
Citation: Abbas, F.; Zhang, F.; Ismail,

M.; Khan, G.; Iqbal, J.; Alrefaei, A.F.;

Albeshr, M.F. Optimizing Machine

Learning Algorithms for Landslide

Susceptibility Mapping along the

Karakoram Highway, Gilgit Baltistan,

Pakistan: A Comparative Study of

Baseline, Bayesian, and Metaheuristic

Hyperparameter Optimization

Techniques. Sensors 2023, 23, 6843.

https://doi.org/10.3390/ s23156843

Academic Editors: Waheb Abdullah,

AbdulRahman Alsewari and

Mario De Oliveira

Received: 24 June 2023

Revised: 19 July 2023

Accepted: 25 July 2023

Published: 1 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Optimizing Machine Learning Algorithms for Landslide
Susceptibility Mapping along the Karakoram Highway, Gilgit
Baltistan, Pakistan: A Comparative Study of Baseline, Bayesian,
and Metaheuristic Hyperparameter Optimization Techniques
Farkhanda Abbas 1,*, Feng Zhang 1, Muhammad Ismail 2, Garee Khan 3, Javed Iqbal 4,
Abdulwahed Fahad Alrefaei 5 and Mohammed Fahad Albeshr 5

1 School of Computer Science, China University of Geosciences, Wuhan 430074, China;
fengzhang@cug.edu.cn

2 Department of Computer Science, Karakoram International University, Gilgit 15100, Pakistan;
muhammad.ismail@kiu.edu.pk

3 School of Geography, Karakoram International University, Gilgit 15100, Pakistan; garee.khan@kiu.edu.pk
4 School of Environmental Studies, China University of Geosciences, Wuhan 430074, China;

javediqbal@cug.edu.cn
5 Department of Zoology, College of Science, King Saud University, P.O. Box 2455,

Riyadh 11451, Saudi Arabia; afrefaei@ksu.edu.sa (A.F.A.); albeshr@ksu.edu.sa (M.F.A.)
* Correspondence: shamin0427@cug.edu.cn

Abstract: Algorithms formachine learning have found extensive use in numerous fields and applica‑
tions. One important aspect of effectively utilizing these algorithms is tuning the hyperparameters to
match the specific task at hand. The selection and configuration of hyperparameters directly impact
the performance of machine learning models. Achieving optimal hyperparameter settings often re‑
quires a deep understanding of the underlying models and the appropriate optimization techniques.
While there are many automatic optimization techniques available, each with its own advantages
and disadvantages, this article focuses on hyperparameter optimization for well‑known machine
learning models. It explores cutting‑edge optimization methods such as metaheuristic algorithms,
deep learning‑based optimization, Bayesian optimization, and quantum optimization, and our pa‑
per focused mainly on metaheuristic and Bayesian optimization techniques and provides guidance
on applying them to different machine learning algorithms. The article also presents real‑world
applications of hyperparameter optimization by conducting tests on spatial data collections for land‑
slide susceptibility mapping. Based on the experiment’s results, both Bayesian optimization and
metaheuristic algorithms showed promising performance compared to baseline algorithms. For in‑
stance, the metaheuristic algorithm boosted the random forest model’s overall accuracy by 5% and
3%, respectively, from baseline optimization methods GS and RS, and by 4% and 2% from baseline
optimization methods GA and PSO. Additionally, for models like KNN and SVM, Bayesian meth‑
ods with Gaussian processes had good results. When compared to the baseline algorithms RS and
GS, the accuracy of the KNN model was enhanced by BO‑TPE by 1% and 11%, respectively, and by
BO‑GP by 2% and 12%, respectively. For SVM, BO‑TPE outperformed GS and RS by 6% in terms
of performance, while BO‑GP improved results by 5%. The paper thoroughly discusses the reasons
behind the efficiency of these algorithms. By successfully identifying appropriate hyperparameter
configurations, this research paper aims to assist researchers, spatial data analysts, and industrial
users in developing machine learning models more effectively. The findings and insights provided
in this paper can contribute to enhancing the performance and applicability of machine learning
algorithms in various domains.

Keywords: machine learning; optimization techniques; geospatial data; accuracy; scalability; practi‑
cal implementation

Sensors 2023, 23, 6843. https://doi.org/10.3390/s23156843 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23156843
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3761-6656
https://doi.org/10.3390/s23156843
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23156843?type=check_update&version=2

Sensors 2023, 23, 6843 2 of 31

1. Introduction
Multiple fields of application, such as visual computing, language comprehension,

suggestion engines, consumer activity analysis, and marketing, have widely applied ma‑
chine learning (ML) algorithms on a massive scale [1]. This is owing to the reality that they
are versatile and proficient at solving data diagnosing issues. Different ML algorithms are
appropriate for diverse varieties of datasets and issues [2]. Overall, developing competent
ML models necessitates efficient fine‑tuning of hyperparameters based on the specifica‑
tions of the chosen model [3].

Several alternativesmust be examined to design and implement themost efficientML
model. Hyperparameter optimization is themethod of crafting an idealmodel architecture
using the optimal hyperparameter configuration. The process of refining hyperparameters
is deemed crucial in generating a thriving machine learning model, specifically for deep
neural networks and tree‑based ML models, which contain an abundance of hyperparam‑
eters. The hyperparameter optimization process differs across ML algorithms due to the
varied kinds of hyperparameters they employ, such as discrete, categorical, and continu‑
ous hyperparameters [4]. The non‑automatic traditional manual testing approach for hy‑
perparameter tuning is still widely used by advance degree research students, despite the
requirement for a thorough comprehension of ML algorithms and the importance of their
hyperparameter configurations [5]. Nevertheless, because of various factors, including
complex models, numerous hyperparameters, lengthy assessments, and non‑linear hyper‑
parameter relationships, manual tuning is not effective for several reasons. These factors
have spurred additional research on techniques for automatic hyperparameter optimiza‑
tion, known as “hyper‑parameter optimization” (HPO) [6].

The principal objective of hyperparameter optimization (HPO) is to streamline the hy‑
perparameter tuning system and empower users to effectively implement machine learn‑
ing models to address real‑world problems [3]. Upon completion of an HPO procedure,
one expects to obtain the optimal architecture for an ML model. Below are some notewor‑
thy justifications for utilizing HPO techniques with ML models:
1. As numerous ML programmers devote significant time to adjusting the hyperparam‑

eters, notably for huge datasets or intricate ML algorithms having numerous hyper‑
parameters, it decreases the degree of human labor required.

2. It boosts the efficacy of ML models. Numerous ML hyperparameters have diverse
optimal values to attain the best results on different datasets or problems.

3. It boosts the replicability of the frameworks and techniques. Several ML algorithms
may solely be justly assessed when the identical degree of hyperparameter adjust‑
ment is applied; consequently, utilizing the equivalent HPO approach to several ML
algorithms also assists in recognizing the ideal ML model for a specific problem.
To identify the most appropriate hyperparameters, selecting the appropriate opti‑

mization technique is necessary. As a considerable number of HPO problems are complex
nonlinear optimization challenges, theymight not lead to a global optimum but rather to a
local one. Therefore, standard optimization methods are possibly inappropriate for HPO
issues [7]. For continuous hyperparameters, the gradients can be computed by means of
gradient descent‑based techniques, which are a typical variant of conventional optimiza‑
tion algorithms [8]. As an example, a gradient‑basedmethodmay be employed to enhance
the learning rate in a neural network.

Numerous other enhancement methods, like decision‑theoretic techniques,
multi‑fidelity optimization methods and Bayesian optimization models, and metaheuris‑
tic algorithms, are better suited for HPO challenges in contrast to traditional optimization
techniques like gradient descent [4]. Several of these algorithms can precisely
determine conditional, categorical, and discrete hyperparameters as well as
continuous hyperparameters.

The methods based on decision theory are founded on the idea of constructing a
search space for hyperparameters, identifying the hyperparameter combinations within
the search space, and choosing the combination of hyperparameters with the highest per‑

Sensors 2023, 23, 6843 3 of 31

formance. A decision‑theoretic strategy called grid search (GS) [9] involves scanning
through a predetermined range of hyperparameter values. Random search (RS) [10], an‑
other decision‑theoretic approach, is used when execution time and resources are limited,
and it randomly selects hyperparameter combinations from the search space. In GS and
RS, each hyperparameter configuration is verified individually.

Bayesian optimization (BO) [11] models, in contrast to GS and RS, deduce the sub‑
sequent hyperparameter value derived from the outcomes of the tried hyperparameter
values, avoiding several unnecessary assessments. Consequently, BO can recognize the
optimal hyperparameter fusion with fewer rounds of testing than GS and RS. BO can em‑
ploy multiple models like the tree‑structured Parzen estimators (TPEs), the random forest
(RF), and the Gaussian process (GP) [12]. As a surrogate function tomodel the distribution
of the objective function for various scenarios, BO‑RF and BO‑TPE [12] can preserve the de‑
pendency of factors. Conditional hyperparameters, such as the kernel type and A support
vector machine’s (SVM) punishment parameter C, can be optimized using them. Paral‑
lelizing BOmodels is demanding because they function sequentially to strike a balance be‑
tween discovering unexplored areas and exploiting regions that have already been tested.

Training an ML model often demands extensive labor and resources. To address
resource constraints, multi‑fidelity optimization algorithms, particularly those based on
bandits, are widely used. A prevalent bandit‑based optimization method called Hyper‑
band [13] is an advanced version of RS. It produces downsized datasets and assigns an
equal budget to every cluster of hyperparameters. To save time and resources, Hyperband
discards inferior hyperparameter configurations in each cycle.

HPO problems are classified as intricate, non‑linear, and extensive search space opti‑
mization problems, which are tackled utilizing metaheuristic algorithms [14]. The two
most commonly employed metaheuristic algorithms for HPO are Particle Swarm Opti‑
mization (PSO) and Genetic Algorithm (GA) [15,16]. In each iteration, genetic algorithms
determine the most optimal hyperparameter fusion and transmit those combinations to
the ensuing iteration. In each cycle, every particle in PSO algorithms interacts with other
elements to identify and revise the present global peak until it reaches the ultimate peak.
Metaheuristics can efficiently explore the area and discover optimal or almost optimal so‑
lutions. Because of their superior efficiency, they are highly appropriate forHPOproblems
with extensive arrangement spaces.

Despite the fact that HPO algorithms are immensely useful in refining the effective‑
ness of ML models by adjusting the hyperparameters, other factors, such as their compu‑
tational intricacy, still have a lot of room for progress. However, as different HPO models
have distinct advantages and limitations that make them suitable for addressing specific
ML model types and issues, it is vital to take them all into account when selecting an opti‑
mization algorithm. This academic article provides the subsequent contributions:
1. It encompasses three well‑known machine learning algorithms (SVM, RF, and KNN)

and their fundamental hyperparameters.
2. It assesses conventional HPO methodologies, their pros and cons, to facilitate their

application to different ML models by selecting the fitting algorithm in pragmatic
circumstances.

3. It investigates the impact of HPO techniques on the comprehensive precision of land‑
slide susceptibility mapping.

4. It contrasts the increase in precision from the starting point and predetermined
parameters to fine‑tuned parameters and their impact on three renowned machine
learning methods.
This overview article provides a comprehensive analysis of optimization approaches

used forML hyperparameter adjustment issues. We specifically focus on the application of
multiple optimization approaches to enhance model accuracy for landslide susceptibility
mapping. By optimizing the hyperparameters of these models, their performance can be
significantly improved. Fine‑tuning the hyperparameters allows the models to better cap‑
ture the complex relationships between the input factors and landslide occurrences, result‑

Sensors 2023, 23, 6843 4 of 31

ing in more accurate and reliable predictions [17]. Landslide susceptibility mapping often
covers large areas and requires the processing of extensive geospatial datasets. Optimiz‑
ing the hyperparameters helps in achieving efficient resource allocation, such as computa‑
tional power and memory usage, which is crucial for handling such data‑intensive tasks.
Efficient models can handle large datasets and expedite the mapping process, making it
more practical for real‑time or near‑real‑time applications [18,19]. Landslide susceptibility
can vary across different geographic locations due to variations in geological, topograph‑
ical, and environmental conditions. Optimizing the hyperparameters of the ML models
ensures that the models can adapt and generalize well to different locations. This adapt‑
ability allows the models to be applied to new areas without extensive manual re‑tuning
of the hyperparameters, making the mapping process more scalable and efficient [20,21].
Our discussion encompasses the essential hyperparameters ofwell‑knownMLmodels that
require optimization, and we delve into the fundamental principles of mathematical opti‑
mization and hyperparameter optimization. Furthermore, we examine various advanced
optimization techniques proposed for addressingHPO problems. Through evaluation, we
assess the effectiveness of differentHPO techniques and their suitability forML algorithms
such as SVM, KNN, and RF.

To demonstrate the practical implications, we present the outcomes of applying vari‑
ous HPO techniques to three machine learning algorithms (SVM, KNN, and RF). We thor‑
oughly analyze these results and also provide experimental findings from the application
of HPO on a landslide dataset. This allows us to compare different HPO methods and ex‑
plore their efficacy in realistic scenarios. In conclusion, this overview article provides valu‑
able insights into the optimization of hyperparameters in machine learning, offering guid‑
ance for researchers and practitioners in selecting appropriate optimization techniques and
effectively applying them to enhance the performance of ML models in various applica‑
tions. The article tries to highlight the significance of hyperparameter tuning in machine
learning models and the impact it has on model performance. It emphasizes the need for
efficient HPO techniques and explores various optimization methods suitable for differ‑
ent types of hyperparameters. The information categorizes machine learning algorithms
based on the characteristics of their hyperparameters, such as discrete, continuous, con‑
ditional, and categorical. It demonstrates how understanding these categories can guide
the selection of appropriate HPO methods for optimizing hyperparameters in different
ML models.

