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ABSTRACT: Nanomaterials have been used in the oil and gas
industry to improve thermal stability, rheology properties, and
reactivity through fluid dispersion into the formation. Nanoma-
terials in producing wells can control formation damage near the
wellbore regions. Foreign fluid invasion to the reservoir rock
during drilling, fracturing, completion, enhanced oil recovery, and
workover causes an interaction with the rock formation and fluids.
This results in formation damage such as clay swelling and
deflocculation, solid particle invasion, and asphaltene precipitation,
all of which reduce production and lead to significant economic
losses. In this review, we present the application of nanomaterials
to oilfields as a way of optimizing production with minimal
formation damage near the wellbore regions. Also, this review presents how the laboratory experiments from nanomaterials were
upscaled to oilfields. The different types of nanomaterials used to control formation damage across producing fields around the
world were investigated. This study has shown that nanomaterials are more effective than traditional materials to be used in oilfields
for controlling formation damage during various stages of oil and gas development and it recommends that the effect of the
relationship between nanoparticle size and type should be explored for effective application. However, because formation damage is
caused for a variety of reasons, this work points out that many types of nanomaterials need to be combined to achieve multipurpose
mitigation. Furthermore, more research concerning the dispersion of nanoparticles in cement slurry and fracturing fluid should be
undertaken.

1. INTRODUCTION

Formation damage is an undesirable phenomenon in the oil and
gas industry that can have an impact on the overall performance
of the field during drilling, completion, stimulation, EOR, and
workover operations.1−3 These operations allow foreign fluid to
infiltrate the formation, resulting in an interaction between the
foreign fluid and the formation fluid or the foreign fluid and the
formation rock, which can cause formation damage, lowering
well productivity and inflicting significant economic losses.4,5 To
minimize andmanage the degree of formation damage in various
types of reservoirs, several researchers have conducted experi-
ments and studies regarding formation damage mitigations.6−9

For many years, formation damage has been regarded as a
challenge in the oil and gas industry and has become a focal point
of research.3,4 This formation damage is linked to the action of
clay minerals such as swelling and deflocculation, solid particle
invasion, finemigration and generation, and sand and asphaltene
deposition, all of which can cause formation damage, resulting in
changes in porosity and permeability, as well as a considerable
reduction in oil production.10,11

To attain complete production potential in oil fields with
minimal formation damage, the operation fluids and their
properties must be improved. Without improvement of fluids,
especially operation fluids (drilling, completion, EOR, and
stimulation fluid), and their properties, the production potential
for extracting the greatest value of oil and gas from the well may
never be obtained. In recent years, some researchers have
focused on the use of high-performance materials to control
formation damage near the wellbore region. Nanoparticles are
one such high-performance material that has gained acceptance
in oil field research worldwide.12−19 Nanoparticles are the
simplest kind of structure with nanometer-scale dimensions,
which can be defined as a cluster of particles fused and
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combined, forming a radius in nanometer ranges or less than 100
nm.20−22 At these nanoscale ranges, unique properties can be
acquired that set them apart from traditional materials. Such
unique properties are large area per volume ratio, high reactivity,
dispersibility, and thermal and chemical stability.23 The large
area per volume ratio and small size (nanometer range) are
compared to the bulk materials. Nanoparticles can be carbon
nanoparticles, nanofibers, magnetic nanoparticles, nanofilms, or
nanocomposites as determined by their physicochemical
properties, as well as nanoscale size ranges.24,25 In addition,
nanoparticles can be solid particles or nanofluids with a stable
suspension, as demonstrated by Fakoya and Shah,34 in which the
nature of the nanoparticles provides unique properties or
specific features compared with those of micro- and macro-
materials.
High reactivity of nanoparticles can be achieved due to the

presence of functional groups at the particle’s surface which
more easily interact and react with other compounds, formation
rocks, or reservoir fluids. Nanoparticles have recently demon-
strated high potential for application in oil fields for improving
drilling, completion, stimulation, workover, and EOR perform-
ance due to their reactivity and interactivity with the formation
fluids and rocks.10,20,26−30

