) 

Where fB
rf stands for average tree output, B is the trees, and T(x,Ob) is the 

output of each tree.

2.6. Particle swarm optimization-mixed effects random forest (PSO- 
MERF)

The PSO-MERF model represents an advanced integration of opti
mization and machine learning techniques designed to enhance pre
dictive modelling in complex datasets. This combination leverages the 
global search capability of particle swarm optimization (PSO) to fine- 
tune the parameters of a mixed effect random forest (MERF). This 
hybrid model integrates the strengths of Random Forests and Mixed 
Effects models. In the PSO-MERF model, PSO is used to optimize the 
hyperparameters of the MERF model. This includes, but is not limited to, 
the number of trees in the Random Forest, the depth of the trees, the 

minimum samples required to split an internal node, and the parameters 
governing the mixed effects model component, such as the variance 
components of the random effects. These two components and func
tionalities of PSO-MERF are discussed in detail in the following 
subsections.

2.6.1. Particle swarm optimization (PSO)
PSO is a well-regarded optimization algorithm that draws inspiration 

from the collective movement patterns observed in bird flocks and fish 
schools [114–118]. PSO involves a population of candidate solutions, 
referred to as particles, which move through the search space, looking 
for the optimal solution. The algorithm starts with an initial population 
of particles randomly distributed across the search space. Each particle 
acts as a candidate solution in the optimization problem. These particles 
are equipped with a position vector representing their current explora
tion point in the hyperparameter space and a velocity vector indicating 
their direction and magnitude of movement for the next iteration. Each 
particle is represented by a position vector within the search space. This 
position vector indicates the current solution being evaluated. The 
particle also possesses a velocity vector, influencing the direction and 
magnitude of its movement in the search space during the iterative 
optimization process. During each iteration (or generation) of the al
gorithm, each particle adjusts its velocity and position based on its own 
experience and the experiences of its neighbors. This adjustment is 
guided by two key components: the particle’s best-known position 
(personal best) and the best-known position found by its neighbors 
(global best) [119–121].

Each particle’s velocity at iteration i is determined by the following 
equation [117,119,122]: 

vi(t+1)=w.vi(t)+ c1.r1.
(
pi,best − xi(t)

)
+ c2.r2.

(
pg,best − xi(t)

)
(10) 

Where vi(t) is the velocity of particle i at iteration t,w is the inertia 
weight that controls the impact of the previous velocity,c1 and c2 are 
acceleration coefficients representing the cognitive and social compo
nents, respectively, r1 and r2 are random values sampled from the uni
form distribution in the range [0,1], pi,best is the personal best position of 
particle i, pg,best is the global best position found by any particle, and xi(t)
is the position of particle i at iteration t. After updating the velocities, the 
positions of the particles are updated using the following equation [118,
119,122,123]: 

xi(t+1)= xi(t) + vi(t+1) (11) 

The algorithm runs for a set number of iterations or until a stopping 
condition is reached (e.g., achieving a satisfactory solution).

2.6.2. Mixed effects random forest (MERF)
MERF combines the predictive power of random forests with the 

ability to account for both fixed and random effects in hierarchical or 
grouped data, making it highly suitable for complex datasets where in
dividual and group-level variability must be considered. This approach 
can be formulated as [124–129]: 

yi = f(Xi) + Ziui + εi,

ui ∼ N(0,G), εi ∼ N(0,Ri), i = 1, 2,…,K (12) 

Where yi =
(
yi1,…, yin

)
stands for vector output for cluster i, Xi and Zi 

represents design matrices for fixed effects and random forest, respec
tively, ui represents unknown vector for random effects, and εi stands for 
residual vector. The constant part f(Xi) is computed by an RF. In the 
MERF model it is assumed that the data from the clusters are indepen
dent and ui as well as εi. In addition, a diagonal matrix (Ri = σ2Iin) is 
needed to ensure that the residual structures and sizes are identical 
across all clusters. Steps for MERF implementation are as follows 
[125–127,130]:
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Step 1: Initialization of random effects coefficients at zero, σ2
R = 1, G 

as identity matrix (G = Im). Iteration number k is zero [124,128,
131].
Step 2: i) Updating k to k = k+1, then the random part is subtracted 
from the output: y∗i(k) = yi − Zi ûi(k− 1) [124,131].
ii) The RF model is trained based on y∗i(k) utilizing the bagging 

method.
iii) Predict for unseen data points in each observation j using trees 

that haven’t seen j during training [124,131].
iv) Then update ui [124,131]:

ûi(k) = Ĝ(k− 1)ZT
i V− 1

i(k− 1)

(
yi − f̂ (Xi)(k)

)
, i= 1,…, n (13) 

Where Vi(k− 1) = Zi Ĝ(k − 1)Z
T
i + σ̂2

R(k− 1)Ini.

Step 3: Refine the covariance matrix G and the estimate σ2
R using the 

latest residual values [124,131].

σ̂2
R(k) =

1
N
∑n

i=1
ε̂T

i(k) ε̂ i(k) + σ̂2
R(k− 1)

(
ni − σ̂2

R(k− 1).trace
(
Vi(k− 1)

))
(14) 

Ĝ(k) =
1
n
∑n

i=1
uT

i(k)ui(k) + Ĝ(k− 1) − Ĝ(k− 1)ZT
i V− 1

i(k− 1)Zi Ĝ(k− 1) (15) 

Where εi(k) = yi − f̂ (Xi)(k) − Zi ûi(k), i = 1,2,…,K and is not defined by 
random forest and random effects estimates.