Study Area
A region of roughly 332 km of the KKH expressway was analyzed. Conversely, the

entire expanse of the route amounts to 1300 km, joining different provinces of Pakistan,
like Punjab, Khyber Pakhtunkhwa, and Gilgit Baltistan with Xinjiang, an independent ter‑
ritory of China. The analysis was conducted in the north of Pakistan in the Gilgit, Hunza,
and Nagar districts. There are various settlements along the KKH from Juglot, situated
between 36◦12′147′′ N latitude and 74◦18′772′′ E longitude, moving through Jutal, Rahim‑
bad, Aliabad, and culminating at Khunjarab Top, the China–Pakistan border crossing. The
locality is positioned along the Indus River, Hunza River, and Gilgit River [22]. The eval‑
uated zone measures 332 km in length and 10 km in radius, covering 3320 km2 along the
KKH. The majority of the area is hilly, with the highest peak reaching 5370 m and the
lowest elevation being 1210 m. Snowslides, mudslides, and tremors are frequent natural
hazards in this region [23]. A rockslide or rubble fall set off by precipitation or seismic
movements is the most prevalent type of landslide in our evaluation domain (Figure 1).

Sensors 2023, 23, 6843 5 of 31
Sensors 2023, 23, x FOR PEER REVIEW 5 of 32

Figure 1. Study area for our experiment.

2. Methodology
As a starting point, the landslide dataset along KKH, which is a pure classification

problem, serves as the gauge dataset for the examination of the HPO method on the data
analysis issue.

The subsequent step involves configuring the ML models with their objective func-
tion. Based on the characteristics of their hyperparameters, all popular ML models are
categorized into five groups, explained in Section 3. The three most common examples of
these ML categories are “one categorical hyper-parameter”, “a few conditional hyper-pa-
rameters”, and “a wide hyper-parameter configuration space with multiple categories of
hyper-parameters” [6,24–26]. RF, KNN, and SVM are chosen as the three ML algorithms
to be adjusted since their hyperparameter types correspond to the three typical HPO sce-
narios. Each sample’s closest neighbor in terms of KNN is a crucial hyperparameter; the
penalty parameter and the kernel type C are a few conditional hyperparameters in SVM.
As described in Section 6, RF has many kinds of hyperparameters. Additionally, KNN,
SVM, and RF can solve classification problems [27–31].

The evaluation metric and evaluation technique are determined in the subsequent
step. The HPO methods employed in our experiment on the chosen dataset are evaluated
using 3-fold cross-validation. In our experiments, the two most common performance
measurements are utilized. The accuracy, which is the ratio of precisely labeled data, is
used as the classifier performance parameter for classification models, and the model ef-
ficiency is also calculated using the computational time (CT), which is the overall time
required to complete an HPO procedure with threefold cross-validation [32,33].

Subsequently, a number of criteria must be met to accurately compare various opti-
mization methods and frameworks. In order to compare different HPO techniques, we
first utilize the same hyperparameter configuration space. For each evaluation of an opti-
mization approach, the single hyperparameter for KNN, ‘n neighbors’, is set to be in a
similar span of 1 to 20. For each type of problem, the hyperparameters for SVM and RF
models for classification problems are also set to be in the same configuration space. Table
1 displays the characteristics of the setup space for ML models.

Figure 1. Study area for our experiment.

2. Methodology
As a starting point, the landslide dataset along KKH, which is a pure classification

problem, serves as the gauge dataset for the examination of the HPO method on the data
analysis issue.

The subsequent step involves configuring the ML models with their objective func‑
tion. Based on the characteristics of their hyperparameters, all popular ML models are
categorized into five groups, explained in Section 3. The three most common examples
of these ML categories are “one categorical hyper‑parameter”, “a few conditional hyper‑
parameters”, and “a wide hyper‑parameter configuration space with multiple categories
of hyper‑parameters” [6,24–26]. RF, KNN, and SVMare chosen as the threeML algorithms
to be adjusted since their hyperparameter types correspond to the three typical HPO sce‑
narios. Each sample’s closest neighbor in terms of KNN is a crucial hyperparameter; the
penalty parameter and the kernel type C are a few conditional hyperparameters in SVM.
As described in Section 6, RF has many kinds of hyperparameters. Additionally, KNN,
SVM, and RF can solve classification problems [27–31].

The evaluation metric and evaluation technique are determined in the subsequent
step. The HPO methods employed in our experiment on the chosen dataset are evaluated
using 3‑fold cross‑validation. In our experiments, the twomost commonperformancemea‑
surements are utilized. The accuracy, which is the ratio of precisely labeled data, is used
as the classifier performance parameter for classification models, and the model efficiency
is also calculated using the computational time (CT), which is the overall time required to
complete an HPO procedure with threefold cross‑validation [32,33].

Subsequently, a number of criteria must be met to accurately compare various opti‑
mizationmethods and frameworks. In order to compare differentHPO techniques, we first
utilize the same hyperparameter configuration space. For each evaluation of an optimiza‑
tion approach, the single hyperparameter for KNN, ‘n neighbors’, is set to be in a similar
span of 1 to 20. For each type of problem, the hyperparameters for SVM and RFmodels for
classification problems are also set to be in the same configuration space. Table 1 displays
the characteristics of the setup space for ML models.

Sensors 2023, 23, 6843 6 of 31

Table 1. Hyperparameters of evaluated ML models’ configuration space.

MLModel Hyperparameter Type Search Space

RF Classifier

n_estimators Discrete [10, 100]
max_depth Discrete [5, 50]

min_samples_split Discrete [2, 11]
min_samples_leaf Discrete [1, 11]

criterion Categorical [’gini’, ’entropy’]
max_features Discrete [1, 64]

SVM Classifier
C Continuous [0.1, 50]

Kernel Categorical [’linear’, ’poly’, ’rbf’, ’sigmoid’]
KNN Classifier n_neighbors Discrete [1, 20]

Drawing from the notions presented in Section 3 and manual experimentation, the
selected hyperparameters and their exploration domain are identified. Table 1 likewise
details the hyperparameter categories for each ML technique.

Section 4 introduces six different hyperparameter optimization (HPO) approaches.
To evaluate their performance, we chose six representative HPO methods discussed in
Section 4, namelyGrid Search (GS), GeneticAlgorithm (GA), RandomSearch (RS), Bayesian
OptimizationwithGaussianProcess (BO‑GP), BayesianOptimizationwith Tree‑structured
Parzen Estimator (BO‑TPE), and Particle Swarm Optimization (PSO). To ensure unbiased
empirical conditions for eachHPO approach, theHPO experiments were carried out based
on the procedures outlined in Section 2. Python 3.5 was used for all experiments, which
were carried out on a systemwith a Core i7 processor and 32GB of RAM. To investigate the
associated machine learning and HPOmethods, a variety of open‑source Python modules
and frameworks were used, encompassing sklearn [34], Skopt [35] Hyperopt [36], Optu‑
nity [37], Hyperband [13], BOHB [38], and TPOT [39]. The Figure 2 explain the methodol‑
ogy used for hyperparameter optimization for landslide susceptibility mapping.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 32

Drawing from the notions presented in Section 3 and manual experimentation, the
selected hyperparameters and their exploration domain are identified. Table 1 likewise
details the hyperparameter categories for each ML technique.

Table 1. Hyperparameters of evaluated ML models’ configuration space.

ML Model Hyperparameter Type Search Space

RF Classifier

n_estimators Discrete [10, 100]
max_depth Discrete [5, 50]

min_samples_split Discrete [2, 11]
min_samples_leaf Discrete [1, 11]

criterion Categorical [’gini’, ’entropy’]
max_features Discrete [1, 64]

SVM Classifier
C Continuous [0.1, 50]

Kernel Categorical [’linear’, ’poly’, ’rbf’, ’sigmoid’]
KNN Classifier n_neighbors Discrete [1, 20]

Section 4 introduces six different hyperparameter optimization (HPO) approaches.
To evaluate their performance, we chose six representative HPO methods discussed in
Section 4, namely Grid Search (GS), Genetic Algorithm (GA), Random Search (RS), Bayes-
ian Optimization with Gaussian Process (BO-GP), Bayesian Optimization with Tree-struc-
tured Parzen Estimator (BO-TPE), and Particle Swarm Optimization (PSO). To ensure un-
biased empirical conditions for each HPO approach, the HPO experiments were carried
out based on the procedures outlined in Section 2. Python 3.5 was used for all experiments,
which were carried out on a system with a Core i7 processor and 32 GB of RAM. To in-
vestigate the associated machine learning and HPO methods, a variety of open-source
Python modules and frameworks were used, encompassing sklearn [34], Skopt [35] Hy-
peropt [36], Optunity [37], Hyperband [13], BOHB [38], and TPOT [39]. The Figure 2 ex-
plain the methodology used for hyperparameter optimization for landslide susceptibility
mapping.

Figure 2. Methodology for hyperparameter selection for different ML algorithms for landslide sus-
ceptibility mapping.
Figure 2. Methodology for hyperparameter selection for different ML algorithms for landslide sus‑
ceptibility mapping.

Sensors 2023, 23, 6843 7 of 31

Landslide Conditioning Factors
In our research area (Figure 1), landslides are influenced by various factors that can be

classified into four categories: topological, hydrological, geological, and anthropological.
Topological factors are related to the terrain characteristics and include slope and as‑

pect. Slope angle is considered the primary variable for slope stability, while aspect‑related
variables like exposure to sunlight, winds, rainfall, soil moisture, and cracks can influence
the frequency of landslides.

To assess slope and aspect, we utilized the SRTM DEM with a 30 m resolution. The
slope angle map was divided into five classes based on the source [40], and the terrain
aspect was divided into nine classes to study its effect on landslide occurrence.

Geological factors are crucial in understanding landslide susceptibility, since different
geological units have varying susceptibilities to geomorphological processes [41]. For this
investigation, we considered geology and closeness to faults. We used the geological map
of Pakistan to digitize fault lines and identify thirteen geological formations (classes) listed
in Table 2.

Table 2. Summary of the landslide conditioning variable used in our case study.

Factors Classes Class Percentage % Landslide Percentage % Reclassification

Slope (◦)

Very Gentle Slope < 5◦ 17.36 21.11

Geometrical interval
reclassification

Gentle Slope 5–15◦ 20.87 28.37
Moderately Steep
Slope 15–30◦ 26.64 37.89

Steep Slope 30–45◦ 24.40 10.90
Escarpments > 45◦ 10.71 1.73

Aspect

Flat (−1) 22.86 7.04

Remained unmodified
(as in source data)

North (0–22) 21.47 7.03
Northeast (22–67) 14.85 5.00
East (67–112) 8.00 11.86

Southeast (112–157) 5.22 14.3
South (157–202) 2.84 14.40

Southwest (202–247) 6.46 12.41
West (247–292) 7.19 16.03

Northwest (292–337) 11.07 11.96

Land Cover

Dense Conifer 0.38 12.73
Sparse Conifer 0.25 12.80

Broadleaved, Conifer 1.52 10.86
Grasses/Shrubs 25.54 10.3
Agriculture Land 5.78 10.40

Soil/Rocks 56.55 14.51
Snow/Glacier 8.89 12.03

Water 1.06 16.96

Geology

Cretaceous sandstone 13.70 6.38
Devonian–

Carboniferous 12.34 5.80
Chalt Group 1.43 8.43

Hunza plutonic unit 4.74 10.74
Paragneisses 11.38 11.34
Yasin group 10.80 10.70

Gilgit complex 5.80 9.58
Trondhjemite 15.65 9.32

Permian massive
limestone 6.51 6.61

Permanent ice 12.61 3.51
Quaternary alluvium 0.32 8.65
Triassic massive
limestone and
dolomite

1.58 7.80

snow 3.08 2.00

Sensors 2023, 23, 6843 8 of 31

Table 2. Cont.

Factors Classes Class Percentage % Landslide Percentage % Reclassification

Proximity to Stream
(meter)

0–100 m 19.37 18.52

Geometrical interval
reclassification

100–200 10.26 21.63
200–300 10.78 25.16
300–400 13.95 26.12
400–500 18.69 6.23
>500 26.92 2.34

Proximity to Road
(meter)

0–100 m 81.08 25.70
100–200 10.34 25.19
200–300 6.72 27.09
300–400 1.25 12.02
400–500 0.60 10.00

Proximity to Fault
(meter)

000–1000 m 29.76 27.30
2000–3000 36.25 37.40
>3000 34.15 35.03

Hydrological parameters, namely precipitation and proximity to streams, were also
taken into account, since rainfall and water erosion are frequent triggers for landslides in
this study location.

Anthropological factors encompass land use and distance to highways. We produced
a land cover map using Sentinel 2 images and supervised classification, dividing the land
cover into eight types to analyze its impact on landslide movement (Table 2). The accuracy
of the land cover map was 87%, validated through a confusion matrix of LULC classifica‑
tion and field data.

Land use plays a significant role in landslide incidence, where barren slopes are more
susceptible, while vegetative areas can help mitigate the occurrence of landslides [42,43].
Additionally, road development and construction activity can influence slope stability.
The road network map was created through digitization from the Sentinel 2 image.

In summary, our analysis considered eight factors for this case study: slope, aspect,
land cover, geology, precipitation, distance to faults, distance to streams, and distance to
roads, as depicted in Figure 3. These factors collectively contribute to the understanding
of landslide occurrence in our research area (Table 2).

Sensors 2023, 23, x FOR PEER REVIEW 9 of 32

Figure 3. (a) Slope; (b) precipitation; (c) land cover; (d) aspect; (e) geology; (f) proximity to streams;
(g) proximity to faults; (h) proximity to road.

Figure 3. Cont.

Sensors 2023, 23, 6843 9 of 31

Sensors 2023, 23, x FOR PEER REVIEW 9 of 32

Figure 3. (a) Slope; (b) precipitation; (c) land cover; (d) aspect; (e) geology; (f) proximity to streams;
(g) proximity to faults; (h) proximity to road.
Figure 3. (a) Slope; (b) precipitation; (c) land cover; (d) aspect; (e) geology; (f) proximity to streams;
(g) proximity to faults; (h) proximity to road.

