
Original Paper

Application of GMDH to Predict Pore Pressure from Well
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Pore pressure prediction is significant in the petroleum industry because, compared to direct
measurement, it is cost-effective and it generates an extensive range of data. Mathematical
correlations fail to predict pore pressure due to their failure to include lateral transfer in the
reservoir, high temperature and mixed lithology and other mechanisms like aqua-thermal
expansion, dehydration of clay and mineral alterations. Also, several machine learning
techniques provide unsatisfactory results when predicting pore pressures due to poor
selection of input data, over-fitting, slow convergence of results, and manual adjustment of
model parameters like hidden layers and weights. To counteract these challenges, we em-
ployed, for the first time, group method of data handling (GMDH) technique to predict
formation pore pressures from well logs data in the Nanye 1 well, southeast of the Sichuan
Basin. Then, the performance of the GMDH technique was compared to other machine
learning techniques, including polynomial classifier (POL) and artificial neural networks
(ANNs). The GMDH technique provided results with the highest accuracy compared with
the other two techniques, giving the lowest root-mean-square error (RMSE) of 0.0308 MPa.
In addition, the GMDH technique provided a high coefficient of determination of 0.998. The
ANN and POL gave RMSEs 0.0322 and 0.5873 MPa, respectively. Apart from the good
results, the GMDH technique was able to identify data structure, direct approximate the
results, automatically select the model running parameters and select the relevant input data
for predicting the pore pressure, which were the challenges for other techniques. Therefore,
the GMDH can be applied to predict pore pressure from the well logs data.
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INTRODUCTION

Pore pressure is the pressure of water, gas, oil,
or both, in rock�s space (pores and fractures) (Vee-
ken, 2006). This pressure reflects a reservoir�s energy
and it is the fluid�s power pushing in the formation.
The pore pressure is part of the overburdened stress
covered by liquids and gases in the pore space. The
remaining part is covered by the rock, making the
in situ rock stress. The overburden stress is formed
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by the total weight of a rock�s mass comprising the
lithostatic column. Thus, the difference between the
overburden and vertical rock stresses is an estimate
of pore pressure. When the value of pore pressure
resembles the value of hydrostatic pressure, the
formation is normally pressured. When the pore
pressure is greater or less than the hydrostatic
pressure, the formation is over-pressured or under-
pressured, respectively (Lin et al., 2020).

Pore pressure plays a significant role in oil an-
d gas exploration and exploitation. Prediction of
pore pressure is cheaper and it gives an extensive
range of data compared to direct measurement of
pore pressure (Abbey et al., 2021). Moreover, pore
pressure prediction helps drilling engineers, geo-
physicists, petrophysicists, and geologists plan dril-
ling and production operations. Precise pore
pressure prediction can help minimize drilling risk,
including pressure kicks and well blowouts, stabilize
wellbore, improve casing seat selection, and reduce
drilling mud loss (Azadpour et al., 2015; de Souza
et al., 2021; Mutumba et al., 2021). Also, precise
pore pressure prediction helps in planning daily oil
or gas production and cumulative production of
hydrocarbon reservoirs (Zou, 2017). Precise pore
pressure prediction can also help in planning en-
hanced oil recoveries techniques such as water and
gas flooding (Farsi et al., 2021).

Several methods can be used to predict pore
pressure, including Eaton, Bowers, and compress-
ibility (Azadpour et al., 2015). Eaton�s method in-
volves determining pore pressure using well logs
(sonic transient time and formation resistivity). This
technique assumes that overburden pressure is a
combination of pore pressure and effective vertical
stress, and the effective vertical stress is straightly
related to porosity. Therefore, the effective vertical
stress is approximated from porosity, and pore
pressure can be evaluated from overburden pressure
and effective vertical stress as expressed by Terza-
ghi�s and Biot�s effective stress law (Biot, 1941;
Azadpour et al., 2015), thus:

Pp ¼ rov � reff
a

ð1Þ

where Pp is pore pressure, rov is overburdened
stress, reff is effective stress and 9 is the Biot
effective stress coefficient obtained from volume
changes. Predicting pore pressure from the sonic
transit time, Eaton (1975) modified Eq. 1 and
developed Eq. 2:

Ppg ¼ rov � rov � Phdð Þ� Dtn

Dt

� �x

ð2Þ

where Ppg is formation pressure gradient, Phd is
hydrostatic pressure gradient, Dt is sonic time mea-
sured in shale by well logging, \Deltatn is sonic
transit time, which is measured in shale at the nor-
mal pressure condition, and x is a constant (Contr-
eras et al., 2011).

Bowers� method is the one that predicts pore
pressure from effective stress, and the method cov-
ers the effects of disequilibrium compaction and
unloading. Based on Bowers (1995), the relationship
between effective stress and sonic velocity can be
shown as:

Vd ¼ V0 þ C rmax
rv

rmax

� � 1
U

" #D

ð3Þ

rmax ¼
Vmax�5000

C

� � 1
D

ð4Þ

where Vd is velocity at a certain depth, V0 is velocity
at the surface, rv is effective stress in the vertical, C
and D are constants obtained after adjusting re-
gional offset velocity vs. effective stress data, and U
is the parameter that represents unloading. When U
is equal to 1, it indicates temporary deformation;
when U is equal to infinity, it represents permanent
deformation. The rmax is the greatest effective stress
and Vmax is the maximum speed when unloading
first begins (Bowers, 1995).

Rock compressibility is used to determine pore
pressure in the compressibility method. Pore pres-
sure is a function of changes in pore volume. These
changes depend on the compressibility of rock and
fluid. Pore volume diminishes when a formation
experiences high compression, and it leads to the
emergence of over-pressure in the formation.
Therefore, compressibility is applied as a parameter
to evaluate pore pressure. According to Zimmerman
(1990) and Atashbari and Tingay (2012), pore
pressure can be predicted depending on compress-
ibility, thus:

Pp ¼ 1 1� ;ð ÞCbreff
1� ;ð ÞCb � ;Cp

� �c

ð5Þ

where ø represents porosity, Cb represents bulk
compressibility in psi�1, Cp represents pore com-

pressibility in psi�1, reff defines effective vertical
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pressure in psi,1 and c represents a constant within
the range from 0.9 to 1.0.

