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Remote sensing data prove to be an effective resource for constructing a data-driven pre-
dictive model of mineral prospectivity. Nonetheless, existing deep learning models pre-
dominantly rely on neural networks that necessitate a substantial number of samples, posing
a challenge during the early stages of exploration. In order to predict mineral prospectivity
using remotely sensed data, this study introduced deep forest (DF), a non-neural network
deep learning model. Mainly based on ASTER multispectral imagery supplemented by
Sentinel-2 and geological data, gold ore in Hamissana area, NE Sudan was used to test the
DF predictive model capability. In addition to four geological-based evidential layers, 20
remote sensing-based evidential layers were generated using remote sensing enhancing
techniques, forming the predictor variables of the proposed model. The applicability of the
DF was thoroughly examined including its accuracy for delineating prospective areas, sen-
sitivity to amount of training samples, and adjustment of hyperparameters. The results
demonstrate that DF model outperformed conventional machine learning models (i.e.,
support vector machine, artificial neural network, and random forest) with AUC of 0.964
and classification accuracy of 93.3%. Moreover, the sensitivity analysis demonstrated that
the DF model can be trained with a limited number (i.e.,< 15) of mineral occurrences.
Therefore, the DF algorithm has great potential and proves to be a viable solution for data-
driven prospectivity mapping, particularly in scenarios with data availability constraints.

KEY WORDS: Deep forest, Mineral prospectivity mapping, Remote sensing, Deep learning, Gold
mineralization.

INTRODUCTION

Mineral prospectivity mapping (MPM) is a
crucial practice in the comprehensive assessment of
mineral resources. It is the approach that aids in
ranking and delineating target areas of mineral de-
posits by analyzing and synthesizing various layers of
spatial evidence that represents ore-forming factors
(Zuo & Carranza, 2011; Carranza, 2017; Zuo, 2020).
Defining the targeting criteria, which is the most
critical step of MPM, guides the selection of relevant
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geoscience spatial datasets and the processing tech-
niques to generate the spatial evidence (also called
feature variables) (Sun et al., 2019, 2020a; Abedini
et al., 2023). Integrating these feature variables and
analyzing their spatial association with known de-
posit locations are carried out by means of numeri-
cal methods (Bonham-Carter, 1994a, 1994b;
Carranza et al., 2008; Rodriguez-Galiano et al.,
2015). Therefore, the selection of numerical meth-
ods, such as statistical analyses, machine learning
(ML) algorithms, and spatial modeling techniques, is
essential for obtaining accurate predictions. Tech-
niques of MPM can generally be categorized into
two classes (Carranza & Laborte, 2015a, 2015b,
2016): (i) knowledge-driven methods and (ii) data-
driven methods. In common practice, the former and
latter categories suit under-explored (also called
greenfield) and moderately- to well-explored (also
called brownfield) regions, respectively (Parsa,
2021). The knowledge-driven approach employs an
expert’s deep understanding of mineral deposit
indicators to specify how those geological indicators
and the targeted mineral deposits are spatially
associated (Senanayake et al., 2023). It includes
methods such as Boolean logic, fuzzy logic, and
binary/multi-class index analysis (Bonham-Carter,
1994a, 1994b; Harris et al., 2001; Brown et al., 2003;
Carranza, 2009; Abedi et al., 2013; Kashani et al.,
2016). In data-driven predictive modeling, the
weighting of particular layers is experimentally
determined by utilizing the spatial correlations be-
tween evidentiary maps and labeled samples of
known mineral deposits (Forson et al., 2022; Fu
et al., 2023). Traditionally, data-driven models are
either bivariate methods such as weights of evidence
and evidential belief (Cheng & Agterberg, 1999; He
et al., 2010; Yousefi & Nykänen, 2016) or multi-
variate probabilistic methods such as logistic
regression and discriminant analysis (Bonham-Car-
ter & Chung, 1983; Harris & Pan, 1999; Carranza,
2009; Chen et al., 2011). Unlike knowledge-driven
methods, most of the latest advancements in artifi-
cial intelligence and cutting-edge research have been
dedicated to promoting data-driven techniques.
However, those methods can still be limited by data
quantity and quality, resulting from data availability
issues (Senanayake et al., 2023).

In many non-ideal cases or during the early
stage of exploration, remote sensing data might be
the only available cost-efficient source of data.
These cases may range from large study areas, such
as regional exploration, to inaccessible regions

where it is challenging to conduct detailed geological
investigations or geochemical and geophysical sur-
veys (Ngassam Mbianya et al., 2021; He et al., 2022).
Moreover, acquiring geochemical and geophysical
big data through conventional methods of collection,
processing, and analysis can be challenging, often
resulting in the production of expensive and low-
velocity data (Zhang et al., 2023). Given that remote
sensing data demonstrate big data characteristics
and have a close connection with geochemistry, they
emerge as a feasible solution for producing eviden-
tial layers of several mineral deposit models. These
mineral deposits include (Zoheir et al., 2019; Abd
El-Wahed et al., 2021; Fu et al., 2023): (i) magmatic-
hydrothermal deposits that are related to intrusion
(i.e., porphyry or epithermal-vein deposits) and (ii)
hydrothermal deposits (i.e., orogenic or volcanic
massive sulfide), where the significant mineral indi-
cators can be easily extracted from remotely sensed
data. In such instances, remote sensing data offer
comprehensive details on lithological units, geolog-
ical structures, and zones of hydrothermal alteration.
(Pour & Hashim, 2011, 2012, 2014; Pour et al., 2016).