Step 4: The process continues by iteratively performing steps 2 and 3 
until a stopping criterion, based on a measure of model fit, is met 
[124,129,131].

GLL(f , u|y)=
∑n

i=1
(yi − f(Xi) − Ziui)

TR− 1
i (yi − f(Xi)

− Ziui)+ uT
i D− 1ui + log|G| + log|Ri|

)

(16) 

If we consider the generalized likelihood criterion (denoted as GLLk) 
after the kth iteration, the algorithm is said to have converged when 
[124,127,129,131]: 

|GLLk − GLLk− 1|

GLLk− 1
< δ (17) 

For some δ > 0.
In this context, a relative convergence criterion is preferred over an 

absolute one. The absolute value of the generalized likelihood criterion 
(GLL) can vary significantly depending on the specific problem and 
dataset. Therefore, basing the convergence solely on the actual GLL 
value would be meaningless. The steps for PSO-MERF implementation 
are outlined as follows.

1. Data partitioning: After data normalization, the data were 
divided into training and testing groups.70% of the data was used 
for training, while 30% was used for testing. K-fold cross- 
validation is a widely used method for assessing the perfor
mance of machine learning models. The dataset is divided into k 
distinct subsets, or folds, for this technique. Common choices for 
k are 5 or 10. The process involves using k-1 folds to train the 
model while the remaining fold is set aside for validation. This 
procedure is repeated k times, with each fold being used exactly 
once as the validation set. The choice of k significantly impacts 
the evaluation process. Fewer folds (e.g., k = 5) result in a higher 
bias and lower variance but reduce computational cost. 
Conversely, more folds (e.g., k = 10) decrease bias and increase 
variance, leading to more computationally intensive evaluations. 

Tenfold cross-validation is frequently chosen to strike a good 
balance between bias and variance [11]. The final performance 
metric is calculated by averaging the results obtained from each 
iteration, providing a comprehensive measure of the model’s 
effectiveness across different subsets of the data. For this paper, 
tenfold cross-validation was utilized.

2. Initialization of PSO parameters: PSO parameters such as the 
number of particles, maximum iterations, inertia weight, accel
eration coefficients, and bounds for the search space were defined 
for PSO execution. Proper initialization of parameters is essential 
for PSO-MERF to achieve efficient exploration, avoid local op
tima, and adapt to diverse datasets. This allows the algorithm to 
learn optimal parameter settings and achieve accurate pre
dictions for specific applications.

3. Initialization of MERF parameters: MERF parameters such as 
the kernel type, regularization parameter (C), and kernel pa
rameters (gamma for RBF kernel) were defined for PSO execu
tion. This initialization of MERF parameters randomly is a 
valuable strategy by aiding in exploration, adaptation, and 
robustness

4. Initialization of particle positions and velocities: Particle 
positions and velocities were initialized randomly for model 
development. This is essential for efficiently navigating and uti
lizing the search area. Ultimately, the best initialization method 
depends on your specific problem and its characteristics. Exper
imentation with different approaches might be necessary to find 
the most effective strategy for your application

5. Evaluation of fitness function: This stage involves evaluating 
the fitness of each particle’s position using MERF, followed by 
training the MERF model with the training data using the pa
rameters represented by each particle’s position. After that 
calculation, the fitness of each particle based on the performance 
of the MERF model on the training data such as RMSE and MAE

6. Update personal and global best positions: Following the 
evaluation by a fitness function, both the personal best position 
(pbest) and the global best position (gbest) are updated for each 
particle. The pbest update considers the particle’s current fitness 
value compared to its previous best. In contrast, the gbest update 
compares the fitness of all particles to identify the overall best 
position encountered so far.

7. Update particle velocities and positions: In this stage, the 
position and velocity of each particle based on its current veloc
ity, personal best position, and global best position were updated. 
Then, after reaching a maximum number of iterations, the model 
stopped.

8. Final model training: After optimization, the MERF model was 
trained using the best parameters obtained from the global best 
position.

9. Model evaluation: The developed model was evaluated by the 
unseen data based on three selected criteria: R, RMSE, and MAE. 
In case the initial result is unsatisfactory, steps 2 through 7 are 
iterated upon until a desirable result is achieved

10. Analysis and interpretation: The results were analyzed and 
interpreted, and a conclusion was made regarding the relation
ship between the input variables and the target variable. The 
flowchart for PSO-MERF is summarized in Fig. 3.