3. Hyperparameters
Hyperparameter configuration characteristics can be used to categorize ML

algorithms. Based on these features, suitable optimization methods can be selected to op‑
timize the hyperparameters.

3.1. Discrete Hyperparameter
A discrete hyperparameter typically needs to be modified for some ML algorithms,

such as specific neighbor‑based, clustering, and dimensionality reduction algorithms. The
primary hyperparameter for KNN is the number of considered neighbors, or k. The num‑
ber of clusters is the most important hyperparameter for k‑means, hierarchical clustering,
and EM. Similar to this, the fundamental hyperparameter for dimensionality reduction
techniques like PCAandLDA is “n components,” or the quantity of features to be retrieved.
The best option under these circumstances is Bayesian optimization, and the three surro‑
gates might be evaluated to see which is most effective. Another excellent option is Hy‑
perband, which may have a quick execution time because of its parallelization capabilities.
In some circumstances, users may want to fine‑tune the ML model by taking into account

Sensors 2023, 23, 6843 10 of 31

other less significant hyperparameters, such as the distance metric of KNN and the SVD
solver type of PCA; in these circumstances, BO‑TPE, GA, or PSO could be used [9,25].

3.2. Continuous Hyperparameter
Several naive Bayes algorithms, such as multinomial NB, Bernoulli NB, and comple‑

ment NB, as well as several ridge and lasso methods for linear models, typically only have
one crucial continuous hyperparameter that needs to be set. The continuous hyperparam‑
eter for the ridge and lasso algorithms is “alpha,” or the regularization strength. The key
hyperparameter, commonly known as “alpha,” in the three NB algorithms stated above
really refers to the additive (Laplace/Lidstone) smoothing value. The best option among
these ML algorithms is BO‑GP since it excels at optimizing a constrained set of continuous
hyperparameters. Although gradient‑based algorithms are also possible, they may only
be able to find local optimum locations, making them less efficient than BO‑GP [9,25,44].

3.3. Conditional Hyperparameters
It is apparent that manyML algorithms, including SVM, LR, and DBSCAN, have con‑

ditional hyperparameters. ‘penalty’, ‘C’, and the solver type are the three correlated hy‑
perparameters of LR. Similar to DBSCAN, ‘eps’ and ‘min samples’ need to be tweaked
together. SVM is more complicated because, after choosing a new kernel type, a unique
set of conditional hyperparameters must be calibrated. As a result, some HPO techniques,
such as GS, RS, BO‑GP, and Hyperband, which cannot successfully optimize conditional
hyperparameters, are not appropriate for ML models with conditional hyperparameters.
If the correlations between the hyperparameters are known in advance, BO‑TPE is the ideal
option for these ML approaches. SMAC is an additional option that works well for fine‑
tuning conditional hyperparameters. You can also utilize GA and PSO [26,45].

3.4. Categorical Hyperparameters
Given that their primary hyperparameter is a categorical hyperparameter, ensemble

learning algorithms tend to use this category of hyperparameter. The categorical hyperpa‑
rameter for bagging and AdaBoost is “base estimator,” which is configured to be a single
ML model. ‘Estimators’ is the term used for voting and denotes a list of ML single mod‑
els that will be integrated. ‘Voting’ is a further categorical hyperparameter of the voting
method that is used to select between a hard and soft voting approach. To evaluatewhether
these categorical hyperparameters are a viable base for machine learning, GS would be ad‑
equate. However, other hyperparameters, such as ‘n estimators’, ‘max samples’, and ‘max
features’ in bagging, as well as ‘n estimators’ and ‘learning rate’ in AdaBoost, frequently
need to be taken into account; as a result, BO algorithms would be a better option to opti‑
mize these continuous or discrete hyperparameters. In conclusion, the most appropriate
HPO method should be chosen based on the characteristics of its hyperparameters when
adjusting anMLmodel to obtain high model performance and low computing costs [9,46].

3.5. Big Hyperparameter Configuration Space with Different Types of Hyperparameters
Since they have numerous hyperparameters of diverse, different types, tree‑based al‑

gorithms in ML, such as DT, RF, ET, and XGBoost, as well as DL algorithms, such as DNN,
CNN, and RNN, are the most difficult to fine‑tune. PSO is the ideal option for these ML
models since it allows for parallel executions to increase efficiency, especially for DL mod‑
els that frequently require a significant amount of training time. Other techniques like GA,
BO‑TPE, and SMAC can also be utilized; however, they might take longer than PSO to
complete because it is challenging to parallelize these approaches [46].

4. Hyperparameter Optimization Techniques
4.1. Babysitting

A primary method for adjusting hyperparameters is babysitting, often referred to as
“Trial and Error” or graduate student descent (GSD) [5]. Pupils and intellectuals equally

Sensors 2023, 23, 6843 11 of 31

frequently utilize this completely hands‑on adjustment technique. The procedure is sim‑
ple: following the creation of a machine learning (ML) prototype, the student experiments
with a range of potential hyperparameter values founded on knowledge, speculation, or
examination of outcomes from prior evaluations. This procedure is reiterated until the stu‑
dent exhausts the time limit (often meeting a deadline) or is content with the outcomes.
Consequently, this technique necessitates sufficient background knowledge and expertise
to quickly find the optimal hyperparameter values. Because of various reasons, including
numerous hyperparameters, intricatemodels, time‑consuming prototype evaluations, and
nonlinear hyperparameter interactions, manual adjustment is often unfeasible [6]. These
concerns prompted further research into methods for self‑regulating hyperparameter op‑
timization [47].

4.2. Grid Search
A frequently utilizedmethod for exploring the hyperparameter configuration space is

grid search (GS) [2]. GS can be seen as a brute force approach that analyzes every feasible
permutation of hyperparameters that is given to the matrix of configurations. When a
user‑defined bounded range of values is utilized, GS assesses the cross‑product of those
values [7].

GS is incapable of completely employing the fruitful zones alone. To discover the
global maximum, the following procedure needs to be executed manually [2]:
1. Commence with a wide exploration region and sizable stride length.
2. Utilizing prior effective hyperparameter settings, diminish the exploration area and

stride length.
3. Persist in repeating step 2 until the optimum outcome is achieved.

Grid search (GS) is easy to parallelize and deploy. Nonetheless, its primary drawback
is that it becomes inefficient for hyperparameter configuration spaces with a high number
of dimensions since it necessitates exponentially more evaluations as the number of hy‑
perparameters increases. This exponential increase is known as the “curse of dimension‑
ality” [37]. If GS involves k variables, and each one has n unique values, then the compu‑
tational intricacy of GS grows exponentially at a rate of O

(
nk
)
[16]. Consequently, GS can

only serve as a practical HPO method when the hyperparameter search space is limited.

4.3. Random Search
To surmount some of the limitations of grid search (GS), random search (RS) was

introduced in [10]. RS, similar to GS, selects a specific sample quantity from the search
space within upper and lower thresholds as potential hyperparameter values at random,
trains these possibilities, and iterates the process until the cost limit is depleted. The RS
hypothesis suggests that the global optima, or at least their close values, can be uncovered
if the configuration space is sufficiently extensive. In spite of possessing a limited budget,
RS is capable of exploring more terrain than GS [10].

Due to its autonomous nature, one of the fundamental benefits of Random Search
(RS) is that it can be easily parallelized and resource allocation can be managed efficiently.
Unlike Grid Search (GS), RS chooses a fixed number of parameter variations from the pro‑
vided distribution, thereby increasing the operational efficiency by reducing the likelihood
of idle periods on a small, insignificant search space.

The computational intricacy of Random Search (RS) is O(n), as the total number of
assessments in RS is predetermined to be n prior to the optimization commencings [48].
Additionally, with enough h resources, RS can determine the global optimum or the nearly
optimal solution [49].

Random search (RS) is more efficient than grid search (GS) for extensive search areas.
However, because it disregards previously successful regions, there are still a significant
number of unnecessary function evaluations [2].

Sensors 2023, 23, 6843 12 of 31

Consequently, both RS and GS waste substantial amounts of time evaluating areas
of the search space that perform poorly, as each iteration’s review is independent of prior
evaluations. Other optimization methods, such as Bayesian optimization, which rely on
information from past evaluations to guide subsequent evaluations, can overcome this is‑
sue [11].

Bayesian Optimization
Iterative Bayesian optimization (BO) is a common approach to solving HPO prob‑

lems [50]. Contrasting GS and RS, BO uses past results to determine future evaluation
points. BO employs two essential elements, a surrogate model and an acquisition func‑
tion, to define the next hyperparameter configuration [51].

All sample points are aimed at corresponding to the surrogate model for the objective
function. The optimization function utilizes the stochastic surrogate model’s prediction
distribution to weigh the compromise between searching and manipulation and identify
which points to use. Exploitation involves sampling in present areas where, according to
the posterior distribution, the global optimum is most likely to occur, whereas exploration
entails sampling in uncharted territory. BO models integrate the exploration and exploita‑
tion procedures to determine the best places and avoid missing improved configurations
in uncharted territory [52].

The following are the essential stages of Bayesian optimization (BO) [11]:
1. Create a surrogate probabilistic model of the target function.
2. Find the best hyperparameter values on the surrogate model.
3. Employ these hyperparameter values to the existing target function for evaluation.
4. Add the most recent observations to the surrogate model.
5. Repeat steps 2 through 4 until the allotted number of iterative cycles is reached.

Therefore, BO operates by revising the surrogate model after each assessment of the
target function. Because it can identify the optimal hyperparameter combinations by eval‑
uating the results of prior tests and because operating a surrogate model is commonly
much less expensive than running the actual target function, BO is more effective than
grid search (GS) and random search (RS).

Although Bayesian optimization models are sequential techniques that are hard to
parallelize, they can frequently identify nearly optimal hyperparameter combinations in a
limited number of iterations [4].

Tree Parzen estimator (TPE), Gaussian process (GP), and random forest (RF) are com‑
monly used surrogate models for BO. Derived from their surrogate models, the three pri‑
mary categories of BO algorithms are BO‑GP, BO‑RF, and BO‑TPE. In our study on land‑
slide data, we used BO‑GP and BO‑TPE. Sequential model‑based algorithm configuration
(SMAC) is another name for BO‑RF [53].

4.4. BO‑GP
The Gaussian process (GP) is a widely used alternative model for objective function

modeling in Bayesian optimization (BO) [50]. The predictions follow a normal distribution
when the function f is a realization of a GP with a mean µ and a covariance σ2 [54]:

p(y|x, D) = N
(

y
∣∣∣µ̂, α̂2

)
, (1)

Let D denote the hyperparameter configuration space, where y = f (x) represents the
outcome analysis for every hyperparameter x. Subsequent evaluation points are chosen
from the precise bounds created by the BO‑GP model after making predictions. The sam‑
ple records are revised with every new data point tested, and the BO‑GP model is recon‑
structed using the revised data. This process is iterated until completion.

BO‑GP’s application to a dataset of size n has a time and space complexity of O
(
n3)

andO(n2), respectively [26]. The limitation of the number of instances to cubic complexity

Sensors 2023, 23, 6843 13 of 31

hinders its ability to be parallelized, which is amajor disadvantage of BO‑GP [3]. Moreover,
it is mainly utilized for optimizing continuous variables.

4.5. BO‑TPE
An alternative common surrogate model for Bayesian optimization (BO) is the TPE, a

Parzen estimator based on a tree structure [9]. Instead of using the predictive distribution
employed in BOGP [3], BO‑TPE constructs two solidity functions, namely l(x) and g(x),
to act as generative models for the entire variable range. The recorded results are divided
into favorable and unfavorable outcomes based on a pre‑defined percentile value y∗, and
TPE is applied by utilizing simple Parzen windows [9] to model each group of results:

p(x|y, D) =

{
l(x), i f y < y∗

g(x), i f y > y∗
(2)

The proportion between the two solidity functions is subsequently used to establish
the fresh setups for assessment, mirroring the predicted enhancement in the acquisition
function. The provided contingent interdependencies are conserved as the Parzen esti‑
mators are organized in a hierarchical format. Consequently, TPE inherently facilitates
conditional hyperparameters [54]. BO‑TPE has a lower time complexity of O(nlogn) [3]
compared to BO‑GP.

BO techniques work well for many HPO issues, regardless of how uncertain, non‑
linear, or non‑smooth the objective function f is. If BO models do not strike a balance
between exploitation and exploration, they may only reach a local rather than a global
optimum. RS is not limited by this disadvantage as it lacks a specific focus area. Addition‑
ally, BO approaches are difficult to parallelize as their intermediate results are interdepen‑
dent [4].

4.6. Metaheuristic Algorithms
A category of algorithms recognized as metaheuristic algorithms [55] are often uti‑

lized for optimization problems. They are mainly stimulated by biological concepts. Meta‑
heuristics can effectively address optimization problems that are not convex, not smooth,
or not continuous, divergent from several traditional optimization methods. One of the
primary classifications of metaheuristic algorithms is population‑based optimization al‑
gorithms (POAs), which also involve evolutionary algorithms, genetic algorithms (GAs),
particle swarm optimization (PSO), and evolutionary strategies. Each generation in a POA
commences with the formation and modernization of a community; afterward, each per‑
son is evaluated until the global best is found [11]. The methods employed to form and
choose populations are the fundamental differences among diverse POAs [14]. Since a
given population of N individuals can be assessed on at most N threads or processors con‑
currently, POAs are effortless to parallelize [49]. The two most commonly utilized POAs
for HPO problems are particle swarm optimization and genetic algorithms.