The scarcity of studies integrating remote
sensing data with data-driven predictive modeling
predominantly arises due to several contributing
factors, notably (i) the choice of an advanced model
that produces an accurate prediction, (ii) the ade-
quacy of the number of training locations, specifi-
cally in the stage of early exploration, and (iii) the
uncertainty resulting from remote sensing data or
the predictive model. Although ML-supervised
models such as ANN (artificial neural network),
SVM (support vector machine), and RF (random
forest) have emerged widely as promising tools for
MPM, they have not been investigated comprehen-
sively with remote sensing data. According to Shir-
mard et al. (2022), the number of publications in the
year 2020 that used ‘‘remote sensing’’, ‘‘machine
learning’’, and ‘‘mineral exploration’’ as keywords
did not exceed eight publications. In view of this, to
examine the proficiencies of three multispectral
satellite datasets—Landsat-8, Sentinel-2, and AS-
TER—Mohamed Taha et al. (2023) used a RF
prediction model for gold prospectivity mapping in
Hamissan area NE Sudan. Although the data syn-
ergy of these datasets exhibits promising results, the
prediction accuracy of the best single dataset (i.e.,
ASTER) did not surpass 87.5%. Recently, a subfield
of ML known as deep learning (DL) uses deep
neural network architecture to learn hierarchical
representations of input data to extract higher-level
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features. (Sun et al., 2020b; Fu et al., 2023). DL
models were introduced to MPM and remote sens-
ing data to achieve higher prediction than conven-
tional ML models (Zuo et al., 2019; Li et al., 2020a,
2020b; Xu et al., 2021; Yu et al., 2022). For instance,
Fu et al. (2023) reported that convolutional neural
network (CNN) outperformed RF and SVM in
predicting porphyry copper deposit prospectivity
based on geochemical element data and ASTER
images combined with hyperspectral imaging.
However, to satisfy the needs of big labeled data for
DL, data augmentation was implemented.

Despite the big data era advances, many prac-
tical tasks still lack enough labeled data because of
the high labeling costs. The minimum quantity of
documented deposits required for the effective
training of data-driven models depends chiefly on an
algorithm’s robustness and its sensitivity to quantify
spatial association with multiple layers of evidential
data. For instance, several studies demonstrate that
less than 20 positive training locations could be used
to train ML models such as RF and ANN (Carranza
& Hale, 2003; Magalhães & Souza Filho, 2012;
Carranza & Laborte, 2015a, 2015b). Nevertheless,
this number remains untested or ambiguous in the
case of DL-based MPM. DL models, particularly
neural networks, require extensive datasets for
effective training due to their intricate structures
and their capacity to grasp intricate patterns and
representations.

To address the above limitations, this study
employed DF model as a novel methodology for
MPM. DF is a model proposed by Zhou & Feng
(2019) for ensembling different models using the
theory behind deep neural network (DNN). It can
deal with complex problems with fewer parameters
compared with DNN models. Another advantage of
the DF is that the training cost can be controlled
according to the available computational resources.
Unlike the backpropagation procedure of the neural
network method, DF has the advantage of auto-
matically terminating the training process by
assessing the model performance at each layer.
Therefore, the complexity of the DF model depends
on the scale of the input datasets, which also makes
it suitable for small-scale datasets (Pang et al., 2018;
Li et al., 2022; Ma et al., 2022a). Similar to other
ensemble learning models, DF demonstrates high
generalization capability and quite robust perfor-
mance even when using default parameter settings
(Zhou & Feng, 2019). In general, testing the DF
algorithm across different datasets from various

fields has shown its higher performance compared to
other models (see Zhou & Feng (2019) for details).

The purpose of the current study was to fully
exploit the advantages of the DF algorithm to con-
struct a data-driven prospectivity model from re-
mote sensing data, despite the insufficient number of
known mineral occurrences. Hence, the study com-
prehensively investigated the DF capability in terms
of mapping accuracy, the model’s interpretability of
parameters, and sensitivity to the size of the training
sample. To achieve these goals, we implemented the
same ASTER dataset used by Mohamed Taha et al.
(2023) for mapping gold prospectivity in the
Hamissana area, NE Sudan.

DEEP FOREST ALGORITHM

As described in the Introduction, DF was ini-
tially introduced to overcome the complexity and
the burden of explaining the black box architecture
of DNN models. As an alternative approach, DF
was introduced as a deep ensemble classifier com-
prising multiple RFs arranged in a structure of cas-
caded layers. Notably, it diverges from relying on
the gradient backpropagation mechanism employed
by DNN (Zhang et al., 2020). The primary version of
the DF, commonly referred to as gcForest, consists
of two essential stages: multi-grained scanning and
cascaded forests (Li et al., 2022). The multi-grained
scanning enhances representation learning to pro-
cess sequence or image-style data (Zhao et al.,
2021). Because MPM data do not have sequential
relationships, this study used a simplified DF by
ignoring the multi-grained procedure.

In the cascade structure (layer-by-layer) of the
DF, every layer is made up of multiple RFs and
completely random forests (CRFs). The number of
trees in each forest as well as the number of forests is
hyperparameters. Each forest produces feature
information (i.e., an estimated class distribution or a
regression value) from the input features forming a
class vector (Fig. 1a). In subsequent phases, the
resulting class vector moves forward to the next le-
vel of the cascade. Here, it was concatenated with
the original input features, creating a new learning
problem different from that in the preceding level
(Pang et al., 2018; Su et al., 2019).

The decision to extend a new level of cascading
is adaptively determined in response to the overall
cascade’s performance on the verification set. This
makes the DF model’s complexity more adaptive
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than DNN’s because it terminates the training pro-
cess if there is no noticeable performance progress
(Zhou & Feng, 2019; Zhang et al., 2020). Hence, the
DF’s structure is advantageous because it does not
rely on the production of copious volumes of data,
making it suitable for various scales of training data.
Finally, when the cascade layers stop expanding, the
average of all the resulting probability vectors is
computed, and the prediction result is the label with
the maximum probability (Fig. 1b) (Su et al., 2019;
Li et al., 2022). As recent developments increase DF
complexity, RF or gradient boosting decision tree

(GBDT) can be used as a predictor concatenated to
the DF.

Referred to as a DF regressor, the DF is
structured by employing multiple regression forests,
which can then be used for data-driven MPM. Based
on the input target variables characterized by binary
values (1 and 0 denoting deposit and non-deposit
locations, respectively), each hidden forest produces
a floating value between 0 and 1 that represents the
possibility of mineral deposits (Fig. 2). Hence, the
dimensionality of the produced class vector in each
cascade layer is (n 9 1), where n represents the
number of forests (estimators) in the cascade layer.

Figure 1. Illustrations of the DF model: (a) decision process of a forest for class vector generation and (b) cascade forest structures.
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Therefore, the structure complexity of the DF
regressor is determined by the number of estimators,
a crucial parameter in the context of predictive
modeling for MPM. Other parameters such as the

minimum number of samples that are required for
internal node splitting and the number of trees are
well-known for training any forest because they
determine the growth of trees within the forest.

Figure 2. DF regressor with structure of three RF and three CRF in each level as an example for MPM.