2.7. Hyperparameter tuning

Hyperparameter tuning, also known as model tuning, is a critical 
step in the ML aimed to find the optimal settings for a model’s hyper
parameters [95,132,133]. These are essentially dials and levers that 
control the learning process and overall behavior of the model, but 
unlike regular parameters that are learned during training, they need to 
be set before training starts [133,134]. There are several methods used 
for hyperparameter tuning:1) Random search: Samples random 
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combinations of parameters, which is faster but less likely to find the 
best settings.2) Grid search: Tries every possible combination of 
parameter values, which can be computationally expensive for large 
grids.3) Bayesian optimization: Uses statistical methods to identify 
promising regions of the parameter space, focusing the search on areas 
with higher chances of finding optimal settings [135,136]. This paper 
used the random search for hyperparameter tuning because it searches 
samples of random combinations from the parameter space, avoiding 
the exhaustive evaluation of every possible combination. This makes it 
significantly faster, especially for models with many hyperparameters or 
large ranges. Also, unlike other methods like Bayesian optimization, 
random search only requires defining the ranges for each parameter, 
making it less prone to overfitting. Further, random search explores a 
wider variety of parameter combinations than grid search, which its 
predefined grid can limit. This allows it to discover unexpectedly suit
able configurations potentially. Hyperparameters utilized in this paper 
are shown in Table 3.

3. Results and discussion

3.1. Model performance indicators

Model performance indicators are metrics utilized to assess and 
quantify the accuracy, reliability, and efficacy of a predictive model. 
These indicators help in assessing how well a model is performing, based 
on its ability to make accurate predictions or classifications. The choice 
of performance indicators often depends on the model type (e.g., 
regression, classification) and the specific objectives of the modelling 
exercise. In this paper, three models’ performance indicators, which are 
correlation coefficient (R), root mean square error (RMSE), and mean 
absolute error (MAE), expressed in Eqs. (18)–(20) [137], respectively, 
were utilized in models’ comparisons during hydrogen solubility 

prediction. Usually, when MAE and RMSE values are near zero, it 
typically indicates high model accuracy, while for R, when values are 
close to one, it indicates the model performed excellently. Hence, the 
best model in this study was chosen based on minimum errors (RMSE 
and MAE) and high R during training and testing. In this paper, the 
Python 3.12.2 version was used for the model development. 

R=

∑N

i=1
(yact − yact)

(
Yprd − Yprd

)

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(yact − yact)

2

√ )( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
Yprd − Yprd

)2

√ ) (18) 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1
N
∑N

i=1

(
yact − Yprd

)2

)√
√
√
√ (19) 

MAE=
1
N
∑n

i=1

⃒
⃒yact − Yprd

⃒
⃒ (20) 

Where yact is actual value, yact is average actual value, Yprd is predicted 
value, Yprd represents average forecasted value, and N stands for the 
amount of data.

3.2. Models’ statistical analysis

Table 4 shows the performance metrics of four different ML models 
applied to the estimation of hydrogen solubility, including PSO-MERF, 
XGBoost, KNN, and RF. During training, PSO-MERF, XGBoost, KNN, 
and RF exhibit exceptionally high R values of 0.9997,0.9968,0.9899, 
and 0.9819, respectively, which implies that the models have captured 
the underlying data generation process with high fidelity during 
training. At the same time, in testing, there was a minor drop of R by 
0.15% for PSO-MERF, indicating that the model generalizes well to 
unseen data. For other models, the decrease of R values between training 
and testing was 0.85% for XGBoost,5.73% for KNN, and 7.61% for RF. 
For errors, PSO-MERF has RMSE of 0.00033 on training data, which is 
the lowest among all models, suggesting very accurate predictions with 
minimal error, while in testing, the RMSE increases slightly to 0.0015 for 
PSO-MERF, which is still the lowest among the models. For XGBoost, 
KNN, and RF, the RMSE were 0.00099 and 0.0031,0.0025 and 0.0297, 
0.0067 and 0.0636, throughout the training and testing phases, 
respectively. Also, the training MAE of 0.00041 for PSO-MERF indicates 
minimal average prediction error. This low MAE shows the model has 
high accuracy in the training phase. At the same time, it achieves a 
testing MAE of 0.00091, which again is the lowest compared to other 
models, reinforcing its ability to generalize from training to testing data. 
For other models, MAE were 0.00099 and 0.00252,0.0025 and 0.00614, 
0.0067 and 0.00918, for XGBoost, KNN, and RF, during training and 
testing, respectively. Furthermore, PSO-MERF took less computational 
time (1.01s) than other models, as shown in Tables 4 and ie., 59.9% less 
than XGBoost, 69.7% less than KNN, and 80.8% less than RF. This result 
suggests that the PSO-MERF exhibits superior convergence speed and 
accuracy compared to the other ML models. PSO-MERF generally out
performs the other models in all metrics for training and testing. It has 
the highest R, indicating the best fit to the data; the lowest RMSE 
(Fig. 4), showing the smallest average error in predictions; and the 
lowest MAE (Fig. 5), demonstrating its ability to maintain prediction 
accuracy consistently. The minimal differences in metrics between 
training and testing for PSO-MERF suggest superior generalizability and 
indicate an effective balance between bias and variance, likely due to the 
optimized hyperparameters via PSO. In contrast, other models, espe
cially RF, show a pronounced decline in performance from training to 
testing, which can indicate overfitting to the training data and a lack of 
generalization to new data.

Fig. 3. PSO-MERF flowchart.

Table 3 
Optimal hyperparameters for model developments.