4.7. Genetic Algorithm (GA)
Among the most well‑liked metaheuristic algorithms, the genetic algorithm (GA) [15]

is grounded on the evolutionary concept that individuals with the best survival and en‑
vironmental adaptability are more prone to endure and transfer those abilities to future
generations. The ensuing generation might consist of both superior and inferior individ‑
uals, and they will also inherit the characteristics of their forebears. Superior individuals
will have a higher chance of surviving and producing competent progeny, while the infe‑
rior individuals will gradually vanish from the population. The individual who is most
adaptable will be acknowledged as the global optimum after several successions [56].

Each chromosome or individual functions as a hyperparameter when utilizing GA
in HPO problems, and its decimal value functions as the hyperparameter’s genuine input
value in each assessment. Each chromosome has a variety of genes, which are portrayed
by binary digits. The genes on this precise chromosome are consequently subjected to

Sensors 2023, 23, 6843 14 of 31

crossover and mutation procedures. The population consists of of all values inside the
initialized chromosome/parameter ranges, and the fitness function specifies the metrics
used to evaluate the parameters [56].

As the optimal parameter values are often missing from the randomly initialized pa‑
rameter values, it is crucial to performmultiple actions on the well‑adapted chromosomes,
involving crossover, selection, and mutation methods, to discover the best values [15].
Chromosome picking is performed by selecting those with high values in the fitness func‑
tion. The chromosomes that have high fitness function values are predisposed to be inher‑
ited by the next generation, so they create new chromosomes with the superior attributes
of their parents, in order to maintain a constant population size. Chromosome selection
allows positive traits from one generation to be passed on to the following generations.
Crossover is utilized to produce new chromosomes by transferring a segment of genes
from various chromosomes. Mutation techniques can also be utilized to produce new chro‑
mosomes by randomly altering one or more chromosome genes. Techniques such as mu‑
tation and crossover promote diverse traits in later generations and decrease the chances
of missing desirable traits [3].

The following are the primary GA procedures [55]:
1. Commence by randomly initializing the genes, chromosomes, and population that

depict the whole exploration space, as well as the hyperparameters and their corre‑
sponding values.

2. Identify the fitness function, which embodies the main objective of anMLmodel, and
employ the findings to evaluate each member of the current generation.

3. Use chromosome methodologies such as crossover, mutation, and selection to gener‑
ate a new generation consisting of the subsequent hyperparameter values that will be
evaluated.

4. Continue executing steps 2 and 3 until the termination criteria are met.
5. Conclude the process and output the optimal hyperparameter configuration.

Amidst the previously mentioned procedures, the population initiation phase is crit‑
ical for both PSO and GA because it offers an initial approximation of the ideal values.
A proficient population initiation approach can significantly accelerate convergence and
enhance the effectiveness of POAs, despite the fact that the initiated values will be progres‑
sively enhanced throughout the optimization process. An appropriate starting population
of hyperparameters ought not to be restricted to an unfavorable area of the exploration
space and instead should include individuals in proximity to global optima by consider‑
ing the encouraging domains [57].

In GA, random initiation, which merely generates the initial population with arbi‑
trary values within the specified exploration space, is frequently utilized to produce hy‑
perparameter configuration potential for the initial population [58]. As a result of its se‑
lection, crossover, and mutation operations, GA is uncomplicated to construct and does
not necessitate exceptional initializations. This reduces the probability of losing out on the
global optimum.

Consequently, it is beneficial to determine a probable acceptable initial exploration
space for the hyperparameters when the data analyst has limited expertise. The primary
disadvantage of GA is that the approach introduces novel hyperparameters that must be
specified, such as the population magnitude, fitness function kind, crossover percentage,
and mutation percentage. Additionally, GA is a successive execution method, making
parallelization difficult. GA has an O

(
n2) time complexity [59]. GA may occasionally

prove ineffective due to its slow convergence pace.

4.8. Particle Swarm Optimization (PSO)
Adifferent group of evolutionary algorithms often utilized for optimization problems

is the particle swarmoptimization (PSO) [60]. PSO algorithms take inspiration frombiolog‑
ical communities that demonstrate both individual and cooperative inclinations [14]. PSO
functions by enabling a cluster of particles to navigate the exploration area in a partially

Sensors 2023, 23, 6843 15 of 31

random manner [6]. Through teamwork and exchange of knowledge among the particles
within the cluster, PSO algorithms determine the optimal solution.

Collection S of n particles is present in PSO as [2]

s = (s1 , s2 , , sn), (3)

and every particle Si is expressed by a vector

Si =
〈→

xi ,
→
vi ,

→
pi

〉
,

where
→
xi represents the current location,

→
vi represents the current speed, and

→
pi is the best

position of the swarm up until the current iteration.
Initially, every particle is generated randomly in terms of position and speed using

PSO. Every particle then analyzes its current location and stores it along with its perfor‑
mance grades. In the subsequent iterations, the velocity of each particle

→
vi is updated,

rooted on its most recent global best position
→
p and its previous position

→
pi:

→
vi

→
vi + U(0, φ1)

(→
pi −

→
xi

)
+ U(0, φ2)

(→
p − →

xi

)
, (4)

where the acceleration constants φ1 and φ2 are used to calculate the continuous uniform
distributions U(0, φ).

The particles then travel according to their new velocity vectors:

→
xi

→
xi +

→
vi

The above steps are iterated until the termination criteria are met in PSO. Contrasted
toGA, PSO is simpler to execute because it does not require incremental steps like crossover
and mutation. In GA, all chromosomes interact with each other, resulting in the entire
population moving towards the optimal region uniformly. In contrast, PSO only shares
knowledge on top individual particles and the global superior particles, resulting in a uni‑
directional transmission of information and the search processmoving towards the current
optimal solution [2]. The computational complexity of the PSO algorithm isO(nlogn) [61],
and its convergence rate is generally faster than that of GA. Moreover, PSO particles func‑
tion autonomously and are solely required to exchange information with each other after
each iteration, making it easy to parallelize the process and increase model efficiency [6].

The primary deficiency of PSO is that it may solely attain a local rather than a global
optimum, particularly for discrete hyperparameters, in the absence of appropriate popula‑
tion initialization [62]. Adequate population initialization can be achieved by developers
with previous experience or population initializationmethods. Multiple strategies for pop‑
ulation inception, such as the opposition‑based optimization algorithm [58] and the space
transformation search approach [63], have been devised to enhance the performance of
evolutionary algorithms. Additional population inception methods will require more re‑
sources and execution time.

Table 3 provided the detailed comparisons between popular HPO techniques based
on their time complexity and hyperparameter configuration characteristics can be used to
categorize ML algorithms. Based on these features, suitable optimization methods can be
selected to optimize the hyperparameters.

Sensors 2023, 23, 6843 16 of 31

Table 3. Comparison of popular HPO algorithms (where n denotes the number of values for the
hyperparameters and k the number of hyperparameters).

HPOMethod Strengths Limitations Time Complexity

GS Straightforward Inefficient without categorical HPs and
time‑consuming. O(nk)

RS It is more effective than GS and
supports parallelism.

Does not take into account prior
outcomes.

Ineffective when used with conditional
HPs.

O(n)

BO‑GP For continuous HPs, fast convergence
speed.

Poor parallelization ability; ineffective
with conditional HPs. O

(
n3)

BO‑TPE Effective with all HP types.
Maintains conditional dependencies. Poor parallelization ability. O(nlogn)

GA All HPs are effective with it, and it
does not need excellent initialization. Poor parallelization ability. O

(
n2)

PSO Enables parallelization; is effective
with all sorts of HPs. Needs to be initialized properly. O(nlogn)

5. Mathematical and Hyperparameter Optimization
Machine learning is primarily used to address issues with efficiency. To accomplish

this, a weight parameter improvement technique for an ML model is used until the objec‑
tive function value reaches a minimum value and the accuracy rate reaches a maximum
value. Similar to this, methods for optimizing hyperparameter configurations aim to im‑
prove a machine learning model’s architecture. The fundamental ideas of mathematical
optimization are covered in this part, along with hyperparameter optimization for ma‑
chine learning models.

5.1. Mathematical Optimization
The aim of mathematical optimization is to locate the optimal solution from a pool of

possibilities of a maximized or minimized objective function [64]. Depending on whether
restrictions are placed on the choice or the solution variables, optimization problems can
be classified as either constrained or unconstrained. A decision variable x in unconstrained
optimization problems can take on any value from the one‑dimensional space of real num‑
bers, R. This problem is an unconstrained optimization problem [65].

min
x∈R

f (x) (5)

where the goal function is f(x).
In contrast, constrained optimization problems are more prevalent in real‑world opti‑

mization problems. The decision variable x in constrained optimization problemsmust sat‑
isfy specific constraints, which can be equalities or inequalities in mathematics. Therefore,
optimization problems can be expressed as general optimization problems or constrained
optimization problems [65].

min
x

f (x)

subject to
gi(x) ≤ 0, i = 1, 2, , m (6)

hj(x) = 0, j = 1, 2, , p,

x ϵ X ,

whereX is the domain of x, gi(x) ≤ 0, i = 1, 2, , m, are the inequality constraint
functions, and hj(x) = 0, j = 1, 2, , p, are the equality constraint functions.

Constraints serve the purpose of limiting the feasible region, or the possible values of
the optimal answer, to specific regions of the search space.

Sensors 2023, 23, 6843 17 of 31

As a result, the feasible area D of x can be illustrated as follows:

D =
{

x ∈ X
∣∣gi(x) ≤ 0, hj(x) = 0

}
. (7)

An objective function f (x) that can beminimized ormaximized, a collection of decision
variables x, and an optimization problem are the three main components. The variables
may be allowed to take on values within a certain range by a set of constraints that apply
to the issue. if the optimization issue is constrained. Determining the collection of variable
values that minimizes or maximizes the objective function while satisfying any necessary
constraints is the aim of optimization problems.

The viable range of the cluster count in k‑means, as well as temporal and spatial limi‑
tations, are typical constraints in HPO problems. Consequently, constrained optimization
methods are frequently employed in HPO problems.

In many situations, optimization problems may converge to local optima rather than
a global optimum. For example, when seeking the minimum value of a problem, suppose
that D is the viable region of a decision factor x. A global minimum is the point x∗ ∈ D
satisfying f (x∗) ≤ f (x)∀x ∈ D, whereas a local minimum is the point x∗ ∈ D in a vicinity
N satisfying f (x∗) ≤ f (x)∀x ∈ N ∩ D [65]. As a result, the local optimum only exists in a
limited range and might not be the best option for the full possible region.

Only convex functions have the guarantee that a local optimum is also the global op‑
timum [66]. Convex functions are those that have a single optimum. Consequently, the
global optimal value can be found by extending the search along the direction in which
the objective function declines.

f (x) is a convex function if and only if [66], for ∀x1, x2 ∈ X, ∀t ∈ [0, 1],

f (tx1 + (1 − t)x2) ≤ f (x1) + (1 − t) f (x2), (8)

where t is a coefficient with a range of [0, 1] and X is the domain of the choice variables.
Only when the viable region C is a convex set and the objective function f (x) is a convex
function is an optimization issue a convex optimization problem [66].

min
x

f (x) (9)

subject to x ∈ C.
Conversely, nonconvex functions only have one global optimum while having sev‑

eral local optima. Nonconvex optimization problems make up the majority of ML and
HPO issues. Inappropriate optimization techniques frequently only find local rather than
global optima.

Traditional techniques such as Newton’s method, conjugate gradient, gradient de‑
scent, and heuristic optimization techniques can all be utilized to address optimization
problems [64]. Gradient descent is a popular optimization technique that moves in the op‑
posite direction of the positive gradient as the search trajectory approaches the optima. The
global optimum, however, cannot be detected with certainty via gradient descent unless
the objective function is convex. The Hessian matrix’s inverse matrix is used by Newton’s
technique to determine the optimal solution. Despite needingmore time and space to store
and construct the Hessian matrix than gradient descent, Newton’s approach offers a faster
convergence speed.

To find the best solution, conjugate gradient searches are conducted across a conju‑
gated direction created by the gradient of known data samples. Conjugate gradient has
a higher rate of convergence than gradient descent, but its computation is more difficult.
Heuristic methods, in contrast to other conventional approaches, solve optimization issues
by applying empirical rules rather than by following a set of predetermined processes to
arrive at the solution. Heuristic techniques frequently find the estimated global optima
after a few rounds, although they cannot always find the global optimum [64].

Sensors 2023, 23, 6843 18 of 31

5.2. Hyperparameter Optimization
Throughout the ML model design phase, the optimal hyperparameters can be

identified by efficiently exploring the hyperparameter space using optimization
techniques [67,68]. The hyperparameter optimization procedure consists of four key con‑
stituents: an estimator, also known as a regressor or classifier with a goal function, a search
space or configuration space, an optimization or searchmethod to find combinations of hy‑
perparameters, and an evaluation function to gauge how well different hyperparameter
configurations work.

Hyperparameters, like whether to employ early halting or the learning rate, can have
categorical, binary, discrete, continuous, or mixed domains. Thus, categorical, continu‑
ous, and discrete hyperparameters are the three categories of hyperparameters. The do‑
mains of continuous and discrete hyperparameters are often restricted in real‑world appli‑
cations. Hyperparameter configuration spaces can also include conditional hyperparam‑
eters, which must be adjusted based on another hyperparameter’s value [9,69]. In certain
scenarios, hyperparameters have the flexibility to take on unrestricted real values, and the
set of feasible hyperparameters, denoted as X, can be a vector space in n dimensions with
real values. Nevertheless, in machine learning models, hyperparameters usually have spe‑
cific value ranges and are subject to various constraints, which introduce complexity to
their optimization problems as constrained optimization problems [70]. For instance, in
decision trees, the number of features considered should vary from 0 to the number of fea‑
tures, and in k‑means, the number of clusters should not exceed the data points’ size [7].

Moreover, categorical attributes typically possess a restricted range of allowable val‑
ues, such as the activation function and optimizer choices in a neural network. Conse‑
quently, the complexity of the optimization problem is heightened because the feasible
domain of hyperparameters, denoted as X, often exhibits a complex structure [70].