Towards Data-Driven Mineral Prospectivity Mapping



APPLICATION TO MPM IN HAMISSANA
AREA (SUDAN)

Study Area and Geological Setting

The selected area for the current study is situ-
ated to the west of Hamissana, Wadi Edom, NE
Sudan. This area is bounded by latitudes 20� 22¢ N to
20� 50¢ N and longitudes 34� 00¢ E to 34� 45¢ E.
Geographically, it is positioned on the northwestern
flank of the Red Sea Hills, covering an approximate
area of 1379 km2. The study area forms a segment of
the Gabgaba terrane, one of the four Arabian Nu-
bian Shield (ANS) terranes in NE Sudan. The
Gabgaba terrane extends in a NE–SW direction,
running parallel to the Hamissana shear zone. It
extends northward to the Eastern Desert Terrane
and the Egyptian border, and westward to the city of
Atbara. The Gebeit terrane, which is determined by
the extent of the Hamissana shear zone, marks the
Gabgaba terrane’s eastern boundary. The Keraf
suture zone, which stretches westward to the Halfa
and Bayuda terranes, defines the terrane’s western
boundary (Fig. 3a).

The late Neoproterozoic rocks exposed in the
Hamissana shear zone comprise arc-related low-
grade volcano–sedimentary sequences and syn- to
post-tectonic intrusive (El Khidir & Babikir, 2013)
(Fig. 3b). These rocks are unconformably overlain
by immature sediments. The volcano–sedimentary
assemblages are related to suturing tectonic and
formed during pre- to syn-tectonic events.
Metasediment and metavolcanic sequences make up
the majority of them, and they are predominant in
the study area (Zeinelabdein & Albiely, 2008; Perret
et al., 2021). The former, which is composed of
marble, schistose turbidites, and E–W-trending
quartzite, is the oldest rock unit in the study region.
The bending is somehow visible, where the E–W-
trending shows its complete or nearly complete
rotation from the original orientation to the plane of
the deformation. Metavolcanics characterized by
low-grade meta-acid volcanic and meta-trachyte
crop out well either in surface outcrops or mountain
outcrops. In various locations, metasediments are
interlayered with metavolcanics and sometimes do
not crop out well. In other words, they have a
gradual transition that is difficult to map from re-
gional to small scales.

Both pre-to-syn-tectonic (older) and post-tec-
tonic (younger) intrusions are representations of the
magmatic assemblage. Older intrusions are com-

posed of meta-diorite to tonalite–trondhjemite–gra-
nodiorite (TTG) bodies. They occur as foliated
intrusions (i.e., affected by gneissic foliation), being
enclosed with the elder sequences (extensive
metavolcano–metasedimentary) with sharp contacts
(Mohamed et al., 2021). Secondly, the younger
intrusions are post-tectonic coarse granitic bodies,
which are non-foliated intrusions composed mainly
of porphyritic microgranite, granodiorite, and quartz
feldspar porphyry. Finally, sedimentary rocks and
superficial deposits have the presence of outcrops
that are few scattered and low-laying.

Most of the structural features in the area were
affected by the N–S Hamissana shear zones with its
E-dip. The presence of faults is the most pronounced
structure. Based on the rocks, shearing, and slick-
ensides, most faults are strike-slip with horizontal
and parallel displacement to the fault’s strike. These
faults generally trend E–W, NE–SW, and NW–SE
(Fig. 3b). Younger granites are cut by several dykes
that are oriented � N–S with steep dips to the E.
Gold mineralization occurs as shear zone-hosted
associated with intensely altered zones that are
variably zoned outward. Multiple generations of
development in quartz veins are present along/
within the mineralized intersection. Au-bearing
quartz/quartz–carbonate veins and their alteration
occurring along the shear zone and cutting/wrapping
acid metavolcanic rocks, granite intrusions and/or
small felsic intrusions (Zeinelabdein & Albiely,
2008; Zeinelabdein & Nadi, 2014; Bierlein et al.,
2015; Johnson et al., 2017; Hamimi et al., 2021;
Mohamed et al., 2021; Ahmed, 2022). The sericite
and wider halo of carbonate alteration are the main
types of alteration of the area. The high-grade parts
noticeably contain moderate to weak silicification
and occur in the strongly deformed areas with shear
zones that are wide and well-developed (Hamimi
et al., 2021; Ahmed, 2022).

Spatial Datasets

The spatial dataset of the current study con-
sisted of multispectral remotely sensed data and
geological data. All geological maps related to
lithology, faults/fractures, and locations of gold
occurrences were either acquired or digitized from
published literature (Mohamed et al., 2021) and
unpublished reports of the Geological Research
Authority of the Sudan (GRAS). The geological
datasets were stored separately in different shapefile
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Figure 3. (a) Location of the study area and regional structures and (b) geological map of the study area (Mohamed

Taha et al., 2023).
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formats (polygons, lines, and points) to be used in
generating geological-based predictor variables. The
digitization and preparation of maps were conducted
using ArcGIS 10.6.1 software.

We employed the ASTER multispectral remote
sensing data, because these demonstrated the high-
est accuracy among other datasets such as Sentinel-2
and Landsat-8, as noted by Mohamed Taha et al.
(2023). Nevertheless, because of its greater spatial
resolution, the Sentinel-2 data were utilized to map
the study area’s lineaments (see Geological-Based
Predictor Variables section below). The U.S. Geo-
logical Survey provides both the ASTER and Sen-
tinel-2 scenes as free data. Four AST_L1T level
products were acquired on December 25, 2006 and
March 31, 2007. Meanwhile, two scenes of level 1C
of Sentinel-2A were acquired on December 3, 2021.
These multispectral datasets were free of clouds and
terrain correction, meaning that the preprocessing
procedures are relatively standardized (Xi et al.,
2022; Mohamed Taha et al., 2023). We employed the
nearest neighbor method to resample the spatial
resolution of ASTER VNIR bands to match that of
the SWIR bands (30 m). Also, we utilized a spatial
resolution of 30 m for rasterizing the geological
data, including lineaments extracted from Sentinel-
2, which originally had a resolution of 15 m. Figure 4
shows the experimental process of the current study
including data preprocessing, predictor variable
generating, training the DF model, and MPM.