Furthermore, current findings of different researchers have
shown that adding nanoparticles to operation fluids can reduce
formation damage while enabling oil to flow toward the
producing well.31−36 Traditional materials37−39 in EOR, drilling,
stimulation, and completion operations are effective, but they
face numerous challenges such as filtration loss, high cost of
processing, limited ability to sweep oil from the rock formation,
mobility ratio challenges, fine migrations, and deposition of
asphaltene and they are easily affected by HP/HT formations.40

Currently, nanotechnology research and development in the
petroleum industry is been extremely active and has
demonstrated promising results. Many authors have suggested
nanomaterials as the best control for formation damage in the oil
and gas industry.17,41−43 In addition, nanomaterials can be
applied effectively in drilling operations,44−47 well comple-
tion,48,49 cementing,50,51 perforation,52,53 enhanced oil recov-
ery,54−58 hydraulic fracturing,59−61 and clay expansion62−64 to
control formation damage. However, the majority of research on
nanotechnology in the oil and gas industry has focused more on
laboratory studies than field studies,65,66 as we explain in section
2. There is a paucity of literature on the use of nanotechnology in
oilfields that demonstrates its utility and efficiency in controlling
formation damage during oilfield development.
Franco et al.67 recently demonstrated the application of

nanotechnology in the oil and gas sector. They applied
nanotechnology in EOR, water shutoff, dewatering, and
improvement of production in heavy oil, and their results were
based on the oil production rate. Ngata et al.,5 on the other hand,
studied the deployment of nanotechnology in the oil and gas
industry to control formation damage. Their research showed
that nanotechnology can be applied during drilling, completion,
EOR, and stimulation. However, their study was mostly focused
on laboratory experimental work with little fieldwork to
demonstrate the efficiency of nanotechnology in controlling
formation damage. Although we are aware that nanotechnology
can increase oil production, there is a scarcity of research to
illustrate how it might be utilized to prevent formation damage
at the field scale.
Therefore, the main aim of this work is to provide a

comprehensive review of nanoparticle applications in oil and gas

fields to control formation damage based on extrapolating the
laboratory results to field scale. To achieve this aim, we present
this work in two parts. The first part (section 2) is on field
applications undertaken in various producing fields worldwide
to ascertain the true influence of nanoparticles on formation
damage control during oil and gas field development. The
second part (section 3) highlights areas for future research on
nanoparticles in the oil and gas industry based on the findings of
this study.

2. FIELD AND TRIAL APPLICATIONS OF
NANOTECHNOLOGY FOR FORMATION DAMAGE
CONTROL

Many investigations on nanotechnology have been conducted in
laboratories.17,47,63,68−76 Thus, it is necessary to assess the
effectiveness of nanotechnology in oil and gas fields and its effect
in preventing formation damage. This would help to serve as a
point of convergence between the academic and industrial
sectors by extending laboratory findings to a broader range of
applications under field conditions. The following case studies
show how nanoparticles have been employed to reduce
formation damage and boost oil production in different parts
of the world.

2.1. China Offshore Field, KL21-1-B1 Well. The well
KL21-1-B1 is found at Bohai Bay in China. The field trial work
for nanoparticles was done in June 2019 to improve productivity
and lessen the risk of formation damage from poor water
injection as in December 2015 200 m3/d of water was injected
into the formation to recover oil. After a comprehensive study, it
was found that the KL21-1-B1 well had suffered from the
following problems:77

1. The reservoir was associated with thin interlayers in the
vicinity of the wellbore zone, and it contained poor
reserve properties that are ineffective for water injection.

2. The formation contained clay minerals that caused
formation damage by hydration expansion, which
restricted fluid flow to the producing well.

3. Pollution from the completion fluid was caused by fluid
leakage of 80 m3.

4. Formation of scales from water injection inhibited normal
fluid flow into the producing well.

To overcome the poor performance of water injection in the
field, it was decided that the application of biological nano-
polysilicon could be better than traditional materials (water).
The experimental results from biological nano-polysilicon
demonstrated increased stability of fluid, while permeability
also increased by 30.4% of the initial value from the core sample
obtained from the rock formation.77 It was concluded that
biological nano-polysilicon has potential for use in field tests,
and the KL21-1-B1 well was selected for its test application. The
stimulation technique was performed using biological nano-
polysilicon injection to improve the performance of the well by
overcoming the reservoir challenges encountered with the
previous water flooding method. The results from this field test
showed that after treatment of the well, injectivity was increased
from 90 m3/d to 150 m3/d with decrease of injection pressure
from 18.7 to 5.5 MPa. This means that biological nano-
polysilicon as nanoparticles was effective and satisfactory in the
KL21-1-B1 well to overcome formation damage, providing the
desired results.77