Prior studies documented the failure of above-
discussed methods to work in some formations be-
cause variables such as lateral transfer in a reservoir,
high temperature, and mixed lithology were not
considered (Swarbrick, 2001, 2012). In addition, the
above-discussed methods do not consider other
over-pressure mechanisms like expansion due to
aquathermal, clay dehydration, and mineral and
osmosis alterations, which are not associated with
disequilibrium and non-mechanical compaction.
Therefore, the current utilization of machine learn-
ing (ML) techniques to predict pore pressure seems
to eliminate the aforementioned challenges. These
techniques involve learning and adopting the con-
dition of formation and then predicting a specific
output (pore pressure).

ML techniques are applied to predict pore
pressure to counteract the mentioned challenges.
These techniques involve learning and adopting the
condition of formation and then predicting a specific
output (pore pressure). One of the works that used
artificial intelligence in predicting pore pressure was
by Hutomo et al. (2019), who predicted pore pres-
sure by combining the Eaton method and artificial
neural network (ANN). In their work, seismic data,
including shear impedance, acoustic impedance,
seismic amplitude, and seismic frequency, were
trained to predict pore pressure. Ahmed et al.
(2019a, 2019b) used drilling parameters and well
logs data to predict pore pressure using ANN. Hu
et al. (2013) used a backpropagation (BP) neural
network to estimate fluid pressure in a formation
from gamma ray, formation density, depth, and
interval transit time; in their work, pore pressure was
predicted with an error of 4.61%. Keshavarzi and
Jahanbakhshi (2013) predicted pore pressure gradi-
ent in the Asmari oil field in Iran by applying a
backpropagation artificial neural network (BPANN)
and the Eaton method. The BPANN showed better
performance compared to the Eaton method.

According to the literature on ML techniques,
the performance of support vector machine (SVM)
is slightly better than ANNs (Ahmed et al., 2019a,
2019b). However, Yu et al. (2020) evaluated the
performance of optimization of proposed ML tech-
niques, namely a multilayer perceptron neural net-
work (MLPNN), SVM, random forest (RF), and
gradient boosting. Their findings showed that the RF

model surpassed the competition regarding predic-
tion correctness, generalizability, and good fitness.
Further, in investigating a better model, Farsi et al.
(2021) applied three ML techniques, namely
MLPNN, least square support vector machine
(LSSVM), and multiple-hidden-layer-extreme
learning machine (MELM), in predicting pore
pressure from well logs data. All these techniques
were optimized by particle swam optimization
(PSO). As a result, the work found the best pre-
dictions (with root mean square error (RMSE) of
11.551 psi) using MELM compared to the other
techniques of predicting pore pressure. Lastly, pore
pressure predictions by other ML techniques,
namely RF, support vector regression (SVR), ANN,
and decision tree (DT), were conducted by Zhang
et al. (2022), who found that DT produced the best
predictions with R2 and RMSE of 0.9985 and 14.460
psi, respectively.

All assessments on ML techniques revealed a
better performance made by the models. However,
the techniques encounter the problem of automatic
selection of relevant input data, over-fitting and slow
convergence because of the manual adjustment of
model parameters, including several hidden layers,
weights, and biases (Asante-Okyere et al., 2020;
Mulashani et al., 2021). To address these issues,
some prior authors suggest utilization of a new ML
technique called the Group Method of Data Han-
dling (GMDH) (Ivakhnenko and Ivakhnenko, 1995;
Srinivasan, 2008; Shaghaghi et al., 2017). Based on
the findings, GMDH has the ability to overcome the
problem of the single output in many input data
(Najafzadeh et al., 2015) and can be used for non-
linear input–output relations (Menad et al., 2019).
Additionally, this technique showed better perfor-
mance in predicting other oil and gas parameters
like total organic carbon (TOC) (Mulashani et al.,
2021), hydrate formation temperature (Mesbah
et al., 2022), standpipe pressure (Youcefi et al.,
2022), methane adsorption capacity (Nait Amar
et al., 2022) and reservoir permeability (Mulashani
et al., 2022).

Therefore, for the first time, we applied the
GMDH techniques to predict the formation pore
pressure from the well logs data. Then, this tech-
nique�s performance was compared with other ML
techniques, the polynomial classifier (POL) and
artificial neural network (ANN). Reservoir engi-
neers can acquire new knowledge of predicting pore
pressure from well logs data through this study using
this suggested technique (GMDH). But also, experts1 * 1 psi = 6894.76 pascals (Pa).
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will increase their awareness of the influences of
different formations and fluid properties on pre-
dicting pore pressures.

GEOLOGICAL SETTING

The data used in this study were obtained from
Nanye 1 well located in the southeastern Sichuan
Basin in an area called Nanchang, as depicted in
Figure 1. Sichuan Basin is located in the south-
western China and northwestern Yangtze Platform.
It is a giant and stable intra-cratonic basin in the
South China Block. The basin covers an area of
23 9 104 km2, and in 2014, the basin was approxi-
mated to have a gas reserve of around 3.22 9 1012

m3. The sediments deposited in a region for a long
time, and the basin formed from the late Proterozoic
to recent years (Korsch et al., 1991; Liu et al., 2017).
Intermediate and intermediate basite magmatic
rocks with extreme metamorphism are found in the
basement in the basin�s center (Zhili, 1998). Moun-
tains on all sides bound Sichuan Basin: in the north,
south, west, and east, the basin is bounded by Mi-
cang and Daba mountains, Daliang mountain,
Longmen mountain, and Dalou Mountains, respec-
tively, as shown in Figure 1 (Xu et al., 2018).

Deposition of the Sichuan Basin passed several
tectonic evolution histories. A craton basin stage
and a foreland basin stage are some periods of tec-
tonic evolution in the Sichuan Basin. Marine car-
bonate rocks were formed in the craton stage, and
terrestrial clastic rocks were formed in the foreland
stage. Some formations are missing from some basin
areas due to tectonic uplift and erosion. Also, the
tectonic uplift caused some beneath-surface forma-
tions to be exposed on the surface (Yi-Feng et al.,
2015).