Remote Sensing-Based Predictor Variables

One crucial exploration criterion for gold de-
posits is the presence of hydrothermal alteration
zones/minerals (Ali & Pour, 2014; Zhang et al., 2016;
Silva dos Santos et al., 2022). Given that the
majority of alteration minerals have spectral signa-
tures in the 2.0–2.4-lm wavelength range, significant
information about these mineral assemblages can be
obtained from remote sensing data (Fu et al., 2023).
Argillic, phyllic, and propylitic alteration zones, as
well as particular alteration minerals such as hy-
droxyl-bearing, iron oxides, and clay minerals, have
all been effectively mapped in detail using ASTER
bands, particularly in the VNIR–SWIR range
(Hubbard & Crowley, 2005; Moore et al., 2008;
Zhang et al., 2016). To accomplish this, several im-
age processing methods were used, including prin-
cipal components analysis (PCA), band ratio (BR),
mineralogical indices, relative band depth (RBD),

and minimum noise fraction (MNF). The successful
implementation of these methods facilitates the
generation of various thematic layers representing
different alteration zones. These layers, after being
normalized to the range of [0, 1], were then used as
inputs for the predictive model. Table 1 lists all
methods that were utilized to produce distinct the-
matic maps of the targeted alteration minerals and
zones.

For minerals and lithology mapping, BR is a
very efficient enhancement technique and is one of
the most useful image processing techniques (Sa-
bins, 1999; Inzana et al., 2003; Son et al., 2022). This
method not only reduces the topographic effect but
also enhances the spectral contrast for certain
absorption features. Highlighting the spectral con-
trast of minerals or materials planned to map, BR is
achieved by dividing one spectral band by another
(Pour et al., 2018; Bolouki et al., 2019). Based on
spectral characteristics of ASTER data, five BR
images were produced for mapping hydroxyl-bear-
ing, ferric iron, ferrous iron, alunite, and calcite
(Fig. 5a–e). For visual aid, the histogram of each
generated image was divided into seven intervals
using the natural break (Jenks) method, with the
first three higher intervals categorized as high,
moderate, and low (Fig. 5).

The mineralogical index is another technique
that maps relative abundance of specific minerals
using mathematical band combinations. This meth-
od uses spectral or thermal indices to indicate sur-
face emissivity or reflectance at various wavelengths
(Sabins, 1999; Ninomiya, 2003; Zhang et al., 2016;
Bolouki et al., 2019; Rajan Girija & Mayappan,
2019). Unlike BR and RBD, mineral indices use
different mathematical operations and some con-
stant values, and so it is more complex and fixed to
target a specific mineral using specific remote sens-
ing data. Four mineralogical indices were utilized in
this study, namely hydroxyl-bearing index (OHI),
calcite mineral index (CLI), alunite mineral index
(ALI), and kaolinite mineral index (KLI) (Fig. 5f–i).

RBD is the extended version of BR, which in-
cludes a three-point ratio formulation. It is calcu-
lated by dividing the total number of shoulder bands
by the closest band in order to identify the usual
absorption signature of a particular mineral or
alteration zone. Argillic, phyllic, and propylitic
zones were mapped using RBD1 (4 + 6/5), RBD2
(5 + 7/6), and (6 + 9/7 + 8), respectively (Fig. 5j–l).

Unlike the aforementioned methods, PCA and
MNF are more complex statistical techniques, which
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dissolve the reduction in the spectral data. These
techniques enhance the remote sensing imagery by
transforming information about bands into a new set
of data. In other words, they exploit data variability
to re-express the original information into a full
description of the information in fewer variables.
Because each principal component (PC) is formed
from uncorrelated linear combinations of values or
eigenvector loadings, the resulting dataset (PC

components) in the PCA technique shows reduced
variance. The computation of these eigenvectors
takes place inside a covariance matrix, which rep-
resents the statistical connections between each PC.
Likewise, the covariance matrix is used by the MNF
technique to extract and rescale the noise in the
data. The eigenvalue corresponding to each MNF
component determines noise reduction and whiten-
ing in the transformed dataset.

Figure 4. Flowchart of the experiment.
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In the practice of mineral mapping, PCA ap-
pears to offer greater objectivity. Utilizing four se-
lected bands, a modified version of PCA objectively
indicates mineral locations through the representa-
tion of bright or dark pixels. This technique is re-
ferred to as the feature of oriented PC selection, also
called the Crosta technique (Loughlin, 1991; Crosta
et al., 2003; Bahrami et al., 2018). Based on prior
understanding of an object’s spectral characteristics,
the user chooses these bands (e.g., alteration zone).
Two significant loadings with opposing signs indicate
the reflectance signature of the targeted min-
eral/zone that is mapped in one of the PCs. For in-
stance, argillic alteration is mainly recognized by
kaolinite, which shows high Al-OH spectral
absorption corresponding to ASTER band 6. In this
regard, bands 1, 4, 6, and 7 were used to map argillic
zones. Hence, PC4 exhibited the typical spectral
signature, with strong and oppositely sign loadings in
bands 6 and 7. Similarly, phyllic, propylitic, iron
oxides, and hydroxyl-bearing zones were mapped
using the Crosta technique (Fig. 5m–q).

Conversely, the interpretation of MNF bands is
subjective to the visual interpretation and the user’s
prior knowledge because these bands merely dif-
ferentiate between areas in the original images. In
other words, the MNF images derived from the raw
data are just statistics and do not indicate any min-
eral occurrences. Nine ASTER bands in the VNIR–

SWIR spectrum were subjected to MNF transfor-
mation in this study. During the screening of re-
sulted images, we focused on the dark and bright
pixels that correspond to alteration zones. Subse-
quently, MNF3, MNF4, and negated MNF2 were
selected as predictive variables (Fig. 5r–t).

Geological-Based Predictor Variables

To produce more supplementary thematic maps
of ore-controlling factors, geological data were ras-
terized using spatial analysis methods. Faults rep-
resent differential stress changes and deformation
resulting from tectonic activity, serving as direct
indicators of fluid migration and mineral precipita-
tion. Numerous orogenic gold deposits in the Red
Sea Hills are well-documented to be situated in
zones characterized by the same linear structures as
the shear zone azimuth (Zeinelabdein & Albiely,
2008; Zeinelabdein & Nadi, 2014; Mohamed et al.,
2021). Consequently, faults with varying azimuth
directions (NE–SW and NW–SE) were utilized to
generate two predictor maps using the Euclidean
distance method (Fig. 6a, b).