Typically, the goal of a hyperparameter optimization task is to obtain [16]

x∗ = arg min
x∈X

f (x) (10)

A hyperparameter, denoted as x, is capable of assuming any value within the search
spaceX. The objective function, f (x), which is to beminimized, could be the error rate or the
rootmean squared error (RMSE), for example. The optimal hyperparameter configuration,
x∗, is the one that results in the best value of f (x).

The objective of HPO is to fine‑tune hyperparameters within the allocated budgets to
attain optimal or nearly optimal model performance. The mathematical expression of the
function f varies depending on the performance metric function and the objective function
of the chosen ML algorithm. Various metrics, such as F1‑score, accuracy, RMSE, and false
alarm rate, can be utilized to evaluate the model’s performance. In practical applications,
time constraints must also be considered, as they are a significant limitation for optimizing
HPO models. With a considerable number of hyperparameter configurations, optimizing
the objective function of anMLmodel can be exceedingly time‑consuming. Each time a hy‑
perparameter value is assessed, the entire MLmodel must be retrained, and the validation
set must be processed to produce a score that quantifies the model’s performance.

After choosing an ML algorithm, the primary HPO procedure involves the following
steps [7]:
1. Choose the performance measurements and the objective function.
2. Identify the hyperparameters that need tuning, list their categories, and select the

optimal optimization method.
3. Train the ML model using the default hyperparameter setup or common values for

the baseline model.
4. Commence the optimization processwith a broad search space, selected throughman‑

ual testing and/or domain expertise, as the feasible hyperparameter domain.

Sensors 2023, 23, 6843 19 of 31

5. If required, explore additional search spaces or narrow down the search space based
on the regions where best‑functioning hyperparameter values have been
recently evaluated.

6. Finally, provide the hyperparameter configuration that exhibits the best performance.
Themajority of typical optimization approaches [71] are inappropriate forHPO.How‑

ever, HPO problems differ from conventional optimization methods in the following
ways [7].

When it comes to HPO problems, conventional optimization techniques that are de‑
signed for convex or differentiable optimization problems are often not suitable due to the
non‑convex and non‑differentiable nature of the objective function in ML models. More‑
over, even some conventional derivative‑free optimization methods perform poorly when
the optimization target is not smooth [72].

ML models’ hyper‑parameters contain continuous, discrete, categorical, and condi‑
tional hyperparameters, which means that numerous conventional numerical optimiza‑
tion techniques that only deal with numerical or continuous variables are not suitable for
HPO problems [73].

In HPO approaches, computing anMLmodel on a large dataset can be costly, so data
sampling is sometimes used to provide approximations of the objective function’s values.
Therefore, efficient optimization methods for HPO problems must be capable of utilizing
these approximations. However, many black‑box optimization (BBO)methods do not con‑
sider the function evaluation time, which makes them unsuitable for HPO problems with
constrained time and resource limits. To find the best hyperparameter configurations for
ML models, appropriate optimization methods must be applied to HPO problems.

6. Hyperparameters in Machine Learning Models
6.1. KNN

The K‑nearest neighbor (KNN) is a straightforward machine learning algorithm that
classifies data samples based on their distance from one another. In a KNN, the forecasted
category for each test point is determined by identifying the category that has the highest
number of nearest neighbors in the training set, where the number of nearest neighbors is
set to k.

Assuming that the training set T = {(x1, y1), (x2, y2), . . . , (xn, yn)} , xi is the instance’s
feature vector and yi ∈ {C1, C2, C3, Cm } is the class of the instance, while
i = (1, 2, . . . n), and the class y of a test instance x can be represented by

y = arg max
cj

∑
xi∈Nk(x)

I
(
yi = cj

)
, i = 1, 2,, n; j = 1, 2, m, (11)

Nk(x) is the field encompassing the k‑nearest neighbors of x, and I(x) is an indicator
function with I = 1 when yi = cj and I = 0 otherwise.

The primary hyperparameter in KNN is k, which determines the number of nearest
neighbors to be considered [44]. If k is too small, themodel may underfit the data, whereas
if it is too large, the model may overfit the data and require significant computational re‑
sources. The choice of weighting function used for prediction can also affect the model’s
performance, with “uniform”weighting treating all points equally, and “distance”weight‑
ing giving more weight to closer points. Additionally, the Minkowski metric can be im‑
proved by adjusting the distance metric and power parameter. The method used to find
nearest neighbors can be selected from options such as a ball tree, a k‑dimensional (KD)
tree, or a brute force search. Setting the algorithm to “auto” in sklearn can allow the model
to automatically select the most suitable algorithm [34].

6.2. SVM
A classification or regression problem can be addressed using a supervised learn‑

ing technique called support vector machine (SVM) [74]. SVM algorithms operate on

Sensors 2023, 23, 6843 20 of 31

the premise that data points can be linearly separated by transforming them from a low‑
dimensional to a high‑dimensional space and constructing a hyperplane as the classifica‑
tion boundary to separate the data samples [75]. In SVM, the objective function for n data
points is given by [76]

arg min
w

{
1
n

n

∑
i=1

max+ cwTw

}
, (12)

The objective function for SVM with n data points involves a normalization vector
w and a critical hyperparameter C, which also serves as the penalty parameter for the er‑
ror term. The SVM model also allows for adjustment of the kernel function f (x) used to
compare two data points xi and xj, with several kernel types available, including common
kernel types as well as customized ones. Therefore, fine‑tuning the kernel type hyperpa‑
rameter is essential. Popular kernel types in SVM include linear, polynomial, radial basis
function (RBF), and sigmoid kernels.

The various kernel operations can be represented as [77]

Linear kernel : f (x) = xT
i xj; (13)

Polynomial Kernel : f (x) =
(

γxT
i xj + γ

)d
; (14)

Sigmoid kernel : f (x) =
(
tanh

(
xT

i xj + γ
))

(15)

RBF kernel : f (x) = exp
(
−γ

∣∣∣∣x − x′
∣∣∣∣2) (16)

Once a kernel type is chosen, several other hyperparameters must be fine‑tuned, as in‑
dicated in the equations for the kernel function. For kernel types such as polynomial, RBF,
or sigmoid, the conditional hyperparameter is represented by ‘gamma’ in sklearn, while
for polynomial and sigmoid kernels, it is γ, which can be specified using ‘coef0’ in sklearn.
The polynomial kernel also has a conditional hyperparameter d that denotes the degree
of the polynomial kernel function. Another hyperparameter in support vector regression
(SVR) models is epsilon, which represents distance inaccuracy in the loss function [34].

6.3. Random Forest (Tree‑Based Models)
The decision tree (DT) [78] is a prevalent classification technique that condenses a set

of classification regulations from the data and applies them to a tree arrangement to de‑
lineate determinations and potential outcomes. A DT consists of three major parts: a root
node that represents thewhole data set, several decision nodes that represent decision tests
and sub‑node splits for each attribute, and numerous leaf nodes that represent the resultant
classes [79]. To render accurate determinations on each subset, DT algorithms partition the
training set iteratively into subsets with enhanced feature values. To avoid over‑fitting, DT
utilizes pruning, which involves discarding some of the sub‑nodes of decision nodes. The
maximal tree depth, or “maxdepth”, is an important hyperparameter ofDT algorithms as a
deeper tree encompassesmore sub‑trees to assist it inmakingmore accurate inferences [80].
To fabricate efficient DT models, several other critical HPs must be fine‑tuned [55]. Firstly,
a measuring function, referred to as a “criterion” in Sklearn, can be established to deter‑
mine the quality of splits. The two primary categories of measuring functions are Gini im‑
purity and information gain [51]. The “splitter” split selection technique can optionally be
altered to “best” or “random” to select the ideal split or a random split, respectively. Max
features, the number of attributes taken into consideration to provide the optimal split, can
also be tweaked as a feature selection procedure. Furthermore, to enhance performance,
many discrete hyperparameters associated with the splitting procedure must be adjusted:
the minimum number of data samples required to split a decision node or obtain a leaf
node, designated by the terms “min samples split” and “min samples leaf,” respectively;
the maximal number of leaf nodes and the minimal weighted fraction of the total weights,
respectively, may also be tweaked to enhanced model performance [34,51]. Built on the

Sensors 2023, 23, 6843 21 of 31

idea of DT models, many decision‑tree‑based ensemble methods, such as random forest
(RF), extra trees (ET), and extreme gradient boosting (XGBoost) models, have been created
to enhance model performance by mixing several decision trees. In RF, elementary DTs
are constructed onmany randomly generated subsets, and the class with the majority vote
is selected as the final classification outcome [81]. Another tree‑based ensemble learning
approach, ET, is analogous to RF in that it builds DTs from all samples and randomly se‑
lects the feature sets. Additionally, RF optimizes splits on DTs, while ET generates splits at
random [82]. Tree‑based ensemble models share the same hyperparameters as DTmodels
in this subsection because they are established using decision trees as base learners. Apart
from these hyperparameters, the number of decision trees to be combined—designated as
“n estimators” in sklearn—must be adjusted for RF, ET, and XGBoost. There are several
general ensemble learning techniques, besides tree‑based ensemble models, that incorpo‑
ratemany individualMLmodels to produce superiormodel performance compared to any
single algorithm alone. This article introduces three prevalent ensemble learning models:
voting, bagging, and AdaBoost [83].

The technique of ensemble learning known as voting [83] is a basic approach that aggre‑
gates individual estimators to create a more precise and comprehensive estimator by im‑
plementing the majority voting principle. The voting mode in Sklearn can be modified
from “hard” to “soft” to specify whether the final classification output will be determined
by a majority vote or by averaging the predicted probabilities. It is also possible to modify
the list of selected individual ML estimators and their corresponding weights in certain
cases. For example, a more substantial weight can be assigned to a particular ML model
that exhibits superior performance.

Bootstrap aggregating [83], also referred to as bagging, is an ensemble learning tech‑
nique that creates a final predictor by training multiple base estimators on different ran‑
domly selected subsets. When using bagging methods, it is important to consider the type
and number of base estimators in the ensemble, as indicated by the “base estimator” and
“n estimators” parameters. Additionally, the “max samples” and “max features” param‑
eters, which specify the sample and feature sizes to generate different subsets, can also
be adjusted.

AdaBoost [83], which stands for adaptive boosting, is an ensemble learning technique
that trains a sequence of base learners (weak learners), with later learners emphasizing the
misclassified samples of earlier learners before training a final strong learner. This process
involves retraining instances thatwere incorrectly classifiedwith additional fresh instances
and adjusting their weights so that subsequent classifiers focus more on challenging situ‑
ations, gradually building a stronger classifier. The base estimator type in AdaBoost can
be a decision tree or other techniques. In addition to these two hyperparameters, it is nec‑
essary to control the maximum number of estimators at which boosting is terminated, or
“n estimators,” as well as the learning rate that reduces the contribution of each classifier’s
estimators, in order to establish a trade‑off between them.

7. Results
Tables 4–6 present the results of six different HPO methods applied to RF, SVM, and

KNN classifiers on the landslide dataset. The default hyperparameter configurations of
each model were used as the baseline, and then HPO algorithms were applied to assess
their accuracy and computational time. The results show that default settings do not al‑
ways lead to the best model performance, highlighting the importance of HPO techniques.

Sensors 2023, 23, 6843 22 of 31

Table 4. Performance analysis of the RF classifier using HPO methods on the landslide dataset.

Optimization Algorithm Accuracy (%) CT(s)

GS 0.90730 4.70
RS 0.92663 3.91

BO‑GP 0.93266 16.94
BO‑TPE 0.94112 1.43
GA 0.94957 4.90
PSO 0.95923 3.12

Table 5. Performance analysis of the SVM classifier using HPO methods on the landslide dataset.

Optimization Algorithm Accuracy (%) CT(s)

BO‑TPE 0.95289 0.55
BO‑GP 0.94565 5.78
PSO 0.90277 0.43
GA 0.90277 1.18
RS 0.89855 0.73
GS 0.89794 1.23

Table 6. Performance analysis of the KNN classifier using HPO methods on the landslide dataset.

Optimization Algorithm Accuracy (%) CT(s)

BO‑GP 0.90247 1.21
BO‑TPE 0.89462 2.23
PSO 0.89462 1.65
GA 0.88194 2.43
RS 0.88194 6.41
GS 0.78925 7.68

Among the baseline models for HPO, GS and RS were used, and the results indicate
that GS often has significantly higher computational time than other optimization tech‑
niques. RF and SVMmodels are faster than GS, but neither of them can guarantee finding
near‑optimal hyperparameter configurations of MLmodels. BO andmulti‑fidelity models
perform significantly better than GS and RS in terms of accuracy, but BO‑GP often requires
longer computation times due to its cubic time complexity.

BO‑TPE and BOHB frequently perform better than other methods due to their ability
to quickly compute optimal or almost optimal hyperparameter configurations. GA and
PSO also frequently have higher accuracies than other HPO approaches for classification
tasks. BO‑TPE and PSO are often successful in finding good hyperparameter configura‑
tions for ML models with vast configuration spaces.

Overall, GS and RS are easy to implement but may struggle to find ideal hyperpa‑
rameter configurations or take a long time to run. BO‑GP and GA may take more time
to compute than other HPO methods, but BO‑GP performs better in small configuration
spaces, while GA performs better in large configuration spaces. BO‑TPE and PSO are ef‑
fective for ML models with vast configuration spaces.