ML models Hyperparameters Range values Used values

KNN n_neighbors [1,30] 22
RF n_estimators [500,2500] 1300

max_depth [1,30] 15
min_samples_leaf [1,70] 45
min_samples_split [1150] 97

XGBoost n_estimators [500,2700] 1800
max_depth [1,50] 25
subsample [0.1,2] 0.9
colsample_by tree [0,1] 0.9
learning_rate [0,1] 0.7

MERF min_samples_leaf [1,20] 9
min_samples_split [1,15] 13
max_depth [1,30] 10
Number of trees [100,1500] 350
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3.3. Models’ comparisons

From Fig. 6, the x-axis represents the experimental data and the y- 
axis represents the predicted H2 solubility. A perfect fit would be a 
straight diagonal line from the bottom left (0,0) to the top right (1,1). 
The closer the fitting line is to this diagonal, the better the model’s 
performance. In Fig. 6 (a), the PSO-MERF model shows a nearly perfect 
fit to the data during training, with an R-value of 0.9997, indicating that 
the model captures 99.97% of the variance in the training data. During 
testing, the R-value was 0.9982, slightly lower, but still indicates a 
perfect fit to the unseen data. The proximity of the training and testing 
fitting lines to the fitting lines suggests that the model has excellent 

predictive accuracy and generalises the data well. For the XGBoost 
model in Fig. 6 (b), the XGBoost training fitting line is close to the di
agonal line. This indicates that XGBoost performed well on the training 
data. However, the XGBoost testing fitting line deviates more from the 
diagonal line than the PSO-MERF testing fitting line. This suggests that 
XGBoost may have to overfit the training data more than PSO-MERF. For 
the KNN model in Fig. 6 (c), the KNN training fitting line is close to the 
diagonal line but deviates more than PSO-MERF and XGBoost in the 
range. This indicates that KNN performed well on the training data but 
not as well as PSO-MERF or XGBoost. The KNN testing fitting line de
viates significantly from the diagonal line, particularly for values above 
0.6 on the x-axis. This suggests that KNN performed poorly on the testing 
data and significantly overfitted the training data. For the RF model in 
Fig. 6 (d), the RF training fitting line deviates considerably from the 
diagonal line across the entire x-axis range compared to other models. 
This indicates that RF did not perform well on the training data. The RF 
testing fitting line also deviates significantly from the diagonal line and 
to a similar extent as the training fitting line. This suggests that RF 
performed poorly on the training and testing data and did not learn the 
underlying relationship between the experimental data and the pre
dicted solubility, especially for small H2 solubility values. In general, 
based on the fitting lines, PSO-MERF appears to be the best-performing 
model. It has the closest fitting lines to the diagonal line on both the 
training and testing data, indicating good performance on both sets. 
XGBoost also performed well on the training data, but its performance 
appears to have degraded more on the testing data than PSO-MERF. 
KNN and RF performed poorly, with KNN showing significant over
fitting and RF failing to learn the relationship between the data.PSO- 
MERF likely achieved superior performance due to a combination of 
factors. PSO, the optimization algorithm within PSO-MERF, excels at 
searching through complex spaces for optimal solutions. This might 
have helped PSO-MERF capture the underlying relationships within the 
solubility data during training. Additionally, MERF, the regression 
component, might have been particularly adept at modelling these re
lationships, leading to accurate predictions on both the training and 
testing sets.

Also, as shown in Fig. 7, Taylor’s diagram was utilized in the models’ 
comparison performance. Based on Fig. 7 it indicates that the PSO-MERF 
model (triangle symbol), followed closely by the XGBoost model (square 
symbol), demonstrates the highest correlation and a standard deviation 
most close to the reference data, with both models also indicating a 
lower root mean square difference (RMSD) compared to KNN and RF 
models. This suggests that PSO-MERF and XGBoost have the most ac
curate and reliable predictions regarding both pattern and magnitude of 
variability. The RF model (diamond symbol) shows a lower correlation 
and a more significant deviation from the reference data than the PSO- 
MERF and XGBoost, suggesting it is the least accurate model among 
those presented. The KNN model (circle symbol) has a correlation and 
standard deviation lower than the PSO-MERF and XGBoost but better 
than the RF model. Therefore, based on this diagram, the PSO-MERF 
model performs the best in predicting H2 solubility, closely followed 
by XGBoost, with both significantly outperforming the KNN and RF 
models.

A violin plot is a data visualization tool that combines aspects of a 
box plot and a kernel density plot [138]. It is particularly useful for 
visualizing data distribution and comparing multiple groups or models. 

Table 4 
Models’ statistical results.

Models Training data Testing data Computational time (Seconds)

R RMSE MAE R RMSE MAE

PSO-MERF 0.9997 0.00033 0.00041 0.9982 0.0015 0.00091 1.01
XGBoost 0.9968 0.00099 0.00053 0.9883 0.0031 0.00252 2.52
KNN 0.9899 0.0025 0.00070 0.9332 0.0297 0.00614 3.33
RF 0.9819 0.0067 0.00095 0.9072 0.0636 0.00918 5.25

Fig. 4. RMSE errors for the utilized models.