Lineaments are considered the best channels
for the movement of hydrothermal solutions either
from the source to the deposition or through dif-
ferent depths and lithologies (Abdelkareem & Al-

Table 1. Remote Sensing Enhancement Methods applied to ASTER Data for Mapping the Targeted Minerals

Method Targeted mineral Bands used References

Band ratio (BR) Hydroxyl-bearing 4/6 Mahdevar et al. (2014), van der Meer et al. (2014), Bolouki et al. (2019),

Rajan Girija and Mayappan (2019), Abdelkareem and Al-Arifi (2021)Ferric iron 2/1

Ferrous iron (5/3) + (1/2)

Alunite 4/7

Calcite 4/5

Relative band

depth (RBD)

Argillic (RBD1) (4 + 6)/5 Zhang et al. (2016), Bolouki et al. (2019), Rajan Girija and Mayappan

(2019), Abdelkareem and Al-Arifi (2021)Phyllic (RBD2) (5 + 7)/6

Propylitic (RBD3) (6 + 9)/(7 + 8)

Mineralogical in-

dices

Hydroxyl-bearing

(OHI)

(7/6) 9 (4/6) Ninomiya (2003), Rajan Girija and Mayappan (2019), Abdelkareem and

Al-Arifi (2021)

Kaolinite (KLI) (4/5) 9 (8/6)

Alunite (ALI) (7/5) 9 (7/8)

Calcite (CLI) (6/8) 9 (9/8)

Minimum noise

fraction (MNF)

Related to

hydrothermal

alteration

The first three that

show fair relation

Principal compo-

nents analysis

(PCA)

Hydroxyl-bearing 1, 3, 4 and 6 Bahrami et al. (2018), Bolouki et al. (2019)

Iron oxides 1, 2, 3 and 4

Argillic 1, 4, 6 and 7

Phyllic 1, 3, 5 and 6

Propylitic 1, 3, 5 and 8
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Arifi, 2021). Hence, they represent structural
weaknesses and fracture zones associated with
hydrothermal deposits (Pour & Hashim, 2014; Pour
et al., 2016; Abd El-Wahed et al., 2021). In the study
area, valleys and drainages seem to be structurally
controlled. Therefore, we employed Sentinel-2 data
to automatically extract lineaments as an indirect
indicator for gold deposits. PC bands showed line

features better than the original bands. Subse-
quently, we extracted the lineaments from PC5 using
PCI Geomatica software. Thereafter, we generated
a density map of lineaments to display the distribu-
tion of lineaments in the study area (Fig. 6c).

The contacts of older/younger intrusions and
metasediments/metavolcanics became the locus of
gold deposits. Moreover, the ring of younger intru-

Figure 5. Remote sensing-based predictor variables derived from ASTER data: (a) hydroxyl-bearing ‘‘BR 4/6’’; (b) ferrous iron ‘‘BR (5/

3) + (1/2)’’; (c) ferric iron ‘‘BR 2/1’’; (d) calcite ‘‘BR 4/7’’; (e) alunite ‘‘BR 4/5’’; (f) hydroxyl-bearing ‘‘OHI’’; (g) calcite ‘‘CLI’’; (h)

alunite ‘‘ALI’’; (i) kaolinite ‘‘KLI’’; (j) argillic ‘‘RBD1’’; (k) phyllic ‘‘RBD2’’; (l) propylitic ‘‘RBD3’’; (m) hydroxyl-bearing ‘‘PC4 derived

from bands 1, 3, 4, and 6’’; (n) iron oxides ‘‘PC2 from bands 1, 2, 3, and 4’’; (o) argillic ‘‘PCA4 from bands 1, 4, 6, and 7’’; (p) phyllic ‘‘PC4

from bands 1, 3, 5, and 6’’; (q) propylitic ‘‘PC3 from bands 1, 3, 5, and 8’’; (r) MNF1; (s) MNF2; and (t) MNF3.
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sion in the northeastern part is highly sheared and
contains several dykes that are associated with dif-
ferent types of alteration minerals (hydroxyl-/iron-
bearing minerals). The Euclidean distance method
was also employed to produce a predictor map of
the intrusive rock contact zone (Fig. 6d).

Target Variables

DF represents a supervised learning model,
which requires labeled samples (also called target
variables) of the studied phenomena. The target
variables in the MPM context are binary values 1
and 0, which represent the locations of mineral
occurrences and non-occurrences, respectively.
Training and validating the predictive model are
carried out using these values. For occurrence
locations, we used the locations of 25 Au occur-
rences. The following processes were used to select
25 samples of non-occurrence sites, which corre-
sponded to a value of 0:

1- Use predictor variables to produce a clustered
map, where the locations of non-occurrences
are defined given the clusters that do not have
agreement with the spatial distribution of gold
occurrences (see Mohamed Taha et al. (2023)
for details).

2- Apply three selection criteria (Carranza et al.,
2008; Carranza & Laborte, 2015a, 2015b): The
non-occurrences should be (i) in line with
mineral occurrences, (ii) quite distal from the
occurrence locations, and (iii) randomly dis-
tributed across the study area.

Comparison with the State-of-Art Methods

As demonstrated in a previous MPM study
(Mohamed Taha et al., 2023), RF model demon-
strated significant performance with ASTER data.
In addition to RF results, we also trained two well-
known models, namely SVM and ANN, for com-
parative evaluation against the DF model in terms of

Figure 6. Geological-based predictor variables used in training predictive models: (a, b) proximity to NE-SW and NW-SE faults,

respectively; (c) density of lineaments; and (d) proximity to intrusions.
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prediction accuracy. RF is an ensemble learning
model that uses the decision tree (DT) as the basic
model and outputs the mode of the classes (classi-
fication) or the mean prediction (regression) of the
individual trees (Breiman, 2001). It utilizes the
bootstrapping technique to decorrelate the individ-
ual trees and reduce overfitting. SVM is a classifier
developed after statistical theory, which aims to
define a hyperplane that effectively separates in-
stances in the original feature space into different
classes, maximizing the margin between classes
(Vapnik, 1999). The parameters of SVM, such as the
regularization parameter (C) and the choice of the
kernel function, play crucial roles in balancing the
trade-off between maximizing the margin and min-
imizing classification errors. ANN is a network of
neurons-based model, where data are processed in a
unidirectional flow by interconnected layers of
nodes (neurons) (Brown, 2002). The art of designing
the architecture of neural networks involves care-
fully crafting the arrangement of layers, the number
of neurons in each layer, and the connections be-
tween them, with the aim of optimizing performance
for a given task while avoiding overfitting and
computational complexity.