7.1. Landslide Susceptibility Maps
7.1.1. Random Forest

The metaheuristic algorithms PSO and GA performed remarkably well, with PSO
increasing accuracy from baseline optimization methods GS and RS by 5% and 3%, respec‑
tively, and GA increasing accuracy from baseline optimization techniques GS and RS by
4% and 2%. However, compared to GS and RS, the accuracy of the Bayesian optimiza‑
tion technique BO‑TPE increased by 4% and 2%, respectively, and BO‑GP by 3% and 1%.
Thus, the overall accuracy of the RF model was increased via metaheuristic and Bayesian

Sensors 2023, 23, 6843 23 of 31

optimization, as shown in the Figure 4. As discussed earlier, the most challenging ML
algorithms to optimize are tree‑based algorithms like RF, because they have multiple hy‑
perparameters of various different types. These ML models work best with PSO because
it enables parallel executions, which boost productivity. Other methods like GA and BO‑
TPE can also be applied; however, they might take longer to finish than PSO does because
it is difficult to parallelize these techniques. The susceptibility maps generated by RF are
shown in Figure 5.

Sensors 2023, 23, x FOR PEER REVIEW 23 of 32

Table 6. Performance analysis of the KNN classifier using HPO methods on the landslide dataset.

Optimization Algorithm Accuracy (%) CT(s)
BO-GP 0.90247 1.21
BO-TPE 0.89462 2.23

PSO 0.89462 1.65
GA 0.88194 2.43
RS 0.88194 6.41
GS 0.78925 7.68

7.1. Landslide Susceptibility Maps
7.1.1. Random Forest

The metaheuristic algorithms PSO and GA performed remarkably well, with PSO
increasing accuracy from baseline optimization methods GS and RS by 5% and 3%, re-
spectively, and GA increasing accuracy from baseline optimization techniques GS and RS
by 4% and 2%. However, compared to GS and RS, the accuracy of the Bayesian optimiza-
tion technique BO-TPE increased by 4% and 2%, respectively, and BO-GP by 3% and 1%.
Thus, the overall accuracy of the RF model was increased via metaheuristic and Bayesian
optimization, as shown in the Figure 4. As discussed earlier, the most challenging ML
algorithms to optimize are tree-based algorithms like RF, because they have multiple hy-
perparameters of various different types. These ML models work best with PSO because
it enables parallel executions, which boost productivity. Other methods like GA and BO-
TPE can also be applied; however, they might take longer to finish than PSO does because
it is difficult to parallelize these techniques. The susceptibility maps generated by RF are
shown in Figure 5.

Figure 4. Receiver-operating characteristic (ROC) curve and AUC curve of Random forest (RF)
model with GS (Grid Search), RS (Random Search), BO-GP (Bayesian optimization Gaussian pro-
cess), BO-TPE (Bayesian optimization Tree-structured Parzen estimator), GA (Genetic Algorithm),
and PSO (Particle Swarm Optimization) as parameter optimization techniques.

Figure 4. Receiver‑operating characteristic (ROC) curve and AUC curve of Random forest (RF)
model with GS (Grid Search), RS (Random Search), BO‑GP (Bayesian optimization Gaussian pro‑
cess), BO‑TPE (Bayesian optimization Tree‑structured Parzen estimator), GA (Genetic Algorithm),
and PSO (Particle Swarm Optimization) as parameter optimization techniques.

7.1.2. KNN
Discrete hyperparameters in KNN, like the number of neighbors to take into consid‑

eration, or k, are the main hyperparameters that require tuning. As explained in the sec‑
tion on hyperparameters, Bayesian optimization is the best choice in these conditions. As
expected, the Bayesian approaches performed exceptionally well. For the KNN model,
BO‑TPE improved accuracy from the baseline algorithms RS and GS by 1% and 11%, re‑
spectively, while BO‑GP improved results from RS and GS by 2% and 12%, respectively.
The metaheuristic algorithms PSO and GA both performed similarly to BO‑TPE and ran‑
dom search (RS), respectively see (Figure 6). The susceptibility maps created by KNN are
shown in Figure 7.

7.1.3. SVM
Bayesian algorithms outperformed BO‑TPE and produced 6% better outcomes than

the baseline algorithms GS and RS with the SVM model, whereas BO‑GP increased out‑
comes by 5%. PSO and GA both performed similarly, with results improving by 1%, as
shown in the Figure 8. The susceptibility maps obtained through SVM classifier are shown
in Figure 9.

Sensors 2023, 23, 6843 24 of 31

Sensors 2023, 23, x FOR PEER REVIEW 24 of 32

Figure 5. Landslide susceptibility maps obtained from Random Forest (RF) model using six different
optimization techniques: GS (Grid Search), RS (Random Search), BO-GP (Bayesian optimization
Gaussian process), BO-TPE (Bayesian optimization Tree-structured Parzen estimator), GA (Genetic
Algorithm), and PSO (Particle Swarm Optimization).

7.1.2. KNN
Discrete hyperparameters in KNN, like the number of neighbors to take into consid-

eration, or k, are the main hyperparameters that require tuning. As explained in the sec-
tion on hyperparameters, Bayesian optimization is the best choice in these conditions. As
expected, the Bayesian approaches performed exceptionally well. For the KNN model,
BO-TPE improved accuracy from the baseline algorithms RS and GS by 1% and 11%, re-
spectively, while BO-GP improved results from RS and GS by 2% and 12%, respectively.
The metaheuristic algorithms PSO and GA both performed similarly to BO-TPE and ran-
dom search (RS), respectively see (Figure 6). The susceptibility maps created by KNN are
shown in Figure 7.

Figure 5. Landslide susceptibility maps obtained from Random Forest (RF) model using six differ‑
ent optimization techniques: GS (Grid Search), RS (Random Search), BO‑GP (Bayesian optimization
Gaussian process), BO‑TPE (Bayesian optimization Tree‑structured Parzen estimator), GA (Genetic
Algorithm), and PSO (Particle Swarm Optimization).

Sensors 2023, 23, x FOR PEER REVIEW 25 of 32

Figure 6. Receiver-operating characteristic (ROC) curve and AUC curve of K-nearest neighbors
(KNN) model with GS (Grid Search), RS (Random Search), BO-GP (Bayesian optimization Gaussian
process), BO-TPE (Bayesian optimization Tree-structured Parzen estimator), GA (Genetic Algo-
rithm), and PSO (Particle Swarm Optimization) as parameter optimization techniques.

Figure 7. Landslide susceptibility maps obtained from K-nearest neighbors (KNN) model using six
different optimization techniques: GS (Grid Search), RS (Random Search), BO-GP (Bayesian

Figure 6. Receiver‑operating characteristic (ROC) curve and AUC curve of K‑nearest neighbors
(KNN) model with GS (Grid Search), RS (Random Search), BO‑GP (Bayesian optimization Gaus‑
sian process), BO‑TPE (Bayesian optimization Tree‑structured Parzen estimator), GA (Genetic Algo‑
rithm), and PSO (Particle Swarm Optimization) as parameter optimization techniques.

Sensors 2023, 23, 6843 25 of 31

Sensors 2023, 23, x FOR PEER REVIEW 25 of 32

Figure 6. Receiver-operating characteristic (ROC) curve and AUC curve of K-nearest neighbors
(KNN) model with GS (Grid Search), RS (Random Search), BO-GP (Bayesian optimization Gaussian
process), BO-TPE (Bayesian optimization Tree-structured Parzen estimator), GA (Genetic Algo-
rithm), and PSO (Particle Swarm Optimization) as parameter optimization techniques.

Figure 7. Landslide susceptibility maps obtained from K-nearest neighbors (KNN) model using six
different optimization techniques: GS (Grid Search), RS (Random Search), BO-GP (Bayesian

Figure 7. Landslide susceptibility maps obtained from K‑nearest neighbors (KNN) model using six
different optimization techniques: GS (Grid Search), RS (Random Search), BO‑GP (Bayesian opti‑
mization Gaussian process), BO‑TPE (Bayesian optimization Tree‑structured Parzen estimator), GA
(Genetic Algorithm), and PSO (Particle Swarm Optimization).

Sensors 2023, 23, x FOR PEER REVIEW 26 of 32

optimization Gaussian process), BO-TPE (Bayesian optimization Tree-structured Parzen estimator),
GA (Genetic Algorithm), and PSO (Particle Swarm Optimization).

7.1.3. SVM
Bayesian algorithms outperformed BO-TPE and produced 6% better outcomes than

the baseline algorithms GS and RS with the SVM model, whereas BO-GP increased out-
comes by 5%. PSO and GA both performed similarly, with results improving by 1%, as
shown in the Figure 8. The susceptibility maps obtained through SVM classifier are shown
in Figure 9.

Figure 8. Receiver-operating characteristic (ROC) curve and AUC curve of support vector machine
(SVM) model with GS (Grid Search), RS (Random Search), BO-GP (Bayesian optimization Gaussian
process), BO-TPE (Bayesian optimization Tree-structured Parzen estimator), GA (Genetic Algo-
rithm), and PSO (Particle Swarm Optimization) as parameter optimization techniques.

It is evident from the obtained results that default hyperparameter configurations do
not always yield the best model performance, emphasizing the significance of HPO tech-
niques in improving model accuracy. Among the baseline models for HPO, Grid Search
(GS) and Random Search (RS) were used. GS often had significantly higher computation
time compared to other optimization techniques. RF and SVM models were faster than
GS, but they did not guarantee finding near-optimal hyperparameter configurations. In
contrast, Bayesian Optimization (BO) and multi-fidelity models consistently performed
better in terms of accuracy. However, BO-GP required longer computation times due to
its cubic time complexity.

Figure 8. Receiver‑operating characteristic (ROC) curve and AUC curve of support vector machine
(SVM) model with GS (Grid Search), RS (Random Search), BO‑GP (Bayesian optimization Gaus‑
sian process), BO‑TPE (Bayesian optimization Tree‑structured Parzen estimator), GA (Genetic Al‑
gorithm), and PSO (Particle Swarm Optimization) as parameter optimization techniques.

Sensors 2023, 23, 6843 26 of 31
Sensors 2023, 23, x FOR PEER REVIEW 27 of 32

Figure 9. Landslide susceptibility maps obtained from Support Vector Machine (SVM) model using
six different optimization techniques: GS (Grid Search), RS (Random Search), BO-GP (Bayesian op-
timization Gaussian process), BO-TPE (Bayesian optimization Tree-structure Parzen estimator), GA
(Genetic Algorithm), and PSO (Particle Swarm Optimization).

Advantages and disadvantages based on our experimental results for the different
hyperparameter optimization techniques can be summarized as follows. Grid Search is
easy to implement, exhaustively searches the hyperparameter space, but is computation-
ally expensive for large search spaces and may not find near-optimal configurations. Ran-
dom Search is simple to implement, explores different hyperparameter combinations, but
can be inefficient in finding optimal configurations, and randomness may lead to subop-
timal results. Bayesian Optimization with Gaussian Process (BO-GP) is efficient in han-
dling continuous hyperparameters, good at modeling complex relationships, but can be
computationally intensive for large datasets or complex models. Bayesian Optimization
with Tree-structured Parzen Estimator (BO-TPE) is efficient in handling conditional hy-
perparameters, performs well in small configuration spaces, but may require more evalu-
ations to find optimal configurations in larger search spaces. Genetic Algorithm (GA) is
suitable for large search spaces, can handle both continuous and discrete hyperparame-
ters, but may take longer to converge, and the performance depends on the encoding and
selection mechanisms. Particle Swarm Optimization (PSO) is efficient in parallel execution
and suitable for models with vast configuration spaces, but performance may be sensitive
to parameter settings, and it can converge to local optima.

For the RF classifier, PSO and GA outperformed other methods, while BO-TPE and
BO-GP also achieved high accuracy. PSO’s parallel execution capability made it particu-
larly effective for models with multiple hyperparameters of various types. GA performed
well for models with large configuration spaces. BO-TPE excelled in handling conditional
hyperparameters, while BO-GP performed well in smaller configuration spaces. For the
SVM classifier, BO-TPE and BO-GP demonstrated superior accuracy compared to GS and
RS. PSO and GA achieved similar results, while RS and GS performed relatively worse.

Figure 9. Landslide susceptibility maps obtained from Support Vector Machine (SVM) model using
six different optimization techniques: GS (Grid Search), RS (Random Search), BO‑GP (Bayesian op‑
timization Gaussian process), BO‑TPE (Bayesian optimization Tree‑structure Parzen estimator), GA
(Genetic Algorithm), and PSO (Particle Swarm Optimization).

It is evident from the obtained results that default hyperparameter configurations do
not always yield the best model performance, emphasizing the significance of HPO tech‑
niques in improving model accuracy. Among the baseline models for HPO, Grid Search
(GS) and Random Search (RS) were used. GS often had significantly higher computation
time compared to other optimization techniques. RF and SVMmodels were faster than GS,
but they did not guarantee finding near‑optimal hyperparameter configurations. In con‑
trast, Bayesian Optimization (BO) and multi‑fidelity models consistently performed better
in terms of accuracy. However, BO‑GP required longer computation times due to its cubic
time complexity.

Advantages and disadvantages based on our experimental results for the different
hyperparameter optimization techniques can be summarized as follows. Grid Search is
easy to implement, exhaustively searches the hyperparameter space, but is computation‑
ally expensive for large search spaces and may not find near‑optimal configurations. Ran‑
dom Search is simple to implement, explores different hyperparameter combinations, but
can be inefficient in finding optimal configurations, and randomness may lead to subopti‑
mal results. Bayesian Optimization with Gaussian Process (BO‑GP) is efficient in handling
continuous hyperparameters, good at modeling complex relationships, but can be com‑
putationally intensive for large datasets or complex models. Bayesian Optimization with
Tree‑structured Parzen Estimator (BO‑TPE) is efficient in handling conditional hyperpa‑
rameters, performs well in small configuration spaces, but may require more evaluations
to find optimal configurations in larger search spaces. Genetic Algorithm (GA) is suitable
for large search spaces, can handle both continuous and discrete hyperparameters, but
may take longer to converge, and the performance depends on the encoding and selec‑
tion mechanisms. Particle Swarm Optimization (PSO) is efficient in parallel execution and

Sensors 2023, 23, 6843 27 of 31

suitable for models with vast configuration spaces, but performance may be sensitive to
parameter settings, and it can converge to local optima.