Fig. 5. MAE errors for the utilized models.
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Violin plots provide a more detailed view of the distribution, showing 
multimodal distributions and the shape of the data. The key components 
and features of a violin plot include:1) Kernel density estimate (KDE): 
The width of the violin plot represents the density of the data at different 
values. Wider sections indicate a higher density of data points, while 
narrower sections indicate a lower density.2) Median and quartiles: 
Similar to a box plot, a violin plot typically includes a marker for the 
median of the data and lines or dots indicating the quartiles (25th and 
75th percentiles). 3) Symmetry: The plot is symmetric, with the KDE 
mirrored on both sides of the central axis.4) Multiple groups: Violin plots 
can compare data distribution across multiple categories or groups. Each 
group is represented by a separate violin [139,140].In this paper, a 

violin plot assessed the models’ performances in H2 solubility predic
tion. Notably, the PSO-MERF model achieved an exceptional match, as 
evidenced by the precise alignment of the median (depicted as white 
dots within the violin plot) with experimental data. From Fig. 8, the 
PSO-MERF model predictions for the lower and upper percentiles (5th 
and 95th, marked by thin black lines) and for the quartiles (25th and 
75th, indicated by thicker lines) displayed the most accurate reflection 
of the experimental data distribution, surpassing other models. XGBoost 
model showcased comparable proficiency, closely emulating the 
PSO-MERF model performance across all statistical indicators. 
Conversely, the KNN tended to overpredict the lower tail and under
predict the upper tail of the H2 solubility range, while RF models 
generally underestimated the lower percentile. Regarding the distribu
tion shape illustrated by the violin plot, representing the probability 

Fig. 6. Crossplots for the utilized models.

Fig. 7. Taylors diagram for models’ assessments.

Fig. 8. Models’ comparison using violin plot.
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density function (PDF), the PSO-MERF model’s PDF conformed most 
closely to the experimental H2 solubility data distribution. This was 
followed by the XGBoost and KNN models. In contrast, the RF model 
PDF deviated significantly from the experimental H2 solubility data 
distribution, resulting in a markedly poorer fit.

Moreover, PSO-MERF was compared with empirical EOS models’ to 
predict hydrogen solubility in an aqueous solution. The utilized EOS 
models’ include SRK [42,141], PR [42,141], RK [42,142], and ZJ [42,
143]. As shown in Table 5, PSO-MERF outperformed the EOSs by having 
high R and minimum errors. The R obtained by PSO-MERF was 0.9997, 
RMSE of 0.000091 and MAE of 0. 00043. Among the EOS models in 
predicting hydrogen solubility in aqueous solution, PR EOS surpassed 
other models with R of 0.9992, RMSE of 0.00043, and MAE of 0. 
0000011. Further, the ZJ EOS model has poor results compared to other 
EOS models with R of 0.9900, RMSE of 0.0063, and MAE of 0. 0011. The 
order rank of performance of all the models was PSO-MERF > PR > SRK 
> RK > ZJ. With these results, it can be recommended that PSO-MERF 
can be adopted as an alternative way of predicting hydrogen solubility 
in aqueous solution.

3.4. Trend analysis

Trend analysis was conducted to gain valuable insights into the 
model behavior and ensure its continued reliability and effectiveness. It 
examines whether the models” predictions maintain accuracy, reli
ability, and consistency as the underlying data changes. This can be 
particularly important in dynamic environments where data distribu
tions can shift or in cases where models are used for long-term pre
dictions. For this paper, the trend analysis was conducted for variations 
of pressure and temperature with reference to predicted hydrogen sol
ubility by the PSO-MERF model and experimental hydrogen solubility so 
that their variations can be analyzed. Fig. 9 shows the changes in 
hydrogen solubility by increasing temperature up to 473 K under 
different pressures of 50 bar, 100 bar, 180 bar, and 233.65 bar. It was 
found that the model hydrogen solubility decreases with an initial in
crease in temperature due to the exothermic nature of hydrogen ab
sorption, where lower temperatures favour the formation of stable 
hydrogen-material bonds, releasing energy. However, as the tempera
ture rises, various factors contribute to increased solubility. These 
include enhanced atomic vibrations creating more interstitial spaces for 
hydrogen, changes in the material’s phase that may offer additional 
hydrogen storage capacity, and overcoming kinetic barriers that impede 
hydrogen absorption at lower temperatures. Additionally, at high tem
peratures, especially under high-pressure conditions, hydrogen may 
exhibit different behaviors, such as transitioning to a plasma state, 
which can also influence its solubility in the host material. This complex 
interplay of thermodynamic and kinetic factors results in various ma
terials’ observed nonlinear temperature dependence of hydrogen solu
bility. Moreover, Fig. 10 shows the variations of hydrogen solubility by 
increasing pressures up 233.65 bar at different temperatures of 273.15 
K,373.15 K, and 473 K. It shows that the hydrogen solubility predicted 
by the model increases with an increase in pressure, which obeys Hen
ry’s law and matching the experimental hydrogen solubility. Further, 
Fig. 10 shows that the model hydrogen solubility decreases with 
increased salinity, which obeys physical laws and matches the 

experimental data. From these observations, it can be concluded that the 
developed model obeys the physical laws and ensures the model’s 
robustness and sensitivity to different input variations, which match 
findings from previous researchers such as Lv et al. [57] and Ansari et al. 
[42].