Induction of DF Model and Performance Indicators

The DF was developed as a package in the
Python programming language (https://deep-forest.
readthedocs.io/en/stable). The crucial parameters
that affect the DF’s performance and must be de-
fined are the number of forests in each cascade layer,
the number of trees in each forest, the lowest

quantity of samples needed for an internal node
splitting, and the number of feature discrete bins.
Table 2 illustrates the hyperparameters’ range of
optimization. Meanwhile, the default setting of 20
was used as the maximum number of cascade levels
and 2 for the number of tolerant rounds for the
automatic stopping of cascade layers. We trained
two DF models, one with a predictor concatenated
to the DF, and the other without a predictor. For
simplicity, we chose the RF as the model predictor.

To avoid biased comparison resulting from
using the parameters’ default settings, we sought the
optimal parametrization for each model (RF, SVM,
and ANN). Each model�s optimal value for each of
its parameters was assessed by employing a manual
grid search procedure. In this step, we used the mean
square error (MSE) to evaluate the prediction per-
formance generated from all possible parameter
combinations. Based on the suggestion of previous
studies (Porwal et al., 2003; Badel et al., 2011; Zuo &
Carranza, 2011; Rodriguez-Galiano et al., 2014;
Carranza & Laborte, 2015a, 2015b; Rodriguez-Ga-
liano et al., 2015; Sun et al., 2019, 2020b), we defined
the values range of key parameters for each model
(Table 2). At this stage, the first split ratio (train-
ing—70%; testing—30%) was used to train and
evaluate different models in terms of prediction and
classification accuracies. Utilizing the remaining two
split ratios (60–40% and 50–50%), the sensitivity of
DF models to the amount of training samples was
evaluated.

The performance of MPM models was com-
prehensively evaluated by the success-rate curve,
receiver operating characteristic (ROC) curve, and
confusion matrix. The last was employed to evaluate

Table 2. Sets of Parameters used for Training ML Predictive Models

Model Parameter Range

RF Number of trees 50, 100, 200, 250, 300, 400, 500

Number of features 2–12 (at 2 intervals)

SVM Gamma 0.05–1 (at 0.05 intervals)

Cost 0.1, 0.5–5 (at 0.5 intervals), 7.5, 10, 20, 25, 30, 40, 50, 75, 100

ANN Activation function in hidden layers Sigmoid, ReLU

Learning rate 0.001, 0.01, 0.1

Optimizer Adam, RMSprop

Batch size 2, 5, 10, 14, 18, 20, 30, 35

Number of neurons 4, 8, 16, 32, 64, 128

DF Number of trees 100–1000 (at 100 intervals)

Number of estimators 2–12 (at 2 intervals)

Number of bins 2–255 (at 2n, n = + 1 intervals)

Minimum sample to split 2–12 (at two intervals)
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classification accuracy by generating a set of six
statistical metrics that accurately elucidate the
model results. It is important to mention that the
classification accuracy was derived by classifying the
prediction result (regression floating value from 0 to
1) to binary values using a threshold value of 0.5,
whereby the grids designated as prospective areas
were those whose values exceeded the threshold
value, while the remaining grids were considered
non-prospective. The confusion matrix was calcu-
lated by comparing the prospectivity classes between
the testing data and the model prediction, which can
be categorized into true positive, false positive, true
negative, and false negative. Based on these four
categories, statistical metrics can be generated
including overall accuracy, positive predictive value,
negative predictive value, sensitivity, specificity, and
Kappa. In the meantime, a thorough assessment of
the prediction performance of models was con-
ducted using the ROC curve and success-rate curve.
These graphical displays explain the anticipated
outcomes in a binary classification system and pro-
vide insights into the model’s accuracy across a
range of discriminating thresholds. By assessing the
curves, we gain a nuanced understanding of how the
models perform under different thresholds. Details
about these performance indicators can be found in
Nykänen et al. (2015), Rodriguez-Galiano et al.
(2015), Barsi et al. (2018), and Sun et al. (2020b).

RESULTS

Sensitivity of DF Model to Parameter Configuration

Because there is no empirical rule for defining
the optimal parameters of any ML model, parameter
configuration plays an important role in a model’s
robustness and error generalization capability.
Consequently, training a new model for diverse
application backgrounds, such as MPM, becomes
more challenging due to the uncertainties and lack
of literature defining the acceptable range of values
for each key parameter. Figure 7 shows the sensi-
tivity results of MSE obtained by various parameter
combinations of the DF, while Table 3 details the
significant differences in MSEs among different
models. The results indicate that the DF model had
robustness that was comparable to RF and outper-
formed the other models, affirming the error gen-
eralization capability of ensemble learning. In
general, employing a predictor with the DF model

enhanced the accuracy in comparison with DF
without predictor, yielding a prediction with an MSE
lower than 0.09.

Both DF models, with/without predictor,
exhibited similar hyperparameter tuning patterns
including the number of bins (4), the number of
estimators (2), and the minimum samples to split (2).
However, the number of trees differed between the
two models: 200 trees in the case of concatenating a
predictor and 300 trees in the case of the DF without
a predictor (Fig. 7). Although the MSEs during the
training of the DF were, on average, lower than
those of SVM and ANN, the DF models demon-
strated a notable sensitivity to variations in internal
configuration. Apart from the optimal values of key
parameters, the MSEs exhibited significant fluctua-
tions with different parameter settings. This vari-
ability appeared clearly when considering the
number of estimators in the case of the DF without
predictor (Fig. 7c). Nevertheless, in the context of
prospectivity modeling, the DF models in this study
showcased high performance with relatively
uncomplicated architecture. Increasing those
parameters related to the model architecture (e.g.,
the number of estimators in each cascade layer and
the number of trees in each estimator) did not nec-
essarily result in an observable decreasing trend in
MSE. This indicates that complex models, with high
computing costs, do not conclusively result in more
accurate predictions. The observed outcomes can be
explained by the relatively modest size of training
datasets, which usually comprise a few dozen loca-
tions of both non-deposit and deposits. Such limited
datasets make it easy to train models and achieve
the requisite precision; however, the risk of overfit-
ting increases when employing complex architec-
tures and conducting excessive training.