However, in China, research involving nano-polysilicon
materials has been extended to different oil fields such as
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Shengli, Daqing, Zhongyuan, Karamay, Xinjiang, Zhongyuan,
and Jiangsu oilfields (Table 1). The application of nano-
polysilicon materials showed remarkable success, especially for
its retention properties78 to improve the injection capacity,
resulting in increased permeability and production. Nano-
polysilicon has been used in EOR techniques in different
countries such as Siberia and Udmurki fields and showed
improvement in injectivity, as well as reduction in injection
pressure.79 Table 1, summarizes the fieldwork studies using
nanoparticles in China’s oil and gas fields. It highlights the action
of nanomaterials in controlling formation damage that restricts
the natural flow of oil to the producing well.
2.2. Colombian Oil Fields. Nanotechnology in Colombia

has been used on a wide scale to reduce formation damage87 and
improve oil recovery88 to enhance oil production and meet the
country’s energy requirements. Colombia possesses 2.3 billion
barrels of proven oil reserves from which 13% of oil production
has declined in the last year according to the report from the
National Hydrocarbons Agency (NHA).13 The application of
nanotechnology in Colombia resulted in a significant increase in
oil production and reduction of the risk of formation damage.
The fieldwork was conducted in Cupiagua, TN, Castilla, and
Chichimene fields,14,89,90 and summary of field application of
nanoparticles is provided in Table 2.
2.2.1. Cupiagua Sur Field. The Cupiagua Sur Field in

Colombia is located northeast of Bogota and contains crude oil
with a 38 API gravity and formation properties of 21 mD
permeability, and 6.5% porosity.78 The main challenges of
formation damage in this field were asphaltene, fines, and
mineral deposits around the wellbore regions, as well as fluid
blockage from completion operations, resulting in a significant
decrease in permeability.91 To overcome the challenges of
formation damage at the Cupiagua Sur field, wells CPSXL4 and
CPSXL5 were recommended for the trial work applying the
stimulation technique with nanoalumina as nanoparticles. The
structure of nanoalumina coated with nanosilica can be observed
in Figure 1. The surface is very reactive and interactive to inhibit
further formation damage21,92 such as clay swelling and
deflocculation near the wellbore region.
2.2.1.1. The CPSXL4 Well. To control formation damage

around the wellbore zone, 220 bbl of nanofluid with nano-
alumina and a mixture of 411 bbl as displacing fluid were
injected into the targeted penetration radius of 7.2 ft to the
reservoir. Nanoalumina is very reactive and has a good tendency
for the sorption of asphaltene. To determine the effect of
nanoalumina, they examined another well, well CPSXL5.94

2.2.1.2. The CPSXL5 Well. This well together with CPSXL4
well underwent treatment with nanoalumina as nanoparticles.
To prevent further formation damage, 180 bbl of nanofluid with
nanoalumina and the mixture of displacing fluid (DAX) were
injected into the targeted penetration radius of 9.2 ft to the
reservoir. Nanoalumina is very reactive, has a good tendency for
sorption of the asphaltene, and inhibits its further formation.
The process of stimulation was divided into four stages: stage 1,
base-case stage; stage 2, postpickling stage; stage 3, post-acid−
organic, chemical stimulation stage; and stage 4, postinhibition
stimulation stage. Some conclusions can be drawn from the data
from these two wells (CPSXL4 and CPSXL5), which are
presented in Figure 2.
Figure 2A shows that the API gravity in the CPSXL4 well

increased from 40 to 41.5 after the stimulation process was
completed. Figure 2B depicts the oil production rate in the
CPSXL4 well, which was increased from 1704 to 2984 BOPD T
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following the stimulation operation. For the CPSXL5 well, oil
production rate increased from 3538 BOPD to 4433 BOPD after
the stimulation operation, as shown in Figure 2C. Figure 2D, on
the other hand, shows that the CPSXL5 well gas production rate
increased when nanoalumina was applied and then declined
afterward from 33.66 MMscfd to the maximum of 35.0 MMscfd
before declining to 33.0 MMscfd, indicating that nanoalumina
successfully allowed gas flow during its application. In general,
the use of nanoparticles to stimulate formations was successful in
reducing formation damage and increasing oil production rates.