3.5. Shapley additive exPlanations (SHAP) analysis

SHAP analysis is a method used to explain the output of ML models 
[95,144,145]. It is based on the concept of Shapley values from coop
erative game theory. It provides a way to fairly distribute the prediction 
among the inputs based on their marginal contribution to the model’s 
prediction. The explanations provided by SHAP values are intuitive and 
can be visualized in various ways, such as force plots, waterfall plots, 
beeswarm plots, mean SHAP, etc. One of the main advantages of SHAP 
over other model interpretation methods is that it accounts for the 
interaction effects between features, as opposed to only considering the 
individual feature effects. This can provide a more accurate picture of 
how features contribute to model predictions, especially in complex 
models where features do not contribute independently to the output. In 

Table 5 
PSO-MERF comparisons with EOS models.

Models Performance indicators

R RMSE MAE

PSO-MERF 0.9997 0.000091 0.0000011
SRK 0.9970 0.0051 0.00087
PR 0.9986 0.0033 0.00058
RK 0.9990 0.0020 0.000099
ZJ 0.9900 0.0063 0.0011

Fig. 9. Predicted hydrogen solubility by PSO-MERF with experimental 
hydrogen solubility at different pressures.

Fig. 10. Predicted hydrogen solubility by PSO-MERF with experimental 
hydrogen solubility at different temperatures and salt concentrations.
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practice, calculating the exact SHAP values can be computationally 
expensive, especially for models with many features, because it requires 
evaluating the model for all possible subsets of features. Therefore, 
various approximation methods and algorithms have been developed to 
estimate SHAP values efficiently [144,146–148].

Consider a prediction model function f and an input feature set X 
with N features for a ML model. The SHAP value for the ith feature is 
given by Ref. [144]. 

ϕi(f)=
∑

S⊆X\{xi}

|S|!(N − |S| − 1)!
N!

[f(S∪{xi}) − f(S)] (21) 

Where ϕi(f) is the SHAP value for the ith feature, S is a subset of features, 
and the sum goes over all subsets of features that do not include xi, |S| is 
the number of features in subset S, N is the total number of features, 
f(S∪{xi}) is the prediction of the model using the features in set S along 
with feature xi, f(S) is the prediction of the model using the features in 
set S without feature xi, |S|!(N− |S|− 1)!

N!
represents the weight for the 

contribution of feature xi when considering the subset S, taking into 
account all the possible orderings of the features. Eq. (21) effectively 
distributes the prediction among the features, such that the sum of all 
SHAP values for a given prediction sums up to the difference between 
the prediction for the instance and the average prediction over the 
dataset (the base value). In this section, SHAP analysis based on the best 
method (PSO-MERF) was conducted for all data types, as presented in 
the following subsections.

Fig. 11 shows that hydrogen solubility in the aqueous solution 
generally increases as salinity decreases because there’s less competition 
for hydrogen bonding with water molecules. This allows more hydrogen 
molecules to form these bonds, ultimately leading to an increase in 
hydrogen solubility in the aqueous solution, while for pressure is vice 
versa, in which an increase in pressure results in an increase in hydrogen 
solubility in the aqueous solution. This obeys Henry’s law, which states 
that “the amount of a gas dissolved in a liquid is directly proportional to 
the partial pressure of the gas above the liquid”. For temperature, as 
temperature increases, the hydrogen solubility in an aqueous solution 
decreases because, at low temperatures, water has stronger attractive 
forces that hold the hydrogen molecules in, but as temperature in
creases, these forces get weaker, allowing more hydrogen to escape and 
reducing its overall solubility. Moreover, Fig. 12 shows that salinity 
greatly impacted hydrogen solubility predicted by the PSO-MERF model 
with a SHAP value of +0.12, followed by pressure with +0.11. In 
contrast, temperature had a small contribution to model output 
compared to other parameters with a SHAP value of +0.02.

In general, SHAP is a valuable tool for explaining ML models, but it’s 
essential to be aware of its limitations. By understanding these limita
tions, you can use SHAP effectively with other techniques to better 
understand your models’.

a) Conceptual limitations
❖ Feature independence: SHAP assumes features are independent or 

have minimal interaction effects. In reality, features often interact 
with each other, and these interactions can influence the model’s 

predictions. SHAP might not fully capture these complex 
interactions.

❖ Causal vs. Correlational: SHAP explains feature contributions to 
the model’s prediction, but it doesn’t necessarily imply causality. 
Just because a feature has a high SHAP value doesn’t necessarily 
mean it causes a change in the output variable.

b) Computational limitations
❖ Complexity with large datasets: Calculating SHAP values can be 

computationally expensive for large datasets with many features. 
This can make it impractical for real-time explanations.

❖ Approximation methods: For larger datasets, SHAP implementa
tions often rely on approximation methods to calculate SHAP 
values efficiently. These approximations might not be as accurate 
as the exact calculation, introducing a potential source of error.

c) Interpretability limitations
❖ Meaning of SHAP value magnitude: The interpretation of the 

exact magnitude of a SHAP value depends on the specific imple
mentation of SHAP and the model being used. It’s essential to 
understand how SHAP values are calculated in a particular case 
for accurate interpretation.

❖ Global vs. local explanations: While SHAP can provide both local 
and global explanations, understanding complex models with 
many features through SHAP visualizations can be challenging.