The region is also comprised of successions of
tectonic uplift and erosion. Figure 1: Location of
Nanye 1 (NY 1) well in the southeast of the Sichuan
Basin (modified from Nie et al. (2017)); the data
from this well were used in pore pressure prediction.

Figure 2 shows that this region�s tectonic uplift
and erosion started in the Devonian and Carbonif-
erous periods. Whereas in the Permian and Early
Triassic, significant erosion appeared. In the late
Triassic, another tectonic uplift occurred; during this
time, North China and South China Plates collided
(Qi et al., 2015; Wang et al., 2015). According to
Wang et al. (2015), the region was compressed
during the Early to Middle Jurassic, creating a

number of thrust faults. During the Cretaceous, the
stress behavior of the thrust faults transitioned from
extrusion to extension. However, the stress in the
Neogene changed once more from extension to
extrusion as a result of the deposition of the India–
Australian intrusive plate into the Eurasian plate
(Wo et al., 2007). Tectonic uplift and erosion influ-
enced a reduction of the formations� pore pressure.
According to Liu et al. (2014), the tectonic uplift and
erosion reduce the temperature, which results in
reducing the pore pressure. Also, tectonic uplift and
erosion cause a reduction in pressure by enlarging a
trap space and pore volume resilience (Xu et al.,
2018).

Based on Figure 1: Location of Nanye 1 (NY 1)
well in the southeast of the Sichuan Basin (modified
from Nie et al. (2017)); the data from this well were
used in pore pressure prediction.

Figure 2, the primary source rocks in this area
are Longmaxi, Wufeng, Longtan, and Maukou. The
Early Silurian era saw the deposition of the Long-
maxi shale in the sedimentary contexts of deep-sea
shelves. These shales underwent profound burial
during the Yanshan epoch. However, the hydrocar-
bons migrated out of the formation as a result of
tectonic uplift and erosion (Hailong et al., 2012).
Due to foreland uplifts in the orogenic belts during
the Late Ordovician period in the foreland basins,
the Wufeng shale was created (Jing et al., 2016).

METHODOLOGY

This study involves several steps to reach its
goal, including clustering the data into a group
whose data are related using the K-means technique
and predicting the pore pressure using three differ-
ent techniques: POL, ANN, and GMDH. After
obtaining the results from all techniques, each
technique�s error in the predicted results based on
the measured pore pressure was found by calculating
the RMSE. Therefore, the techniques were com-
pared based on the results and the RMSE. The well-
log data that were used in this work were acoustic
log (AC), caliper log (CAL), neutron porosity log
(CNL), gamma ray log (GR), density log (DEN),
laterolog deep (LLD), laterolog shallow (LLS),
resistivity log (RS), shallow formation resistivity
(RXO), true formation resistivity (RT), spontaneous
potential (SP) and micro-spherical focused log
(MSFL). The well logs varied with depth, and the
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depth had an influence on the overburden stress;
thus, depth was added to the training data.

Clustering Data by Using the K-Means Method

The data were recorded from 1544 to
4410.754 m depth, but data from 2870.154 to 4071 m
depth were unavailable. Due to the unavailability of
data for that depth range, well logs data varied sig-
nificantly between the top and bottom depths. This
variation created difficulty in training the well logs
data to predict pore pressure. Due to this difficulty,
the K-means method was used to select the groups
of related data to train and predict pore pressure.

The K-means method was first used in signal
processing. It was used to divide the data into sev-
eral groups in which each datum belonged to the
group with the nearest centroid while controlling the
overlapping of data in the divided groups. These
divided groups are referred to as clusters (Al-Mo-
hair et al., 2015). The method involves organizing

the data, finding the centroids, dividing the data
depending on the closest centroid, and then deciding
the number of clusters. The clustering of the data
followed the procedure shown in Figure 3.

A cluster�s centroid was determined as:

DI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � að Þ2 þ x � bð Þ2þðx � nÞ

q
ð6Þ

where DI is the Euclidian distance of the selected
data and x, a, b and n are data. The sum of squared
error recognized the centroids of a cluster by mini-
mizing the objective function (F) as (Nyakilla et al.,
2022):

F ¼
Xk

i¼1

X
dist Gp;N ið Þ

� �2 ð7Þ

where F is the sum of square error of all pressure
data selected, Gp is pore pressure data, and N(i)
represents the centroid. Then, the standard devia-
tion and weighted summation were determined,
respectively, as:

Figure 1. Location of Nanye 1 (NY 1) well in the southeast of the Sichuan Basin (modified from Nie et al.

(2017)); the data from this well were used in pore pressure prediction.
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S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
P

ðxi � xÞ2Þ
q

mv � 1
ð8Þ A ¼ 1

mv

Xmv

i¼1

aðiÞ ð9Þ

where A represents the weight, aðiÞ represents the
sub-variables, mv is the number of variables, S is the

Figure 2. Stratigraphy of southeastern Sichuan Basin showing the potential hydrocarbon regions (modified from

(Cao et al., 2020)).
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standard deviation, xi is the value of variables in the
pressure data and x is the average of values of
variables in the pressure data. The parameters S and
A were found to ensure that the selected data in the
cluster are close to each other, with no significant
deviation. The algorithm for K-means in this work
was run in MATLAB (R2021a).