For the RF classifier, PSO and GA outperformed other methods, while BO‑TPE and
BO‑GP also achieved high accuracy. PSO’s parallel execution capability made it particu‑
larly effective for models with multiple hyperparameters of various types. GA performed
well for models with large configuration spaces. BO‑TPE excelled in handling conditional
hyperparameters, while BO‑GP performed well in smaller configuration spaces. For the
SVM classifier, BO‑TPE and BO‑GP demonstrated superior accuracy compared to GS and
RS. PSO and GA achieved similar results, while RS and GS performed relatively worse.
BO‑TPE’s ability to handle conditional hyperparameters contributed to its success in im‑
proving accuracy. As for the KNN classifier, Bayesian algorithms, BO‑TPE, and BO‑GP,
they outperformed other methods, and PSO and GA achieved similar results. GS and RS
had lower accuracy. Bayesian optimization proved to be effective for KNN’s discrete hy‑
perparameter tuning.

8. Conclusions
Machine learning is now the go‑to method for solving data‑related issues and is ex‑

tensively employed in many applications. The hyperparameters must be tweaked to fit
particular datasets in order to use ML models to solve practical issues. However, the size
of the created data is far larger in real life and manually adjusting hyperparameters re‑
quires a significant investment in computing power, so it is now imperative to optimize
hyperparameters through an automated method. We have thoroughly covered the most
recent findings in the field of hyperparameter optimization in this survey paper, as well as
how to theoretically and practically apply them to various machine learning models. The
hyperparameter types in anMLmodel are the primary consideration for choosing anHPO
approach when applying optimization techniques to ML models. As a result, BO mod‑
els are advised for small hyperparameter configuration spaces, while PSO is typically the
ideal option for large configuration spaces. For ML data analysts, users, developers, and
academics looking to apply and fine‑tune ML models using appropriate HPO approaches
and frameworks, we hope that our study will be a useful resource.

In recent years, the most advanced and innovative techniques used to solve optimiza‑
tion problems are metaheuristic algorithms and general‑purpose optimization algorithms
that are capable of finding near‑optimal solutions for complex problems. Examples in‑
clude Genetic Algorithms, Particle Swarm Optimization, and Ant Colony Optimization.
These algorithms are inspired by natural processes and use iterative techniques to explore
the search space efficiently. Deep learning techniques, particularly neural networks, have
been applied to optimization problems in recent years. These methods leverage the power
of neural networks to learn complex mappings between inputs and outputs and optimize
objective functions directly [84]. Examples include Neural Architecture Search and Differ‑
entiable Programming. Bayesian Optimization is a sequential model‑based optimization
technique that efficiently searches for the optimum by building a probabilistic surrogate
model of the objective function. It uses Bayesian inference to update the model as it ex‑
plores the search space and focuses the search on promising regions. Convex optimization
focuses on finding the global minimum of a convex objective function subject to a set of
convex constraints. Although not new, advancements in convex optimization algorithms
and software libraries have made solving large‑scale convex optimization problems more
practical and efficient [85]. Quantum optimization, also known as quantum computing
optimization, is an emerging field that leverages the principles of quantum mechanics to
solve optimization problems. Quantum algorithms, such as the Quantum Approximate
Optimization Algorithm (QAOA) and Quantum Annealing, are being explored to tackle
combinatorial optimization problems with large search spaces [86]. The field of optimiza‑
tion is continuously evolving, and new methods and techniques are being developed reg‑
ularly. Therefore, the cutting‑edge methods may vary over time as new advancements
are made.

Sensors 2023, 23, 6843 28 of 31

Author Contributions: Conceptualization, F.A.; Methodology, F.A.; Software, F.A.; Validation, J.I.;
Investigation, M.I. and M.F.A.; Resources, M.I., G.K. and A.F.A.; Data curation, G.K.; Writing—
original draft, F.A.; Writing—review & editing, J.I.; Visualization, F.A.; Supervision, F.Z.; Project
administration, A.F.A. and M.F.A.; Funding acquisition, J.I., A.F.A. and M.F.A. All authors have
read and agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to the Deputyship for Research and Innovation,
“Ministry of Education” in Saudi Arabia for funding this research (IFKSUOR3‑574‑1).

Data Availability Statement: The data presented in the study are available on request from the first
and corresponding author. The data are not publicly available due to the thesis that is being prepared
from these data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Polanco, C. Add a new comment. Science 2014, 346, 684–685.
2. Zöller, M.‑A.; Huber, M.F. Benchmark and survey of automated machine learning frameworks. J. Artif. Intell. Res. 2021,

70, 409–472. [CrossRef]
3. Elshawi, R.; Maher, M.; Sakr, S. Automatedmachine learning: State‑of‑the‑art and open challenges. arXiv 2019, arXiv:1906.02287.
4. DeCastro‑García, N.; Munoz Castaneda, A.L.; Escudero Garcia, D.; Carriegos, M.V. Effect of the sampling of a dataset in the hy‑

perparameter optimization phase over the efficiency of amachine learning algorithm. Complexity 2019, 2019, 6278908. [CrossRef]
5. Abreu, S. Automated architecture design for deep neural networks. arXiv 2019, arXiv:1908.10714.
6. Olof, S.S. A Comparative Study of Black‑Box Optimization Algorithms for Tuning of Hyper‑Parameters in Deep Neural Networks; Luleå

University of Technology: Luleå, Sweden, 2018.
7. Luo, G. A review of automatic selection methods for machine learning algorithms and hyper‑parameter values. Netw. Model.

Anal. Health Inform. Bioinform. 2016, 5, 18. [CrossRef]
8. Maclaurin, D.; Duvenaud, D.; Adams, R. Gradient‑based hyperparameter optimization through reversible learning. In Proceed‑

ings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 2113–2122.
9. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper‑parameter optimization. In Advances in Neural Information

Processing Systems; The MIT Press: Cambridge, MA, USA, 2011; Volume 24.
10. Bergstra, J.; Bengio, Y. Random search for hyper‑parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
11. Eggensperger, K.; Feurer, M.; Hutter, F.; Bergstra, J.; Snoek, J.; Hoos, H.; Leyton‑Brown, K. Towards an empirical foundation

for assessing bayesian optimization of hyperparameters. In Proceedings of the NIPS Workshop on Bayesian Optimization in
Theory and Practice, Lake Tahoe, NV, USA, 10 December 2013.

12. Eggensperger, K.; Hutter, F.; Hoos, H.; Leyton‑Brown, K. Efficient benchmarking of hyperparameter optimizers via surrogates.
In Proceedings of the AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015.

13. Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A.Hyperband: Anovel bandit‑based approach to hyperparameter
optimization. J. Mach. Learn. Res. 2017, 18, 6765–6816.

14. Yao, Q.; Wang, M.; Chen, Y.; Dai, W.; Li, Y.‑F.; Tu, W.‑W.; Yang, Q.; Yu, Y. Taking human out of learning applications: A survey
on automated machine learning. arXiv 2018, arXiv:1810.13306.

15. Lessmann, S.; Stahlbock, R.; Crone, S.F. Optimizing hyperparameters of support vector machines by genetic algorithms. In
Proceedings of the IC‑AI, Las Vegas, NV, USA, 27–30 June 2005; p. 82.

16. Lorenzo, P.R.; Nalepa, J.; Kawulok, M.; Ramos, L.S.; Pastor, J.R. Particle swarm optimization for hyper‑parameter selection in
deep neural networks. In Proceedings of the Genetic and Evolutionary Computation Conference, Berlin, Germany, 15–19 July
2017; pp. 481–488.

17. Li, H.; Chaudhari, P.; Yang, H.; Lam,M.; Ravichandran, A.; Bhotika, R.; Soatto, S. Rethinking the hyperparameters for fine‑tuning.
arXiv 2020, arXiv:2002.11770.

18. Poojary, R.; Raina, R.; Mondal, A.K. Effect of data‑augmentation on fine‑tuned CNNmodel performance. IAES Int. J. Artif. Intell.
2021, 10, 84. [CrossRef]

19. Cattan, Y.; Choquette‑Choo, C.A.; Papernot, N.; Thakurta, A. Fine‑tuning with differential privacy necessitates an additional
hyperparameter search. arXiv 2022, arXiv:2210.02156.

20. Ahmad, Z.; Li, J.; Mahmood, T. Adaptive Hyperparameter Fine‑Tuning for Boosting the Robustness and Quality of the Particle
SwarmOptimization Algorithm for Non‑Linear RBF Neural NetworkModelling and Its Applications. Mathematics 2023, 11, 242.
[CrossRef]

21. Shen, X.; Plested, J.; Caldwell, S.; Zhong, Y.; Gedeon, T. AMF: Adaptable Weighting Fusion with Multiple Fine‑tuning for Image
Classification. arXiv 2022, arXiv:2207.12944.

22. Iqbal, J.; Ali, M.; Ali, A.; Raza, D.; Bashir, F.; Ali, F.; Hussain, S.; Afzal, Z. Investigation of cryosphere dynamics variations in the
upper indus basin using remote sensing and gis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 44, 59–63. [CrossRef]

https://doi.org/10.1613/jair.1.11854
https://doi.org/10.1155/2019/6278908
https://doi.org/10.1007/s13721-016-0125-6
https://doi.org/10.11591/ijai.v10.i1.pp84-92
https://doi.org/10.3390/math11010242
https://doi.org/10.5194/isprs-archives-XLIV-3-W1-2020-59-2020

Sensors 2023, 23, 6843 29 of 31

23. Jamil, A.; Khan, A.A.; Bayram, B.; Iqbal, J.; Amin, G.; Yesiltepe, M.; Hussain, D. Spatio‑temporal glacier change detection us‑
ing deep learning: A case study of Shishper Glacier in Hunza. In Proceedings of the International Symposium on Applied
Geoinformatics, Istanbul, Turkey, 7–9 November 2019.

24. Watanabe, S.; Hutter, F. c‑TPE: Generalizing tree‑structured Parzen estimator with inequality constraints for continuous and
categorical hyperparameter optimization. arXiv 2022, arXiv:2211.14411.

25. Yang, L.; Shami, A. On hyperparameter optimization ofmachine learning algorithms: Theory and practice. Neurocomputing 2020,
415, 295–316. [CrossRef]

26. Zhao,M.; Li, J. Tuning the hyper‑parameters of CMA‑ESwith tree‑structured Parzen estimators. In Proceedings of the 2018 Tenth
International Conference on Advanced Computational Intelligence (ICACI), Xiamen, China, 29–31 March 2018; pp. 613–618.

27. Kelkar, K.M.; Bakal, J. Hyper parameter tuning of random forest algorithm for affective learning system. In Proceedings of
the 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 August
2020; pp. 1192–1195.

28. Liu, R.; Liu, E.; Yang, J.; Li, M.; Wang, F. Optimizing the hyper‑parameters for SVM by combining evolution strategies with a
grid search. In Proceedings of the Intelligent Control and Automation: International Conference on Intelligent Computing, ICIC
2006, Kunming, China, 16–19 August 2006; pp. 712–721.

29. Kalita, D.J.; Singh, V.P.; Kumar, V. A survey on SVM hyper‑parameters optimization techniques. In Social Networking and Com‑
putational Intelligence: Proceedings of SCI‑2018, Bhopal, India, 5–6 October 2018; Springer: Singapore, 2020; pp. 243–256.

30. Polepaka, S.; Kumar, R.R.; Katukam, S.; Potluri, S.V.; Abburi, S.D.; Peddineni, M.; Islavath, N.; Anumandla, M.R. Heart Dis‑
ease Prediction‑based on Conventional KNN and Tuned‑Hyper Parameters of KNN: An Insight. In Proceedings of the 2023
International Conference on Computer Communication and Informatics (ICCCI), Fujisawa, Japan, 23–25 June 2023; pp. 1–3.

31. Koutsoukas, A.; Monaghan, K.J.; Li, X.; Huan, J. Deep‑learning: Investigating deep neural networks hyper‑parameters and
comparison of performance to shallow methods for modeling bioactivity data. J. Cheminform. 2017, 9, 42. [CrossRef]

32. Ogilvie, H.A.; Heled, J.; Xie, D.; Drummond, A.J. Computational performance and statistical accuracy of *BEAST and compar‑
isons with other methods. Syst. Biol. 2016, 65, 381–396. [CrossRef]

33. Pritsker, M. Evaluating value at risk methodologies: Accuracy versus computational time. J. Financ. Serv. Res. 1997, 12, 201–242.
[CrossRef]

34. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,
V. Scikit‑learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

35. Head, T.; MechCoder; Louppe, G.; Shcherbatyi, I.; fcharras; Zé Vinícius; cmmalone; Schröder, C.; nel215; Campos, N.; et al.
scikit‑optimize/scikit‑optimize: v0.5.2. 2018. Available online: https://zenodo.org/record/1207017 (accessed on 4 July 2023).

36. Komer, B.; Bergstra, J.; Eliasmith, C. Hyperopt‑sklearn: Automatic hyperparameter configuration for scikit‑learn. In ICMLWork‑
shop on AutoML; Citeseer: Austin, TX, USA, 2014.

37. Claesen, M.; Simm, J.; Popovic, D.; Moreau, Y.; De Moor, B. Easy hyperparameter search using optunity. arXiv 2014,
arXiv:1412.1114.

38. Falkner, S.; Klein, A.; Hutter, F. BOHB: Robust and efficient hyperparameter optimization at scale. In Proceedings of the Inter‑
national Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 1437–1446.

39. Olson, R.S.; Moore, J.H. TPOT: A tree‑based pipeline optimization tool for automating machine learning. In Proceedings of the
Workshop on Automatic Machine Learning, New York, NY, USA, 24 June 2016; pp. 66–74.