Performance Assessment of DF Predictive
Modeling

Figure 8 illustrates predictive maps accompa-
nied by positive training samples of gold occur-
rences. These maps display the likelihood of gold
prediction generated by ML models trained using
the best parameter combinations. Because the like-
lihood scores of gold are floating values from 0 to 1,
prospective areas were identified by ML output
values greater than 0.5, while non-prospective tracts
are identified by values less than or equal to 0.5.
According to such a classification scheme, the clas-
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Figure 7. MSE-based mapping accuracy for every combination of parameters used during DF model training: left panel—DF without

predictor and right panel—DF with predictor.
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sification reports of the confusion matrix derived
from the 30% testing dataset are listed for all ML
models in Table 4. Based on all six statistic indica-
tors, the DF notably outperformed the rest of the
models. Except for the specificity value, which is
equivalent to that of the ANN model (85.7%), the
other indicators exhibited significantly higher values.
Specifically, the overall accuracy of the DF model
was 93.3%, approximately 13% higher than the
subsequent lower-performing model. The sensitivity
and negative prediction value were almost 100%,
indicating that the DF model identified all the
occurrence locations and the predicted grids as non-

occurrence are actually non-occurrence areas. The
results of RF and SVM were similar, which yielded
the worst classification accuracy.

To further evaluate the gold prospectivity map
derived by the DF model, both the success-rate
curves and the ROC curve efficiently evaluated the
prediction accuracy of high-confidence zones. The
ideal scenario of the ROC curve is a straight line
corresponding to an area under the curve (AUC) of
1, which indicates a probability of the occurrence�s

Table 4. Classification Report for Every Predictive Model

Indicator RF SVM ANN DF

Sensitivity (%) 73.2 73.2 80.4 99.8

Specificity (%) 71.4 71.4 85.7 85.7

Positive predictive values (%) 73.2 73.2 80.4 88.9

Negative predictive values (%) 71.4 71.4 75 99.8

Overall accuracy (%) 73.3 73.3 80 93.3

Kappa 0.646 0.646 0.602 0.865

Figure 8. ML-based predictive maps of gold prospectivity obtained using (a) RF, (b) SVM, (c) ANN, and (d) DF.

Table 3. MSEs Showing the Accuracy of Each Predictive Model

RF SVM ANN DF—with P DF—without P

Min 0.096 0.134 0.124 0.095 0.110

Max 0.117 0.396 0.301 0.197 0.182

Avg 0.103 0.185 0.189 0.152 0.162
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samples compared to those of non-occurrence.
Contrariwise, the AUC values decrease in situations
when there is a high probability of the non-occur-
rence grid or a low probability of the occurrence
grid. Figure 9 shows the ROC curves and the AUC
values of the four trained models. There was good
performance of RF and ANN with similar AUC
values of 0.875, while the SVM was less accurate.
However, the ROC results further indicate the
superiority of the DF in prediction performance
over the rest of the methods with an AUC value
reaching up to 0.9647.

The success-rate curve shows how known min-
eral occurrences are estimated based on various
percentages of potential regions created by applying
changing threshold values. In this regard, the dif-
ferent slopes of the success-rate curve straightfor-
wardly indicate different prospective zones (high,
moderate, and low). Subsequently, the model that
captures a higher percentage of mineral occurrence
in the smallest possible region has more prediction
capability, corresponding to a steeper curve. The
success-rate curves of the different ML models and
the three regression lines with different slopes that
classify the DF prospectivity map are shown in
Figure 10. The success-rate curve of the DF map was

closer to the upper left corner, which indicates the
high ability to capture all the gold occurrences in a
smaller area (26.6%) compared to the rest of the
models. Thus, other ML models needed larger
prospective regions (RF—37.8%, SVM—61.5%, and
ANN—60.8%) to reach a success rate similar to of
the DF model. It can be observed how the success-
rate curves of the DF and RF models started simi-
larly and steeper than the SVM and ANN models,
capturing about 60% of gold occurrences in less than
10% prospective area.

Figure 11 shows the DF classified map of dif-
ferent gold prospectivity zones based on the
thresholds derived from the three regression lines of
the success-rate curve. From a visual point of view,
the most favorable tracts revealed by the modeling
results are roughly concentrated in the northern
region of the study area. These tracts are spatially
distributed around the syn-tectonic intrusions in the
upper middle part and around the post-tectonic
intrusions in the upper right corner and the lower
middle part. Beside several distributed bodies (i.e.,
dykes) with NE–SW trends, other favorable tracts
are mainly distributed in the metasediment and
metavolcanic units.

Figure 9. ROC curves and AUC values for every ML model.
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Impact of Training Sample Sizes on DF Model

As mentioned previously, two different split
ratios were used to test the sensitivity of the DF
models to the reduction in the training sample size.
The results are shown in Figure 12. The initial
hypothesis was that the models would react gradu-
ally to the target variable reduction. However, it can
be observed that the initial reduction of 10% unex-
pectedly increased the accuracy for both models
with/without predictor. Although the OA slightly

dropped (90%) in the case of the DF without pre-
dictor, better results of MSE and AUC took place
compared to the original split ratio (70–30%). For
the second split ratio (50–50%), corresponding to 12
positive occurrences, both the classification and the
prediction accuracies experienced a decrease,
reaching 84% OA, 93.5% AUC, and 0.136 MSE in
the case of the DF with predictor, which marked the
least favorable outcomes among the DF models.
Nevertheless, the observed outcomes persisted in
surpassing those of other models derived from

Figure 10. (a) Success-rate curves of all predictive models and (b) success-rate

curve of DF model.
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training samples without data reduction. These re-
sults denote that the DF model can adequately do
deep learning with automatic ability to decide model
complexity, which makes it more convenient for
MPM than classical ML or DNN methods.

DISCUSSION

One of the key applications of remote sensing
data is geological investigation in general and min-
eral mapping in particular. Several factors impede
the applicability of utilizing remote sensing data in
data-driven MPM: (i) judgment-related: the diffi-
culty of specifying a mineral deposit model or
selecting targeting criteria in the early stage of
exploration; (ii) data-related: the capability of re-
mote sensing data to produce accurate mappable
layers of the ore-forming factors as well as the
insufficient number of know deposits/occurrences;
and (iii) model-related: the capacity of the algorithm
of choice to learn complex relations between the

predictor maps and generate an accurate prediction.
To comprehensively analyze these factors and dis-
cuss the feasibility of the current study, it is impor-
tant to comprehend the workflows of both the MPM
and remote sensing mineral mapping.