Polynomial Classifier Methods (POL)

The polynomial classifier was the method that
was applied in nonlinear output relationships. The
application of this method showed success in the
analysis of medical images and the prediction of
football match results (Do Nascimento et al., 2013).
The accuracy of this method increases as the degree
of the polynomial function increases. The polyno-
mial function used in the prediction of output results
was:

g ¼ wo þ
Xt

i¼1

wixi þ
Xt

i1¼1

Xt

i2¼1

wi1xi1xi2

þ
Xt

i1¼1

_s
Xt

in¼i1�1

wi1 _siLxi1 _sxiL ð10Þ

where wi represents the weight and xiL represents
the input data. The offset and the first sum define a
first polynomial order, and the second sum defines
the second order of polynomials, such as x12, x1x2.
The last sum defines the lth polynomial order term

such as x1l, x1l-1x2. The polynomial classifier was
solved by first organizing the input and output of the
training data, respectively, as:

Input ¼

x11 x21 x31 : xm1

x12 x22 x32 : xm2

: : : : :
: : : : :
xiN x2N x3N xmN

2
66664

3
77775
Nxm

ð11Þ

OutputðyÞ ¼

P1

P2

:
:

PN

2
66664

3
77775

Nx1

ð12Þ

where N represents the number of samples and m
represents the number of features. Then, the matrix
was expanded to the higher-order polynomial matrix
(B), thus:

B ¼

1 x11 x21 : xm1 x11x21 : x11xðm�1Þ1 x2
11 x2m1

1 x12 x22 : xm2 x12x22 : x12xðm�1Þ2 x2
12 x2m2

: : : : : : : : : :
: : : : : : : : : :
1 x1N x2N : xmN x1Nx2N : x1mxðm�1ÞN x21N x2mN

2
66664

3
77775

Nxð2mþ1þmðm�1Þ
2 Þ

ð13Þ
The weight (w) was then calculated from the

training data, thus:

w ¼ BTB
� ��1

BTy ð14Þ

Finally, the weight and testing data were used to
find the output (predict the pore pressure) (Abu-
Kheil, 2009; Martins et al., 2017), thus:

Ym ¼ w�B ð15Þ
The algorithm of POL was run in MATLAB

(R2021a) to approximate pore pressure.

Artificial Neural Network (ANN)

Another method that was used for pore pres-
sure prediction was ANN. This method is very
popular for nonlinear system identification (Korbicz
and Mrugalski, 2008). The method originated from
neurobiology, and the architecture of the human
brain has influenced it. Therefore, it has the intelli-
gence and nonlinear characteristics of the brain.
ANNs employ Eq. 16 to predict an output, where x
is the input, w is the weight allocated to each input, p
is the feature bias and hw,p(x) is the output:

Figure 3. Procedure for clustering of the data.
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hw;p xð Þ ¼ f wTx þ p
� �

¼ 1

1þ exp � wTx þ pð Þð Þ ð16Þ

ANNs consist of various elements intercon-
nected and organized together with weighted net-
works, which are referred to as neurons (Liu, 2001).
The neuron in a system functions by capturing the
total of its weighted inputs and multiplying it with
the inputs in a nonlinear activation function to ob-
tain the output, as shown in the ANN architecture in
Figure 4.

Neural Network Architectures

Neural networks have various categories that
vary in their architectures, practices, and uses. The
most used neural networks are feedforward and
recurrent neural networks (Murphy, 2002). A feed-
forward network contains input and output layers,
and between them there are hidden layers. These
hidden layers connect the input layers to the output
layer (Rahim et al., 2006). A multilayer feedforward
network assembly can be depicted in Figure 5a. The
recurrent network is the same as the feedforward
network, except that it contains a loop that carries
information from the output layer to the input layer
or the inverse. Due to that, this neural network is
called dynamic network (Fig. 5b).

Selecting the Quality Data and Running the Algo-
rithm

The important step in this method is selecting
high-quality data and then running the algorithm.
The quality of this method depends on the quality of
data obtained from experiments or simulations.
Thus, the quality and valid data were selected,
whereas invalid data (data like � 999.25 and
� 9999.25, which had no physical meaning) were
removed before the training and testing began.
After selecting the data, the data were divided into
three groups: training, validation and testing. In the
training group, the weight and threshold values were
calculated. The validation data were used to check
the results of the training process and to improve the
model (weights). Then, the evaluated weights were
used to predict pore pressure in both training and
testing groups (Fig. 6). These procedures were fol-
lowed, and the algorithm was run in MATLAB
(R2021a) to predict pore pressure.

Group Method of Data Handling (GMDH)

GMDH is another nonlinear trained machine
method that contains multiple layers. The method
uses a polynomial function to solve problems, and it
can have a higher order of polynomials without
mathematical complications (Korbicz and Mrugal-
ski, 2008). It is designed to capture the relationship
between one output and more inputs. Also, the
method can identify which inputs influence the
output. The network contains layers, and each layer
has neurons with two inputs. The output of each
neuron uses the quadratic equation from the two
inputs in the neurons. Linear regression analysis is
used to obtain the quadratic functions, and before
proceeding to the next layer, the earlier layer is
trained. Each training neuron is unique in the
training process, with the best performance chosen.
After selecting the neuron with the best perfor-
mance, the coming layer proceeds, and the training
is repeated. The addition of layers continues until
the stopping criteria are achieved (Abu-Kheil,
2009).

The output of each neuron is determined using
the Ivakhnenko polynomial, thus:

y ¼ f x1;x2ð Þ
¼ wo þ w1x1 þ w2x2 þ w3x1x2 þ w4x

2
1 þ w5x

2
2

ð17Þ
First, the complete GMDH network combines

the two input variables in each layer. Then, the least
square fitting method evaluates the polynomial
coefficients for each group and its associated output.
Finally, when the polynomial coefficients are eval-
uated, the external criteria of accuracy are used to
evaluate and test the results. The criteria to analyze
the model�s accuracy is:

RE2 ¼
PN

i¼1 Pi � yið Þ2ÞPN
i¼1 p2

i

ð18Þ

where RE represents the regularity criteria measure,
N is the sample number, P is the required results,
and y is the prediction by the GMDH neuron. This
equation calculates and tests the output of each
neuron. The results of this equation can indicate
which input is more relevant to the network. Also, it
reflects the ability of the neuron polynomial to
predict the required output. A minor value of the
answer indicates better fit, whereas a larger value
indicates worse fit.
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Equation 18 is used to quantify the influence of
each input data on the output and it helps in the
selection of proper input data to be used in pre-
dicting the output. Also, the number of neurons and
layers are chosen automatically depending on the
value of RE2 obtained from Eq. 18. A neuron will
be selected when RE2 is less than a predefined
threshold value, whereas neurons with larger values
will be eliminated (Fig. 7). Also, the layer with the
smallest RE2 is saved. If the value of RE2 in the
coming layer is larger than RE2 in the earlier layer,
then the new layer will stop. The final results of the
GMDH network will be the output of the neuron
with the minimum RE2 in the last layer (Mulashani
et al., 2021).