2.2.2. Castilla and Chichimene fields. These fields are
located in Colombia96 and contain heavy oil97 in which oil-based
nanofluid (OBN) was used to control formation damage by
controlling wettability and oil viscosity.98 The Castilla field
suffered from severe formation damage such as asphaltene
deposit (30%), mineral scales (14%), and damage from the
drilling and completion process (56%). However, the
Chichimene field suffered from formation damage like emulsion
damage and skin effect of 29, 31.9, and 37 in magnitude. The
following are the descriptions of each oilfield.

2.2.2.1. Castilla Field. In the Castilla field, two wells were
used for the field trial works. These were the CN154 and CN174
wells. Oil-based nanofluid (Al2O3, 200 bbl and 150 bbl,
respectively) was injected in the CN154 and CN174 wells.
The nanofluid was injected into the targeted penetration radiusT
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Figure 1.Nanoalumina (alumina surface coated with nanosilica, which
is reactive to the clay minerals). Reproduced with permission from ref
93. Copyright 2019 Elsevier.

Figure 2.CPSXL4 (A, B) andCPSXL5 (C, D) well results. Reproduced
with permission from ref 95. Copyright 2017 Elsevier.
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of approximately 3 ft. The results showed that sediments and
water that restricted the normal flow of the well declined by
approximately 11% and the oil production rate increased by 270
BOPD and 280 BOPD in CN154 and CN174 respectively.98

2.2.2.2. Chichimene Field. In the Chichimene field, two wells
were used for the field trials, CHSW26 and CH39 wells. Oil-
based nanofluid (Al2O3), 86 bbl and 107 bbl, was injected in
CHSW26 and CH39 wells, respectively. The nanofluid was
injected into the targeted penetration radius of approximately 3
ft. The results showed that the oil production rate increased by
310 BOPD and 87 BOPD in CHSW26 and CH39 wells,
respectively. The application of nanofluid at the Castilla field
improved the skin factor from 23 magnitudes to 6.2, while the
skin factor of the Chichimene field was observed to change from
47 magnitudes to 19 as described in Figure 3A,B respectively.98

2.2.3. TN Field and Three Other Wells.The TN field is found
inMagdalena Valley, Colombia. Its crude oil contains an average
of 36 API gravity. The formation damage associated with this
field is organic and inorganic scale. Nanofluid was applied in
chemical stimulation from June 2014 to October 2015. This
stimulation included five wells. The result showed that nanofluid
inhibited scale formation, removed any formation damage
related to the organic scale, and increased the production rate to
60 BOPD for more than 18 months in all five wells. The trend of
oil production, which is above the baseline, can be observed
from Figure 4. The trials were extended to other wells for the
purpose of cleaning the wells during drilling and piping,
controlling organic and fines migration that could damage the
well, and restricting the flow of formation fluid to the producing
well. Silica nanofluid was applied, and 148 bbl was injected into
the formation. The incremental oil production was observed to

increase from 48 BOPD to 134 BOPD after the application of
nanosilica fluid. This signifies that the nanosilica fluid managed
to inhibit the formation damage to the well and can be applied to
the other well suffering from the same problems to control the
formation damage.

2.3. The Gulf ofMexico. In the Gulf of Mexico, a field study
of nanoparticles was conducted in a deep water well with a
reservoir temperature of 160 °F, a water depth of about 2500 ft,
and pay zone ranges between 15769 and 15860 ft, and the well
was stimulated with nanoparticle-coated proppant.100 The
problem in this well is fines migration, which plugged the
porous media near the wellbore region, causing formation
damage. The formation damage has caused production to
decline from 7500 to 2200 BOPD and 6000 to 2000MCF of gas.
The fracking process to the damaged well consisted of 97000 lb
20/40mesh proppants treated with nanoparticles. These treated
proppants together with nanoparticles were injected at loading
of 1 lb per 1000 lb of proppant to the damaged wells. The well
resumed its normal flow at the end of the treatment process, and
nanoparticles mitigated the formation damage by absorbing
fines and preventing their accumulation and plugging of the
near-wellbore region.101