4. Conclusions and recommendations

4.1. Conclusions

This paper explored the application of ML techniques in predicting 
hydrogen solubility in the context of underground hydrogen storage. 
Four ML models were employed: PSO-MERF, XGBoost, KNN, and RF. 
The results revealed that PSO-MERF outperformed the other three and 
EOS models’ prediction accuracy. The findings encourage further 
exploration of ML techniques for optimizing UHS design and operation, 
ultimately contributing to the advancement of safe and sustainable 
hydrogen storage solutions with PSO-MERF recommended as an alter
native for hydrogen solubility prediction in aqueous solutions for effi
cient UHS. The key findings are as follows.

a) PSO-MERF emerged as the most effective method for predicting 
hydrogen solubility, achieving superior performance compared to 
XGBoost, KNN, and RF with R of 0.9997 and 0.9982, RMSE of 
0.0.00033 and 0.0015, and MAE of 0.00041 and 0.00091, during 
training and testing, respectively. This suggests that combining 
PSO’s optimization capabilities and MERF’s symbolic regression 
abilities can effectively capture the complex relationships between 
influencing factors and hydrogen solubility. XGBoost demonstrated 
promising results, indicating its potential for accurate prediction in 
this domain. Its ability to handle complex nonlinear relationships 
makes it a viable alternative, mainly when interpretability is less 
critical. KNN and RF, while achieving acceptable accuracy, were 
surpassed by PSO-MERF and XGBoost. These methods might be 
preferable for applications where interpretability is paramount, as Fig. 11. Effects of input parameters on the model output (PSO-MERF).

Fig. 12. Relative influence of input parameters on the model output 
(PSO-MERF).
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their simpler models offer more precise insights into the relation
ships between variables. Moreover, PSO-MERF used less computa
tional time (1.01s) followed by XGBoost 2.52 s, KNN 3.33 s, and RF 5. 
25s.This confirms the robustness and fast convergence of the newly 
developed model in hydrogen solubility prediction utilizing less 
computational time <50% than other models.

b) From SHAP analysis, it has been shown that an increase in pressure 
results in an increase in hydrogen solubility in an aqueous solution, 
while a decrease in salinity results in an increase in hydrogen solu
bility, further, as temperature increases, the hydrogen solubility in 
an aqueous solution decrease. Moreover, salinity has a significant 
contribution to the model output compared to other parameters 
followed by pressure. In contrast, temperature has the least contri
bution compared to other parameters in model output.

c) Among the EOS models’ used to predict hydrogen solubility in an 
aqueous solution, the RK model outperformed other EOS models 
with R of 0.9990, RMSE of 0.0020, and MAE of 0.000099. The order 
rank of performance for EOS models was RK > PR > SRK > ZJ.

4.2. Recommendations for future study

a) Data augmentation and feature engineering: Expanding the dataset 
with additional data points or incorporating new features derived 
from existing data could potentially improve the performance of all 
models. Techniques like data imputation or dimensionality reduction 
might also be beneficial.

b) Uncertainty quantification: Implement methods to quantify the un
certainty associated with the predictions. This would provide valu
able insights into the model’s confidence in its results and allow for a 
more comprehensive risk assessment in real-world applications.

c) Real-world validation: Validate the developed model using experi
mental data from underground storage facilities. This would enhance 
confidence in the model’s generalizability and pave the way for 
practical implementation.

d) In future research, it is crucial to validate the PSO-MERF model to 
ensure its robustness. This can be achieved through external vali
dation in which the model can use independent datasets not used 
during the model development process with the same inputs but 
missing output. This helps in evaluating the model’s ability to 
generalize new data.

The application of ML techniques in UHS has profound implications, 
enhancing prediction accuracy, operational efficiency, and safety. ML 
models like PSO-MERF in predicting hydrogen solubility accurately can 
optimize storage conditions and efficiency, enable real-time monitoring, 
and predict maintenance needs, by reducing costs and improving eco
nomic viability. These advancements support the integration of 
hydrogen as a renewable energy source, minimize environmental im
pacts, and inform policy and regulatory standards. By continuously 
learning and adapting, ML enhances the reliability and sustainability of 
UHS, paving the way for safer and more efficient hydrogen storage 
solutions.
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Nomenclature

RF Random Forest
BBO Biogeography-Based Optimization
XGBoost Extreme Gradient Boosting
MLP Multi-Layer Perceptron
DT Decision Trees
GB Gradient Boosting
FBP Feedback Propagation
ICA Imperialist Competitive Algorithm
ANN Artificial neural networks
LightGBM Light Gradient Boosting Machine
GEP Gene Expression Programming
LM Levenberg–Marquardt
GP Genetic Programming
TLBO Teaching-Learning-Based Optimization
LSSVM Least Square Support Vector Machine
RBF Radial Basis Function
GRNN Generalized Regression Neural Networks
RAD Relative Absolute Deviation
CA Cultural Algorithm
RD Relative Deviation
CFFNN Cascade Feed-Forward Neural Networks
GMDH Group Method of Data Handling
RAE Relative Absolute Error
AdaBoost-SVR Adaptive Boosting Support Vector Regression
PC-SAFT Perturbed chain statistical associating fluid theory
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Lösungen verschieden dissociierter Stoffe. Z Phys Chem 1900;33:721–39.
[82] Wiesenburg DA, Guinasso Jr NL. Equilibrium solubilities of methane, carbon 

monoxide, and hydrogen in water and sea water. J Chem Eng Data 1979;24: 
356–60.