The implementation of this method followed
several steps. The first step involved isolating the
data into training and testing data. The training data
help to evaluate the weight of GMDH neurons,
whereas the testing data were used to predict pore
pressure. The data division was done randomly,
whereby 70% of the data were training data and
30% were testing data. The second step involved
finding the combination of the two inputs among all
inputs using:

Combinations ¼ mi mi � 1ð Þ
2

ð19Þ

Z ¼

1 x11 x21 x11x21 x2
11 x2

21

1 x12 x22 x12x22 x2
12 x2

22

: : : : : :
: : : : : :
1 x1N x2N x1Nx2N x2

1N x2
2N

2
66664

3
77775 ð20Þ

where mi is the number of input variables. Then,
each combination was expanded to a quadratic
polynomial (Z). Then, the polynomials� weights

were found using: w ¼ ZTZ
� ��1

ZT y (21)

The third step was to determine and test the
results of each polynomial using the selected data in
the testing group. Finally, the pore pressure predic-
tion was evaluated as:

Ym ¼ w�Z ð22Þ
The GMDH technique was written and run in

MATLAB (R2021a) to predict pore pressure. The
performance of each model was evaluated by using
(Nyakilla et al., 2022):

MSE ¼ 1

n

Xn

i¼1

pi � yið Þ
2

ð23Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

pi � yið Þ
2

vuut ð24Þ

Figure 4. Architecture of ANN.
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where MSE is mean square error, RMSE (root mean
square error) is the square root of MSE, pi repre-
sents the measured value of pore pressure, yi rep-
resents the pore pressure predicted by the model,
and n is the number of sample data. The RMSEs
were obtained for the training and testing data, and
then the results were compared for all models.

RESULTS AND DISCUSSION

K-Means Results

Before predicting pore pressure from the well
logs, the data were grouped based on their relations
(minimum distances from point to point) using the
K-means method. Two data groups were created,
namely Group 1 (K-means 1) and Group 2 (K-
means 2). Group 1 pertained to 1544–2570.154 m
depth, and Group 2 to 4071–4410.754 m depth. The
correctness of this classification was depicted by the

high Silhouette value (Fig. 8). Most Silhouette val-
ues in this work ranged from 0.5 to 0.9 with average
of 0.75. The Silhouette value of 0.75 indicates the
least distance within points in a cluster, which means
good clustering. Therefore, that value showed that
the clustering of data was good. The negative Sil-
houette values (at depths between 2570.154 and
2870.154) showed the region where the data had
poor correlation; thus, the data in that region were
discarded.

After having the two groups of data, the illog-
ical data were removed. These are data that were
not related to other close data, and so they were not
correct. The incorrectness of these data was caused
by the failure of equipment to record due to poor
conditions of the formation or equipment. After
removing the illogical data, Group 1 remained with
data for 1544–2405.754 m depth, and Group 2 re-
mained with data for 4071.854–4410.754 m depth.
Then, all well logs data from the selected depth were
used in predicting pore pressure in Group 1 and
Group 2.

Prediction of Pore Pressure by Polynomial
Classifiers (POL)

Before applying the POL, the data were divided
into training and testing data. Thus, in Group 1, 70%
of the data for 1544–2154.354 m depth were used as
the training data. The remaining 30%, for 2154.454–
2405.754 m depth, were used as the testing data.
Also, in Group 2, 70% of the data for 4071.854–
4365.254 m depth were used as the training data; the
remaining 30%, for 4365.254–4410.754 m depth,
were used as the testing data.

Pore Pressure Prediction in Group 1 Data by Using
POL

The POL method was applied to Group 1 data,
whereby 852 data were used in training the model
and 366 data were used in testing the model. The
pore pressures predicted by the POL compared to
those measured by the drill stem test (DST) are
shown in Figure 9. The figure shows that at 2150–
2250 m depth, the predicted pore pressures were
almost equal to the measured pore pressures; but, at
a depth of 2320 m, the deviation of pore pressure
predicted by POL became significant. The last por-
tion, at 2350–2400 m depth, also showed promising

Figure 5. Architectures of neural networks: (a) feedforward

network; (b) recurrent neural network.
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results. However, generally, Figure 9 shows the
closeness between measured and predicted pore
pressures. Also, the RMSEs for both trained data
and testing data showed good pore pressure pre-
diction using POL. For example, the RMSE of the
trained model was 0.1038 MPa, and the RMSE for
the testing data was 0.5873 MPa.

Pore Pressure Prediction in Group 2 Data by Using
POL

The POL method was applied to Group 2 data,
where 1065 data were used for training the model
and 456 data were used for testing the model and
predicting pore pressure. The differences between
pore pressures measured from DST and pore pres-
sures predicted by the POL are shown in Figure 10.
Variations in pore pressure increase with depth; at
4365 m, the variation was small but, as the depth

increased, the variation in pore pressure also in-
creased. The RMSE for the training data of Group 2
was smaller than that of the training data in Group 1.
However, the RMSE of the Group 2 testing results
was higher than the one obtained in Group 1. The
trained model had an RMSE of 0.0736 MPa, and the
testing and prediction results had an RMSE of
0.7981 MPa. These results show that the model was
trained well, but the prediction deviated slightly
from the measured values. Thus, the RMSE shown
in Figure 10 indicates higher deviation between
predicted and measured pore pressures compared to
that shown in Figure 9.

Prediction of Pore Pressure by Artificial Neural
Network (ANN)

The ANN was applied to the Group 1 and
Group 2 data similarly as the POL. As shown in

Figure 6. Steps followed when applying ANN.
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Figures 11, 10 neurons in the hidden layer and 1
neuron in the output layer were applied in the ANN
method to predict pore pressure. The data were di-
vided into training, validation and testing data, in
the proportions of 40%, 30%, and 30%, respectively.