The results, shown in Table 3, demonstrate that after six
months of proppant treatment with nanoparticles, the well

recovered its normal productivity with 2800 BOPD and 2700
MCF of gas without fines migration or formation damage. This
indicates that the nanoparticle-coated proppant was effective for
control of formation damage caused by plugging of fines in the
near-wellbore zone.101

2.4. Reconcavo Basin in Brazil, 1-UR-2-BA well. The 1-
UR-2-BA well is found in the Reconcavo basin in Brazil.102 The
well is drilled in shale and unconsolidated formation. This
formation is associated with wellbore instability and sticking of
the drilling pipes due to mineral reactions.103 A nanofluid was
applied to the well 1-UR-2-BA to attain effective wellbore
stability and formation damage control. During drilling, the
nanofluid was applied to the interval of 515 to 1600 m, which
seems to be very reactive.101 The results showed that the
nanofluid was applied successfully and prevented wellbore
failure, provided good lubricity and easy transportation of
cuttings, and prevented formation damage in a reactive shale
zone from clay swelling potential, Figure 5. In addition, the
nanofluid reduced the filtration loss, which could react with the
formation fluid or formation rock and might cause formation
damage.When nanofluid reacts with clayminerals or shale, it can
adsorb them and prevent either swelling or deflocculating to the
porous channel systems, which may be plugged restricting
normal flow. Figure 6 describes the retention process when
nanoparticles are applied to the porous system of the formation
rocks.79,104

2.5. Chaves County, New Mexico. Formation damage
associated with the deposition of paraffin around the wellbore
region can cause substantial economic losses to the well.105−107

In Chaves County, New Mexico, United States, a well was

Figure 3. Before and after skin effect at Castilla and Chichimene fields.
Reproduced with permission from ref 95. Copyright 2017 Elsevier.

Figure 4. Effect of nanofluid stimulation at TN oilfield. Reproduced
with permission from ref 95. Copyright 2017 Elsevier.

Table 3. Nanoparticle-Coated Proppant Performance in the
Gulf of Mexica Damaged Well101

oil, BOPD gas, MCF

at the beginning before treatment 2200 2000
3 months after treatment 3200 2700
6 months after treatment 2800 2700
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suffering from paraffin deposit, and it was decided to treat it with
nanofluid. The treatment job was initiated with a total fluid of
2000 L, and 60% of the fluid contained 17% (v/v) nanofluid
solution, while the other 40% of the fluid contained a paraffin
solvent. The treatment was performed with an oiler, which is
hot, and the well was shut in at least for 8 h for the reaction of
nanofluid with the targeted zone.108

The results showed that when treatment was completed
production resumed after a large volume of paraffin flowed out,
meaning that the nanofluid was effective in removing the paraffin
deposit and polymer filter cake, which restricted the normal flow
of reservoir fluid and caused formation damage. The production
rose from 6 to 12 BOPD. Thus, the treatment was successful
with the use of the nanofluid solution.
2.6. Scurry County, Texas. In Scurry County, Texas,

United States, a trial with nanofluid was conducted to treat a
paraffin deposit around the wellbore region. Paraffin can plug
and restrict the normal flow of oil to the producing well and
cause formation damage.109−111 Before treatment of the well
with nanofluid, the damaged well was producing approximately
14 m3/day together with a water cut of 50%. It was decided to
treat the well by using nanofluid to inhibit the deposition of
paraffin near the wellbore region. The treatment was initiated
with total fluid of 2812 L. A volume of 563 L was used as the
amount of nanofluid without paraffin solvent. The well was shut
in at least for 8 h to wait for the reaction of nanofluid with the
targeted zone to reduce the extent of damage.108

The results showed that the treatment was successful and the
production resumed after large volumes of paraffin flowed back,
meaning that the nanofluid removed the paraffin deposit and any
associated polymer filter cake, which can result in the formation
damage. In addition, the production was observed to rise from
14 m3/day to 22 m3/day (Table 4).