40. Dhuime, B.; Bosch, D.; Garrido, C.J.; Bodinier, J.‑L.; Bruguier, O.; Hussain, S.S.; Dawood, H. Geochemical architecture of the
lower‑to middle‑crustal section of a paleo‑island arc (Kohistan Complex, Jijal–Kamila area, northern Pakistan): Implications for
the evolution of an oceanic subduction zone. J. Petrol. 2009, 50, 531–569. [CrossRef]

41. Rahman, N.U.; Song, H.; Benzhong, X.; Rehman, S.U.; Rehman, G.; Majid, A.; Iqbal, J.; Hussain, G. Middle‑Late Permian and
Early Triassic foraminiferal assemblages in the Western Salt Range, Pakistan. Rud. ‑Geološko‑Naft. Zb. 2022, 37, 161–196. [Cross‑
Ref]

42. Baloch, M.Y.J.; Zhang, W.; Al Shoumik, B.A.; Nigar, A.; Elhassan, A.A.; Elshekh, A.E.; Bashir, M.O.; Ebrahim, A.F.M.S.; Iqbal,
J. Hydrogeochemical mechanism associated with land use land cover indices using geospatial, remote sensing techniques, and
health risks model. Sustainability 2022, 14, 16768. [CrossRef]

43. Iqbal, J.; Amin, G.; Su, C.; Haroon, E.; Baloch, M.Y.J. Assessment of Landcover Impacts on the Groundwater Quality Using
Hydrogeochemical and Geospatial Techniques. 2023. Available online: https://www.researchsquare.com/article/rs‑2771650/v1
(accessed on 4 July 2023).

44. Tong, Y.; Yu, B. Research on hyper‑parameter optimization of activity recognition algorithm based on improved cuckoo search.
Entropy 2022, 24, 845. [CrossRef] [PubMed]

45. Sun, X.; Lin, J.; Bischl, B. ReinBo: Machine learning pipeline conditional hierarchy search and configuration with Bayesian opti‑
mization embedded reinforcement learning. In Proceedings of theMachine Learning andKnowledgeDiscovery inDatabases: In‑
ternational Workshops of ECML PKDD 2019, Würzburg, Germany, 16–20 September 2019; Proceedings, Part I, 2020. pp. 68–84.

46. Nguyen, D.; Gupta, S.; Rana, S.; Shilton, A.; Venkatesh, S. Bayesian optimization for categorical and category‑specific continuous
inputs. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020.

https://doi.org/10.1016/j.neucom.2020.07.061
https://doi.org/10.1186/s13321-017-0226-y
https://doi.org/10.1093/sysbio/syv118
https://doi.org/10.1023/A:1007978820465
https://zenodo.org/record/1207017
https://doi.org/10.1093/petrology/egp010
https://doi.org/10.17794/rgn.2022.3.13
https://doi.org/10.17794/rgn.2022.3.13
https://doi.org/10.3390/su142416768
https://www.researchsquare.com/article/rs-2771650/v1
https://doi.org/10.3390/e24060845
https://www.ncbi.nlm.nih.gov/pubmed/35741565

Sensors 2023, 23, 6843 30 of 31

47. Ilievski, I.; Akhtar, T.; Feng, J.; Shoemaker, C. Efficient hyperparameter optimization for deep learning algorithms using de‑
terministic RBF surrogates. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9
February 2017.

48. Witt, C.Worst‑case and average‑case approximations by simple randomized search heuristics. In Proceedings of the STACS 2005:
22nd Annual Symposium on Theoretical Aspects of Computer Science, Stuttgart, Germany, 24–26 February 2005; Proceedings
22, 2005. pp. 44–56.

49. Hutter, F.; Kotthoff, L.; Vanschoren, J. Automated Machine Learning: Methods, Systems, Challenges; Springer Nature: Berlin, Ger‑
many, 2019.

50. Nguyen, V. Bayesian optimization for accelerating hyper‑parameter tuning. In Proceedings of the 2019 IEEE Second International
Conference on Artificial Intelligence and Knowledge Engineering (AIKE), Sardinia, Italy, 3–5 June 2019; pp. 302–305.

51. Sanders, S.; Giraud‑Carrier, C. Informing the use of hyperparameter optimization through metalearning. In Proceedings of the
2017 IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21 November 2017; pp. 1051–1056.

52. Hazan, E.; Klivans, A.; Yuan, Y. Hyperparameter optimization: A spectral approach. arXiv 2017, arXiv:1706.00764.
53. Hutter, F.; Hoos, H.H.; Leyton‑Brown, K. Sequential model‑based optimization for general algorithm configuration. In Pro‑

ceedings of the Learning and Intelligent Optimization: 5th International Conference, LION 5, Rome, Italy, 17–21 January 2011;
Selected Papers 5, 2011. pp. 507–523.

54. Dewancker, I.; McCourt, M.; Clark, S. Bayesian Optimization Primer. 2015. Available online: https://static.sigopt.com/b/20a144
d208ef255d3b981ce419667ec25d8412e2/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf (accessed on 4 July 2023).

55. Gogna, A.; Tayal, A. Metaheuristics: Review and application. J. Exp. Theor. Artif. Intell. 2013, 25, 503–526. [CrossRef]
56. Itano, F.; de Sousa, M.A.d.A.; Del‑Moral‑Hernandez, E. Extending MLP ANN hyper‑parameters Optimization by using Genetic

Algorithm. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13
July 2018; pp. 1–8.

57. Kazimipour, B.; Li, X.; Qin, A.K. A review of population initialization techniques for evolutionary algorithms. In Proceedings
of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014; pp. 2585–2592.

58. Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M. A novel population initialization method for accelerating evolutionary algo‑
rithms. Comput. Math. Appl. 2007, 53, 1605–1614. [CrossRef]

59. Lobo, F.G.; Goldberg, D.E.; Pelikan, M. Time complexity of genetic algorithms on exponentially scaled problems. In Proceedings
of the 2nd Annual Conference on Genetic and Evolutionary Computation, Las Vegas, NV, USA, 10–12 July 2000; pp. 151–158.

60. Shi, Y.; Eberhart, R.C. Parameter selection in particle swarm optimization. In Proceedings of the Evolutionary Programming VII:
7th International Conference, EP98, San Diego, CA, USA, 25–27 March 1998; Proceedings 7, 1998. pp. 591–600.

61. Yan, X.‑H.; He, F.‑Z.; Chen, Y.‑L.基于野草扰动粒子群算法的新型软硬件划分方法. 计算机科学技术学报 2017, 32, 340–355.
62. Min‑Yuan, C.; Kuo‑Yu, H.; Merciawati, H.Multiobjective Dynamic‑Guiding PSO for OptimizingWork Shift Schedules. J. Constr.

Eng. Manag. 2018, 144, 04018089.
63. Wang, H.; Wu, Z.; Wang, J.; Dong, X.; Yu, S.; Chen, C. A new population initialization method based on space transforma‑

tion search. In Proceedings of the 2009 Fifth International Conference on Natural Computation, Tianjian, China, 14–16 August
2009; pp. 332–336.

64. Sun, S.; Cao, Z.; Zhu, H.; Zhao, J. A survey of optimization methods from a machine learning perspective. IEEE Trans. Cybern.
2019, 50, 3668–3681. [CrossRef]

65. McCarl, B.A.; Spreen, T.H. Applied Mathematical Programming Using Algebraic Systems; Texas A&M University: Cambridge, MA,
USA, 1997.

66. Bubeck, S. Konvex optimering: Algoritmer och komplexitet. Found. Trends® Mach. Learn. 2015, 8, 231–357. [CrossRef]
67. Abbas, F.; Zhang, F.; Iqbal, J.; Abbas, F.; Alrefaei, A.F.; Albeshr, M. Assessing the Dimensionality Reduction of the Geospatial

Dataset Using Principal Component Analysis (PCA) and Its Impact on the Accuracy and Performance of Ensembled and Non‑
ensembled Algorithms. Preprints 2023, 2023070529. [CrossRef]

68. Abbas, F.; Zhang, F.; Abbas, F.; Ismail, M.; Iqbal, J.; Hussain, D.; Khan, G.; Alrefaei, A.F.; Albeshr, M.F. Landslide Suscep‑
tibility Mapping: Analysis of Different Feature Selection Techniques with Artificial Neural Network Tuned by Bayesian and
Metaheuristic Algorithms. Preprints 2023, 2023071467. [CrossRef]

69. Shahriari, B.; Bouchard‑Côté, A.; Freitas, N.UnboundedBayesian optimization via regularization. In Proceedings of theArtificial
Intelligence and Statistics, Cadiz, Spain, 9–11 May 2016; pp. 1168–1176.

70. Diaz, G.I.; Fokoue‑Nkoutche, A.; Nannicini, G.; Samulowitz, H. An effective algorithm for hyperparameter optimization of
neural networks. IBM J. Res. Dev. 2017, 61, 9:1–9:11. [CrossRef]

71. Gambella, C.; Ghaddar, B.; Naoum‑Sawaya, J. Optimization problems for machine learning: A survey. Eur. J. Oper. Res. 2021,
290, 807–828. [CrossRef]

72. Sparks, E.R.; Talwalkar, A.; Haas, D.; Franklin, M.J.; Jordan, M.I.; Kraska, T. Automating model search for large scale ma‑
chine learning. In Proceedings of the Sixth ACM Symposium on Cloud Computing, Kohala Coast, HI, USA, 27–29 August
2015; pp. 368–380.

73. Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: Berlin/Heidelberg, Germany, 1999.
74. Chen, C.; Yan, C.; Li, Y. A robust weighted least squares support vector regression based on least trimmed squares. Neurocom‑

puting 2015, 168, 941–946. [CrossRef]

https://static.sigopt.com/b/20a144d208ef255d3b981ce419667ec25d8412e2/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf
https://static.sigopt.com/b/20a144d208ef255d3b981ce419667ec25d8412e2/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf
https://doi.org/10.1080/0952813X.2013.782347
https://doi.org/10.1016/j.camwa.2006.07.013
https://doi.org/10.1109/TCYB.2019.2950779
https://doi.org/10.1561/2200000050
https://doi.org/10.20944/preprints202307.0529.v1
https://doi.org/10.20944/preprints202307.1467.v1
https://doi.org/10.1147/JRD.2017.2709578
https://doi.org/10.1016/j.ejor.2020.08.045
https://doi.org/10.1016/j.neucom.2015.05.031

Sensors 2023, 23, 6843 31 of 31

75. Yang, L.; Muresan, R.; Al‑Dweik, A.; Hadjileontiadis, L.J. Image‑based visibility estimation algorithm for intelligent transporta‑
tion systems. IEEE Access 2018, 6, 76728–76740. [CrossRef]

76. Zhang, J.; Jin, R.; Yang, Y.; Hauptmann, A. Modified logistic regression: An approximation to SVM and its applications in
large‑scale text categorization. In Proceedings of the Twentieth International Conference on Machine Learning (ICML‑2003),
Washington, DC, USA, 21–24 August 2003.

77. Soliman, O.S.; Mahmoud, A.S. A classification system for remote sensing satellite images using support vector machine with
non‑linear kernel functions. In Proceedings of the 2012 8th International Conference on Informatics and Systems (INFOS), Giza,
Egypt, 14–16 May 2012; pp. BIO‑181–BIO‑187.

78. Safavian, S.R.; Landgrebe, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 1991, 21, 660–674.
[CrossRef]

79. Manias, D.M.; Jammal, M.; Hawilo, H.; Shami, A.; Heidari, P.; Larabi, A.; Brunner, R. Machine learning for performance‑
aware virtual network function placement. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM),
Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6.

80. Yang, L.; Moubayed, A.; Hamieh, I.; Shami, A. Tree‑based intelligent intrusion detection system in internet of vehicles. In Pro‑
ceedings of the 2019 IEEE Global Communications Conference (GLOBECOM),Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6.

81. Injadat, M.; Salo, F.; Nassif, A.B.; Essex, A.; Shami, A. Bayesian optimizationwithmachine learning algorithms towards anomaly
detection. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emi‑
rates, 9–13 December 2018; pp. 1–6.

82. Arjunan, K.; Modi, C.N. An enhanced intrusion detection framework for securing network layer of cloud computing. In Pro‑
ceedings of the 2017 ISEA Asia Security and Privacy (ISEASP), Surat, India, 29 January–1 February 2017; pp. 1–10.

83. Dietterich, T.G. Ensemble methods in machine learning. In Proceedings of the Multiple Classifier Systems: First International
Workshop, MCS 2000, Cagliari, Italy, 21–23 June 2000; Proceedings 1, 2000. pp. 1–15.

84. Ning, C.; You, F. Optimization under uncertainty in the era of big data and deep learning: When machine learning meets math‑
ematical programming. Comput. Chem. Eng. 2019, 125, 434–448. [CrossRef]

85. Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.
86. Hogg, T.; Portnov, D. Quantum optimization. Inf. Sci. 2000, 128, 181–197. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au‑
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2018.2884225
https://doi.org/10.1109/21.97458
https://doi.org/10.1016/j.compchemeng.2019.03.034
https://doi.org/10.1016/S0020-0255(00)00052-9

	Introduction
	Methodology
	Hyperparameters
	Discrete Hyperparameter
	Continuous Hyperparameter
	Conditional Hyperparameters
	Categorical Hyperparameters
	Big Hyperparameter Configuration Space with Different Types of Hyperparameters

	Hyperparameter Optimization Techniques
	Babysitting
	Grid Search
	Random Search
	BO-GP
	BO-TPE
	Metaheuristic Algorithms
	Genetic Algorithm (GA)
	Particle Swarm Optimization (PSO)

	Mathematical and Hyperparameter Optimization
	Mathematical Optimization
	Hyperparameter Optimization

	Hyperparameters in Machine Learning Models
	KNN
	SVM
	Random Forest (Tree-Based Models)

	Results
	Landslide Susceptibility Maps
	Random Forest
	KNN
	SVM

	Conclusions
	References