Pore Pressure Prediction in Group 1 Data by Using
ANN

The ANN obtained results after 247 epochs,
which ran for 2 min and 25 s. Other parameters,
including the performance and gradient parameters
used in the ANN method are shown in Table 1. The
pore pressure predicted by ANN compared to the
ones measured by DST are shown in Figure 12. The
results indicate that pore pressures predicted by

Figure 7. Selection of neurons that gives accurate results in the GMDH technique.

Figure 8. Silhouette values for the clusters in the pore pressure

data from the Nanye 1 well.

Figure 9. Pore pressures predicted from the well logs data by

using a polynomial classifier (POL) compared to the pore

pressures measured by DST (from Group 1 data).
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ANN were close to the those measured by DST. The
ANN method predicted pore pressures almost equal
to the measured pore pressures. The RMSE for the
trained data was 0.0830 MPa, whereas the RMSE
for the testing data was 0.0883 MPa. The RMSEs for
both trained and testing data showed good pore
pressure prediction. Compared to POL, the ANN
had RMSEs, which imply better prediction of pore
pressure.

Pore Pressure Prediction in Group 2 Data by Using
ANN

The ANN used 137 epochs in 1 min and 1 s to
obtain the results. The performance of the simula-
tion was 0.0078, and the gradient was 0.0495 (Ta-
ble 2). The pore pressures predicted by ANN in
Group 2 are shown in Figure. 13. At depths of 4365–
4375 m, there was good closeness between the pre-
dicted and measured pore pressures. At depths of
4380 m, the deviation of the predicted pore pressure
from the measured pore pressure increased slightly.
Then, the deviations decreased and increased again
to a depth of 4410 m.

Generally, there were small differences be-
tween pore pressures measured by DST and pore
pressures predicted by the ANN. In detail, there was
a zigzag curve of increasing and decreasing differ-
ences between predicted and measured pore pres-
sures. The trained data had an RMSE of
0.0328 MPa, and the testing and prediction results
had an RMSE of 0.0322 MPa. These results show
that the model was trained well, and the prediction

Figure 10. Pore pressures predicted from the well logs data

using a polynomial classifier compared to the pore pressures

measured by DST (from Group 2 data).

Figure 11. Number of neurons applied in the hidden and output layers during the ANN training process.

Table 1. Parameters used during the ANN prediction of pore

pressure in Group 1 data

Unit Initial value Stopped value Target value

Epoch 0 247 1000

Elapsed time – 00:02:25 –

Performance 6.75 0.000791 0

Gradient 23.1 0.0492 0.0000001

Mu 0.001 1 9 10–5 1 9 1010

Validation checks 0 6 6

Figure 12. Pore pressures predicted from the well logs data

using ANN with 10 neurons compared to pore pressures

measured by DST (from Group 1 data).
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of pore pressure was good. The predictions of ANN
were also described by a curve of predicted results
(output) against measured pore pressure values
(target), as shown in Figure 14. The figure shows
that the coefficient of determination (R2) for the
training data was 0.9971 and for the testing results
was 0.9936. These R2 values imply good closeness
between the measured (target) and predicted (out-
put) pore pressures.

Prediction of Pore Pressure by Group Method
of Data Handling (GMDH)

The GMDH technique was applied to predict
pore pressure for Group 1 and Group 2 data. The
initial parameters used in this network were 50 lay-
ers, 20 neurons, and 0.7 for classifying the training
and testing data. There were 13 types of well logs
used in this work, which led to a set of 72 pairs of
two variables. These variables required 72 objective
functions to be used in this work. With the aid of
MATLAB (R2021a), all these functions were solved
to predict pore pressure from the well logs.

Pore Pressure Prediction in Group 1 Data by Using
GMDH

The GMDH technique quantified the influence
of each well log dataset on pore pressure for Group
1 data. Then, four well logs, namely depth, AC, CNL
and RT, were selected to predict pore pressure.
After choosing the appropriate well logs to predict
the pore pressure, the GMDH selected the appro-
priate neurons to predict pore pressure. Then, the
data were trained, and the weights were obtained
through trained data. Finally, the GMDH generated
several equations using the evaluated weights in
various layers, which were used to provide the final
results. Thus, the technique�s final results comprised
equations for predicting pore pressure and the out-
put. The equations obtained depended on the se-
lected neurons in each layer, and these equations
were used to predict pore pressure in the training

Figure 13. Pore pressures predicted from the well logs data

using an ANN compared to pore pressures measured by DST

(from Group 2 data).

(a) Training data

(b) Testing data

Figure 14. Comparison of pore pressures predicted by ANN

(output) and measured pore pressure (target) at depths of

4360–4410.754 m (Group 2 testing data).

Table 2. Parameters assigned and used in the ANN training

process for the Group 2 data

Unit Initial value Stopped value Target value

Epoch 0 137 1000

Elapsed time – 00:01:01 –

Performance 4.18 0.078 0

Gradient 15.5 0.0495 0.0000001

Mu 0.001 1 9 10–6 1 9 1010

Validation checks 0 6 6
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and testing datasets. The final results were obtained
in the last layer; thus, the equation in the last layer
(Eq. 25) was the one that provided the output.

The following equations were generated by the
GMDH technique to predict pore pressure:

Y1¼ �0:0169181� 5:5121Z1þ6:51256Z2

þ7:7816Z2
1þ7:49561Z2

2�15:2772Z1Z2

ð25Þ

Z4¼ 18:6434� 0:0970024N2þ8:69416N3

þ0:000132174N2
2þ0:853451N2

3�0:0212144N2N3

ð26Þ

Z1¼ �0:0602115þ 2:43497N1�1:42748N2

�1:54742N2
1�1:45886N2

2þ3:00608N1N2

ð27Þ

N3¼ �0:0469896 þ 1:55873

� 10�5X11þ1:00196X4�2:2362� 10�11X2
11þ1:23

� 10�10X2
4�6:83819� 10�7X11X4

ð28Þ

N2¼ �2:91643þ 0:0136783X1þ4:92853

� 10�6X1X2�4:25118� 10�7X
2

1�0:0264323X2

þ2:55632� 10�5X2
2

ð29Þ

N1¼ �6:16672þ 0:0141647X1�0:064584X4�3:64524

� 10�7X2
1þ0:000554602X2

4þ1:3687� 10�5X1X4

where X1 is depth, X2 is AC, X11 is RT, and X4 is
CNL

The pore pressures predicted by the GMDH in
Group 1 data had an RMSE of 0.0724 MPa in the
trained data and an RMSE of 0.0712 MPa in the
testing data. The predicted pore pressures were
close to the measured pore pressures (Fig. 15) as
indicated by R2 of 0.998, which indicates the good
performance of the GMDH technique.