2.7. Field X, Iran. Iran has been using nanomaterials for oil
and gas research in recent years.67,112−114 Nanotechnology was
applied in one of the unknown Iranian oilfields in the country’s
south. The formation contains shale rocks, which are linked to
different challenges such as fluid loss, lack of chemical stability,
borehole collapse, well kicking, and sticking of the pipes. Well X
with 6-1/4″ as a drilling hole was selected for the field test, and
the targeted depth was set from 4820 to 5180 m. This is an
unstable depth of the formation, which has an average thickness
of 350 m. Previous drilling operations before the introduction of
nanomaterials were not successful due to a variety of formation
challenges caused by shale sensitivity, including wellbore
instability, drilling pipe sticking, hole deviation, excessive torque,
and drag, all of which increased drilling operation time and cost.
To reduce these challenges caused by shale sensitivity,115

nanomaterials were used during drilling. Table 5 shows the
compositions of the drilling fluids that were employed.

Drilling with this nanomaterial-based drilling fluid improved
the operation by offering strong rheological qualities, thermal
stability, and control of shale mineral sensitivity near the
wellbore. Nanomaterial-based drilling fluids reduced formation
damage byminimizing fluid loss to the formation and generating
high-quality mud cake,44 which prevented the reactivity of
filtrate with shale minerals and prevented severe formation
damage and borehole instability. All of the aforementioned
drilling problems were eliminated, and the operating perform-
ance of the nanomaterial-based drilling fluid, fMWCNTs and
fNPG (Figure 7),116 improved over the preceding traditional
drilling fluid.
In addition, many nanomaterials are used around the world in

fieldwork conditions to control formation damage. Table 6

Figure 5. Effect of nanoparticles during drilling.

Figure 6. Action of nanoparticles to control clay expansion in the porous system: (A) narrow porous channel system due to formation damage; (B)
wide porous channel systems mitigated by nanoparticles through the retention process. Reproduced with permission from ref 104. Copyright 2018
Elsevier.

Table 4. Effect of Nanofluid in Treating Paraffin Deposits108

oil production rate (m3/day)

at the beginning before treatment 14
after treatment with 563 L nanofluid 22

Table 5. Water-Based Mud with Additives Including
Nanofluids116

amount of additive types of materials

0.3−0.5 wt % soda ash (Na2CO3)
0.1 wt % caustic soda (NaOH)
7 wt % potassium chloride (KCl)
10 vol % nanomaterial solution (fMWCNTs and fNPG)
5−7 wt % sodium bentonite
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shows some of the types of nanomaterials used and their results
worldwide.

3. FUTURE RESEARCH IN NANOTECHNOLOGY
APPLICATION FOR FORMATION DAMAGE
CONTROL

Based on the findings of this review, the following issues should
be addressed for future research:

1. The optimal nanoparticle or nanofluid composition
should be determined according to the type and
morphology of nanomaterials. Nanoparticles were
utilized to improve the rheological and thermal properties
of drilling mud during drilling, but there is no clear
explanation of how nanoparticle size (nanoscale ranges)
affect their efficiency. This study recommends more
research should be conducted to determine the relation-
ship between nanoparticles and morphology to make
nanotechnology more beneficial.5

2. The majority of previous laboratory and field research has
focused on the impact of nanoparticles such as silicon
dioxide (SiO2), titanium dioxide (TiO2), aluminum oxide
(Al2O3), copper oxide (CuO), graphene (G), iron oxide
(Fe2O3), and carbon nanotubes (CNTs) on formation
damage control by application of one type of nanoparticle.
However, a formation can contain multiple formation
damage types such as solid invasion, fines migration,
etc.125,126 Research should be conducted on the use of
multiple types of nanomaterials to provide multipurpose
mitigation of intricate formations with multiple types of
formation damage.

3. Further research should be done to better understand the
uniform dispersion tendency in cement slurry36 and
fracturing fluid given that nanoparticles have large surface
areas.

4. The oil and gas industry must focus more on conducting
appropriate nanotechnology research under field and trial
conditions to control formation damage, as there are not
sufficient case studies conducted in the field for more
practical experience.5

5. If the procedures and steps are not followed correctly
during the oil and gas development process, nanoparticles
can agglomerate and block pore throats hence reducing
the permeability and porosity, Figure 8. For example,

nanoparticles must travel a long distance to the reservoir
formation during EOR or stimulation without maximum
retention, which can reduce normal permeability. To
minimize permeability and porosity reduction, oil and gas
operators should consult all evidence-based recommen-
dations in applying nanoparticles.