[83] García-Escudero LA, Mayo-Iscar A. Robust clustering based on trimming. Wiley 
Interdisciplinary Reviews: Comput Stat 2024;16:e1658.

[84] Krishna NS, Kumar YP, Prakash KP, Reddy GP. Machine learning and statistical 
techniques for outlier detection in smart home energy consumption. 2024 IEEE 
open conference of electrical, electronic and information sciences (eStream). 
IEEE; 2024. p. 1–4.

[85] Mkono CN, Chuanbo S, Mulashani AK, Mwakipunda GC. Deep learning integrated 
approach for hydrocarbon source rock evaluation and geochemical indicators 
prediction in the Jurassic-Paleogene of the Mandawa basin, SE Tanzania. Energy 
2023;284:129232.

[86] Majid A, Mwakipunda GC, Guo C. Solution gas/oil ratio prediction from pressure/ 
volume/temperature data using machine learning algorithms. SPE J 2024;29: 
999–1014.

[87] Hasan N, Ahmed N, Ali SM. Improving sporadic demand forecasting using a 
modified k-nearest neighbor framework. Eng Appl Artif Intell 2024;129:107633.

[88] Steinbach M, Tan P-N. kNN: k-nearest neighbors. The top ten algorithms in data 
mining. 2009. p. 151–62.

[89] Lahmiri S. Integrating convolutional neural networks, kNN, and Bayesian 
optimization for efficient diagnosis of Alzheimer’s disease in magnetic resonance 
images. Biomed Signal Process Control 2023;80:104375.

[90] Fix E, Hodges JL. Discriminatory analysis. Nonparametric discrimination: 
consistency properties. International Statistical Review/Revue Internationale de 
Statistique 1989;57:238–47.

[91] Sotiropoulou KF, Vavatsikos AP, Botsaris PN. A hybrid AHP-PROMETHEE II 
onshore wind farms multicriteria suitability analysis using kNN and SVM 
regression models in northeastern Greece. Renew Energy 2024;221:119795.

[92] Kohli S, Godwin GT, Urolagin S. Sales prediction using linear and KNN regression. 
Advances in machine learning and computational intelligence: proceedings of 
ICMLCI 2019. Springer; 2020. p. 321–9.

[93] Guo G, Wang H, Bell D, Bi Y, Greer K. KNN model-based approach in 
classification. On the move to meaningful internet systems 2003: CoopIS, DOA, 
and ODBASE: OTM confederated international conferences, CoopIS, DOA, and 
ODBASE 2003, catania, sicily, Italy, november 3-7, 2003 proceedings. Springer; 
2003. p. 986–96.

[94] Chakravarthy SS, Bharanidharan N, Rajaguru H. Deep learning-based 
metaheuristic weighted K-nearest neighbor algorithm for the severity 
classification of breast cancer. IRBM 2023;44:100749.

[95] Nadege MN, Jiang S, Mwakipunda GC, Kouassi AKF, Harold PK, Roland KYH. 
Brittleness index prediction using modified random forest based on particle 
swarm optimization of Upper Ordovician Wufeng to Lower Silurian Longmaxi 
shale gas reservoir in the Weiyuan Shale Gas Field, Sichuan Basin, China. 
Geoenergy Science and Engineering 2024;233:212518.

[96] Liu B, Rostamian A, Kheirollahi M, Mirseyed SF, Mohammadian E, Golsanami N, 
et al. NMR log response prediction from conventional petrophysical logs with 
XGBoost-PSO framework. Geoenergy Science and Engineering 2023;224:211561.

[97] Alabdullah AA, Iqbal M, Zahid M, Khan K, Amin MN, Jalal FE. Prediction of rapid 
chloride penetration resistance of metakaolin based high strength concrete using 
light GBM and XGBoost models by incorporating SHAP analysis. Construct Build 
Mater 2022;345:128296.

[98] Hastie T, Tibshirani R, Friedman JH, Friedman JH. The elements of statistical 
learning: data mining, inference, and prediction. Springer; 2009.

[99] Siqueira RG, Moquedace CM, Fernandes-Filho EI, Schaefer CE, Francelino MR, 
Sacramento IF, et al. Modelling and prediction of major soil chemical properties 
with Random Forest: machine learning as tool to understand soil-environment 
relationships in Antarctica. Catena 2024;235:107677.

[100] Rigatti SJ. Random forest. J Insur Med 2017;47:31–9.
[101] Li H, Lin J, Lei X, Wei T. Compressive strength prediction of basalt fiber 

reinforced concrete via random forest algorithm. Mater Today Commun 2022;30: 
103117.

[102] Nafouanti MB, Li J, Nyakilla EE, Mwakipunda GC, Mulashani A. A novel hybrid 
random forest linear model approach for forecasting groundwater fluoride 
contamination. Environ Sci Pollut Control Ser 2023;30:50661–74.

[103] Biau G, Scornet E. A random forest guided tour. Test 2016;25:197–227.
[104] Sun Z, Wang G, Li P, Wang H, Zhang M, Liang X. An improved random forest 

based on the classification accuracy and correlation measurement of decision 
trees. Expert Syst Appl 2024;237:121549.

[105] Breiman L. Random forests. Mach Learn 2001;45:5–32.
[106] Liaw A, Wiener M. Classification and regression by randomForest. R News 2002; 

2:18–22.
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