After obtaining the results, sensitivity analysis
was done to evaluate the influence of the selected
input data (depth, AC, CNL and RT) on predicting
pore pressure. Equation 30 was used to evaluate the
significant variable (SV), thus

SV ¼ 1

N

XN

i¼1

Doutput
Dinput

�100 ð30Þ

where D output is the change of output data and D
input is the change in input data. The value of SV
shows the influence of each input dataset on pre-
dicting pore pressure; a higher SV value means
stronger influence, and a lower value means weaker
influence. The sensitivity analysis was done by
varying the input data by percentages of 10, 20, 30,
� 10, � 20 and � 30. The results show that depth
had the strongest influence, followed by AC;
meanwhile, CNL and RT had weaker impact on
predicting pore pressure (Fig. 16).

Pore Pressure Prediction in Group 2 Data by Using
GMDH

Using the GMDH technique, the influence of
each well log dataset on pore pressure was evalu-
ated; as a result, six well logs were selected to predict
pore pressure in Group 2. The selected well logs
were depth, SP, LLS, RS, DENS, and MSFL. Also,

Figure 15. Relationship between pore pressure predicted by

GMDH and measured by DST at depths of 2150–2405.754 m:

(a) target pressure (measured) vs. predicted pore pressure

(output); (b) variation of measured and predicted pressures at

various depth.
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the appropriate neurons were selected to predict
pore pressure (Fig. 17). The GMDH technique at-
tained the results after five layers and generated 15
functions by training the data. These functions were

used to predict pore pressure in the testing data. The
generated functions were represented by:

Lout ¼ a þ bLin1 þ cLin2 þ dL2
in1 þ eL2

in2 þ f Lin1Lin2

ð31Þ

where Lout is the output in a layer, Lin1 is the input 1,
Lin2 is the input 2, and a, b, c, d, e, and f are the
coefficients. Each function can be expressed by
inserting the coefficients shown in Table 3. The pore
pressures predicted by GMDH were obtained using
the equation of the last layer (Layer 5).

The results showed an RMSE of 0.0299 MPa in
the training data and an RMSE of 0.0308 MPa in the
testing data. The pore pressures predicted by
GDMH fit well with the pore pressures measured by
DST (Fig. 18), with R2 of 0.9969. These results
indicate a good prediction of pore pressure by using
the GMDH technique.

The sensitivity analysis was conducted to eval-
uate the influence of the selected parameters in

Figure 16. Sensitivity analysis of influence of depth, AC, CNL

and RT on pore pressure.

Figure 17. Selected neurons in the GMDH network connections structure for Group 2 data.
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predicting pore pressures. Equation 30 was em-
ployed to evaluate the SV. The analysis was con-
ducted by changing the input data by percentages of
7, 10, 20, � 7, � 10 and � 20. The results indicate
that depth had the most significant influence, fol-
lowed by SP logs. Other well logs had less influence
in predicting pore pressure (Fig. 19).

DISCUSSION

According to Azadpour et al. (2015), the vari-
ation of porosity with pore pressure causes changes
in petrophysical properties like compaction and fluid
motion. These properties are well shown by the well
logs data, and so based on this fact the well logs data
can be used to predict pore pressure. Azadpour et al.
(2015) showed the partial use of well logs data in

Table 3. Coefficients of the 15 functions generated by the GMDH technique to predict pore pressure in Group 2 data

Layers

Input Output Coefficients

a b c d e f

Layer 1 X1 X2 D1 1786.971 � 0.807 � 1.34 9.44 9 10–5 7.37 9 104 0.00030

X1 X3 D2 871.589 � 0.391 0.0079 4.73 9 10–5 � 2.09 9 108 � 1.858 9 10–6

X1 X4 D3 871.589 � 0.391 0.007947 4.73 9 10–5 � 2.09 9 108 � 1.858 9 10–6

X2 X5 D4 61.814 0.441 0.142 � 8.65 9 102 � 2.19 9 103 0.0065

X2 X6 D5 61.681 � 2900 0.185 1.52 9 10–5 � 2.45 9 103 9.3891 9 10–5

Layer 2 D1 D2 M1 � 17.446 � 6.092 7.6352 0.957 0.843707 � 1.805

D1 D3 M2 0.4524 11.945 � 10.963 0.325 0.497 � 0.823

D2 D4 M3 � 615.493 67.038 � 46.836 0.1165 0.987796 � 1.254

D1 D5 M4 50.71825 16.951 � 17.53 0.4658 0.727401 � 1.181

Layer 3 M1 M3 f1 0.223 31.954 � 30.964 � 0.279 0.214539 0.0645

M2 M3 f2 1.393 31.683 � 30.73 � 0.3187 0.170704 0.1484

M2 M4 f3 44.966 � 37.843 37.436 5.3448 4.756498 � 10.09

Layer 4 f1 f2 N1 15.963 � 839.21 839.72 � 898.395 � 911.428 1809.827

f2 f3 N2 � 4.8179 � 26.032 27.182 � 3.3634 � 3.78054 7.143

Layer 5 N1 N2 Y 1.7212 27.366 � 26.42 3.3455 3.770905 � 7.116

Figure 18. Relationships between pore pressure predicted by

GMDH and measured by DST at depths of 4360–4410.754 m: a
target pore pressure (measured by DST) and predicted pore

pressure (output); b variations of measured and predicted

pressures with depth.