Traditionally, the MPM workflow involves
defining a conceptual model of a mineral deposit,
which therefore controls the selection of geoscience
spatial data and the creation of predictor maps. The
methods for studying the correlation between the
predictor maps and the locations of mineral deposits
vary between quantitative analysis (data-driven
methods) and expert judgment (knowledge-driven
methods). Recently, a workflow of MPM based on
Geodata Science (GSMPM) has been proposed,
which either mines the original geoscience data or
utilizes them to statistically analyze their spatial
correlation with mineral deposits. The initial goal of
remote sensing mineral mapping is to identify the
spatial distribution of dominant minerals (specifi-
cally altered minerals), which makes the latter field
investigation more convenient (i.e., geoscience in-

Figure 11. DF classified map of gold prospectivity using success-rate curve threshold values.
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sight into mineral deposits). However, mineral
abundance maps were barely used in further
regression analysis (generating continuous values for
a specific mineral). The utilization of these maps
mostly focuses on classification tasks to generate
altered mineral classified maps as the final product.
In the meantime, fuzzy logic was the most utilized
method with remotely sensed data, which is re-
garded as knowledge-driven MPM. Because remote
sensing data have spectrum characteristics, several
ML and DL models were developed to study the
relationship between the spectral features and the
desired targets. Various DNN models achieved high
accuracy in identifying altered minerals using mul-
tispectral/hyperspectral satellite data or indoor re-
flectance spectra (Gewali et al., 2018; Holloway &
Mengersen, 2018; Tanaka et al., 2019; Zhang et al.,

2022). Such studies can help the future work of
GSMPM and geological prospecting big data
(GPBD).

In the current study, we attempted to enlighten
the feasibility of data-driven MPM based on remote
sensing data by addressing some of the aforemen-
tioned issues. Despite the advancements in studying
mineral deposit models, our comprehension of ore-
forming processes remains limited and imperfect.
Such comprehension varies across different scales of
geological investigation (regional or detailed) and
keeps changing based on the updates derived from
observations and measures. Remote sensing data
can re-express the targeting criteria of several min-
eral deposit models at different times and scales.
Mineral deposit models characterized by
hydrothermal alteration or structures as significant

Figure 12. Effect of training sample size on mapping accuracy of DF predictive models.
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targeting criteria can be studied effectively using
remote sensing data. Similar to the way of process-
ing geochemical and geophysical data for mapping
targeting criteria using interpolation and transfor-
mation methods, we also emphasized the need for
utilizing remote sensing enhancement techniques
rather than using original spectra information. We
tried to use objective methods such as BR, RBD,
mineral indices, and PCA, or carefully utilized sub-
jective methods such as MNF and lineaments
extraction. We successfully generated 20 predictor
maps from ASTER data representing different
hydrothermal alteration zones (argillic, phyllic, and
propylitic) and altered minerals (hydroxyl-bearing
and iron oxides), and one map from Sentinel-2
represents tectonic lineaments. Although some of
the predictor maps have relatively similar spatial
distributions of minerals, the histograms of these
maps have different shapes and intensity distribu-
tions, which increases the statistical variation,
allowing the model to capture distinct information
from each map. This clearly appears in the feature
importance analysis of RF model, where the
importance values vary among these similar maps
(see Mohamed Taha et al. (2023), Fig. 16). Overall,
data quality and availability determine the success-
ful implementation of data-driven MPM. Compared
to other geoscience data, remote sensing data are
the most available at different times with the ability
to express multiple geological features simultane-
ously including minerals, lithology, and structures.

The present study fundamentally addressed the
ongoing necessity to introduce new robust methods
that are adaptive and efficient (model-related is-
sues). To overcome the limited number of known
deposits, it is well-known that ensemble classifiers or
cost-sensitive learners can be applied (Zhou & Liu,
2005; Zuo, 2020). Following the ensemble learning
approach, which posits that multiple predictors
usually outperform a single predictor, we proposed
the DF ensemble model for data-driven MPM. The
DF model has two ensembling ranks (ensemble–
ensemble structure), the first rank is the ensemble of
decision trees inside the forest and the second is the
ensemble of forests that form the deep forest. By
introducing diversity (i.e., using two types of forests,
CRF, and RF) and cascade layers arrangement, the
structure of the DF model ensures the deep learning
characteristics. Such a structure brings more
advantages than those in DNN models including
robustness to overfitting (especially when dealing
with small or noisy datasets), scalability, feature

learning, efficient training (in both computational
resources and training time), and interpretability.

The results of the study show that the simplified
version of the DF with hyperparameters tuning had
superiority over RF, ANN, and SVM, even though
the DF model was trained using 50% of the training
samples. Although the simplified DF model
achieved an excellent performance, the DF has some
limitations and various architectures and techniques
can be applied to increase its performance. Several
studies reported the difficulty of implementing the
DF model when training large datasets because of
the high consumption of memory and time (Pang
et al., 2018; Ma et al., 2022a). The reason for this is
that multi-grain scanning (though not applied in this
study) generates a large number of instances, and all
these instances should pass all the cascade layers up
to the final prediction. Different models were pro-
posed to overcome that shortage such as the DF
with different screening techniques (confidence,
hashing, and window screening), adaptive weighted
DF, or multi-label learning DF (Pang et al., 2018;
Sun et al., 2020a; Ma et al., 2022a, 2022b). Although
not having a backpropagation procedure is one of
the DF advantages, it could be argued that finding a
mechanism to adjust the initial parameters of each
forest (similar to adjusting weights in a neural net-
work) can lead to better performance. Similar to the
state-of-art architectures of DNN, the structure of
the DF model can be utilized with different archi-
tectures and various basic classifiers (SVM, ANN,
RF, and CRF), which could pave the way for deep
ensemble learning approaches beyond traditional
neural networks, expanding the possibility of non-
neural network deep learning.

CONCLUSIONS AND FUTURE WORK

In data-driven predictive MPM, ML techniques,
especially deep learning ones, necessitate a large
number of training occurrence/deposit locations
(e.g.,> 15). However, as proposed in this study, the
DF algorithm, which is a novel tree-based ensemble
model recognized by representation learning and
large model capacity, can be used in remote sensing-
based data-driven MPM. Based on the experimental
results of gold prospectivity in the Hamissana area,
NE Sudan, we conclude that our DF model, trained
with a few training locations, achieved promising
performance that surpassed the results of conven-
tional ML models, including SVM, RF, and ANN.
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As ongoing research, the DF can emerge as a
potential alternative to the neural networks for
MPM studies. Therefore, further validation is
essential, involving testing the deep forest model in a
standard MPM scenario with access to multisource
geoscience big data. In such a case, a comparative
analysis will be conducted against a neural network
deep learning model, such as a CNN. Moreover, the
feasibility of employing the DF algorithm for remote
sensing MPM studies needs further evaluation,
extending to diverse geographical areas and varying
mineral deposit types.
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