6. Determining nanomaterial concentration, size, flow rate,
and pore throat diameter is critical because it prevents
nanoparticles from jamming (Figure 8) in the pore throat,
reducing permeability or failing to disperse nanomaterials
to the target area or fracturing fluid, resulting in high
injection pressures.127

7. The study suggests that further research should be
conducted into finding more cost-effective ways to
produce nanoparticles, as oilfields need vast quantities
of nanomaterials, which are expensive to obtain.

4. SUMMARY AND CONCLUSIONS
Nanotechnology has demonstrated remarkable success in
controlling formation damage in all oilfields by reducing
asphaltene, scales, fines migration, clay minerals, and other
precipitates. The results from laboratory experiments suggest
that nanotechnology can be applied in field conditions.
However, understanding and experimenting with nanotechnol-

Figure 7. Functionalized multiwall carbon nanotubes (fMWCNTs)117

and nanoporous graphene.117 Reproduced with permission from ref
118. Copyright 2020 Elsevier.

Table 6. Summary of Application of Nanomaterials to Control Formation Damage in Fields around the World67

field types of nanofluids or nanoparticles achievements refs

Alberta, Canada, six field tests calcium-based NPs (CNPs) at a
concentration of 0.5 wt %

reduction of mud loss of 22−34%, which could result in formation damage Borisov et
al.119

Chaheji oilfield in China nano-micron microspheres with
polymer gel composition

pore throat plugging was prevented in the porous system; it was possible to
control the expansion of clay minerals and oil to 4003 tons

Tiangyang et
al.120

Khabaz Oil Field in Northern
Iraq

1.2 g/L nanosilica (SiO2) and 1.2 g/
L iron dioxide (Fe2O3)
nanoparticles

Fe2O3 nanoparticles reduce fluid loss by up to 37.9%, while SiO2
nanoparticles reduce fluid loss by up to 48.3%

Shibeeb et
al.121

Myanmar onshore site boron-based nanomaterial (PQCB) reduction of torque of 36.36% was achieved and 41% of the permeability was
regained; 40% fluid loss was achieved

Krishnan et
al.122

Algyo Field, Hungary 1 g/L liquid nanosilica water cut reduction from 95−98% to 40% Lakatos et
al.123

Chevron’s fields in Texas and
Oklahoma areas, central
United States

coating materials of nanolaminated
alloy

prevented downhole corrosion and erosion as well as wear of downhole
equipment; reduced cost of operations and improved safety and longevity
of production

Paz et al.124

Figure 8. Description of retention process of nanomaterials in the
porous media.
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ogy is critical for greater success in oilfields. The effectiveness of
formation damage control, particularly in Colombia, prompted
more nanotechnology applications in other wells, including the
TN field. All wells that used nanotechnology showed a positive
trend and increased success in preventing formation damage.
The use of nanotechnology in drilling operations stabilizes
boreholes by reducing filtration loss, which can react with
formation fluid or rock, weakening the mechanical strength of
the near-wellbore region and creating wellbore instability. This
was demonstrated at the 1-UR-2-BA well in Brazil’s Reconcavo
Basin and an unknown field in Iran. Nanotechnology has been
employed for EOR in Chinese oilfields to repair damage to wells
caused by water injection such as scaling and clay mineral
response that caused formation damage by hydration expansion,
which restricted fluid flow to the producing wells, and
environmental pollution caused by completion fluid. This
research opens a promising future for the oil and gas industry
in terms of improving or enhancing formation damage control
using nanotechnology.
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■ NOMENCLATURE
API = American Petroleum Institute
EOR = enhanced oil recovery
HP/HT = high pressure/high temperature
bbl = barrel
IFT = interfacial tension
DVR = degree of viscosity reduction
DAX = diesel−alcohol−xylene
BOPD = barrels of oil production per day (removing organic
deposits)
STB/D = standard barrel per day
MCF = thousand cubic feet
MMscfd = million standard cubic feet per day
fMWCNT = functionalized multiwall carbon nanotube
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BPD = barrels per day
fNPG = functionalized nanoporous graphene
CNT = carbon nanotube
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