Figure 19. Influence of depth, SP, DENS, LLS, RS and MSFL

on predicting pore pressure.
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predicting pore pressure using mathematical models,
including the Eaton, Bowers, and compressibility
methods. All these models show good predictions of
pore pressure from well logs.

All the three techniques used in approximating
pore pressure in this work showed better results with
small errors (Table 4). The GMDH technique ob-
tained the best testing results (prediction) in Group
1 with RMSE of 0.0712 MPa, followed by ANN with
RMSE of 0.0883 MPa. The polynomial classifier
showed the worst results compared to the two
techniques, whereby the RMSE was 0.5873 MPa,
which was the highest compared to the other two
methods. Also, in Group 2 data, the GMDH tech-
nique showed the best performance in predicting
pore pressure, whereby the RMSE was 0.0308 MPa
(the smallest among the three methods used), and
the ANN technique was second with RMSE of
0.0322 MPa. The polynomial classifier performed
the worst in predicting pore pressure compared to
the two techniques (RMSE was 0.7981).

Also, the GMDH tested the influence of each
well log dataset on pore pressure. In the first layer,
all well logs data were arranged in a group of two
data called a neuron. The output of each neuron was
found using the two input data. Then, the results of
each neuron were analyzed based on the regularity
criteria measure. The neuron with a larger value of
regularity criteria measure (large error between ac-
tual pore pressure measured by DST and neuron
output) compared to the threshold specified value
was discarded. Only the neurons with smaller regu-
larity criteria measures were selected for the next
stage. This mechanism shows the advantage of
GMDH to quantity the influence of each well log
data on the prediction of pore pressure, which is not
done by the other ML techniques used in this work.
Also, the sensitivity analysis showed that depth had
the strongest influence on predicting pore pressures,
followed by SP and AC. Other well logs, including
DENS, RS, LLS, MSFL, CNL and RT, had a lower
influence on predicting pore pressures.

The results are consistent with previous pre-
dictions using GMDH. The study of Mulashani et al.
(2021) on the prediction of TOC from well logs
using GMDH was the best compared to other
methods like DlogR technique and ANN. Mathew
Nkurlu et al. (2020) showed the prediction of per-
meability by GMDH was best when compared to
other methods, including back propagation neural
network (BPNN) and radial basis function neural
network (RBFNN). The GMDH showed higher

performance (RMSE of 0.0308 MPa or 4.47 psi)
when compared to other techniques like the DT
technique (RMSE was 14.46 psi) (Zhang et al.,
2022), MELM technique (RMSE was 11.551 psi)
(Farsi et al., 2021) in predicting formation pore
pressure from well logs. However, these techniques
were applied in different fields. Apart from its per-
formance, the GMDH has other advantages,
including identifying the structure of the data or
system, direct approximation of results, and it is fast
(it took less than a minute in both Groups 1 and 2)
(Abu-Kheil, 2009).

The validation of the results was based on the
assumption that pore pressure measured by DST is
the true formation pore pressure. Thus, the small
errors (RMSEs) of the pore pressures predicted by
POL, ANN, and GNDH against the measured by
DST indicate the validity of the results (Table 4). In
addition, the results showed good relationships be-
tween well logs and pore pressures, such that the
well logs can be used to predict pore pressure. Also,
the R2 values in Figures 16a and 18a are greater
than or equal to 0.9936, showing the closeness be-
tween the predicted and measured pore pressures,
indicating the validity of using well logs to predict
pore pressure. Therefore, all methods showed valid
results, but GMDH was selected because it showed
the best results among all the methods used in this
work.

The relationships between the pore pressures
measured by DST, predicted by GMDH, and well
logs are shown in Figure 20. The figure indicates that
both logs impact pore pressure changes; for instance,
the rapid increase in pore pressure at depths starting
from 4200 m is also related to changes in well logs
(AC, CAL, CNL, DENS, and GR). Also, the low
pressures in depths below 2000 m are reflected by
the increase in AC, CAL, CNL, and RS well logs
and the decrease in DEN and SP well logs. More-
over, the pressure predicted by the GMDH looked
similar to the pressure measured by DST. This fact
shows the good ability of GMDH to predict pore
pressure. The success of the GMDH in predicting
pore pressure can reduce the cost of measuring pore
pressure by using expensive methods like DST.

CONCLUSIONS

Applying a ML technique to predict pore
pressure shows outstanding achievement for POL,
ANN, and GMDH. These techniques had small

Mgimba, Jiang, Nyakilla, and Mwakipunda



RMSEs (the lowest was 0.0308 MPa) in predicting
pore pressure. Also, the R2 values of linear regres-
sions in the fitness curve were up to 0.998. These
results show good relationships between the well
logs data and the pore pressure as well as the ML
methods� ability to predict pore pressure. Thus, pore
pressure prediction from the well logs data is valid.
Depth showed the greatest influence on predicting
pore pressure, followed by SP and AC well logs.
However, DENS, RS, LLS, MSFL, CNL and RT
also showed some though weaker influences.

Among all the techniques used, the GMDH
shows more advantages compared to the other two
techniques. These advantages include automatic
selection of relevant input data and its ability to
identify data structure and direct approximation.
Also, the GMDH shows the best results compared

to the other methods because it had the smallest
RMSE of 0.0308 MPa in predicting pore pressure
from both Group 1 and Group 2 data. Therefore, the
GMDH is proposed as the best method for pre-
dicting pore pressure from well logs.
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Table 4. MSE and RMSE of training and testing results of the three different methods applied to the two groups of data

Methods Group 1 Group 2

MSE (MPa)2 RMSE (MPa) MSE (MPa)2 RMSE (MPa)

Train Test Train Test Train Test Train Test

Polynomial classifier 0.0108 0.3450 0.1038 0.5873 0.0054 0.6370 0.0736 0.7981

ANN 0.0069 0.0078 0.0830 0.0883 0.00107 0.00103 0.0328 0.0322

GMDH 0.0052 0.0051 0.0724 0.0712 0.00089 0.00095 0.0299 0.0308

Figure 20. Relationships between measured pressure, predicted pressure, and well-log data.
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