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H I G H L I G H T S  

• Use the ETR method to increase the data stationariness. 
• Propose a new hybrid model for energy forecasting. 
• Use six different energy time series datasets. 
• The hybrid model with the ETR method provides the best results. 
• The proposed methods yield the best results for lengthy and short data periods.  

A R T I C L E  I N F O   

Keywords: 
ETR 
Time series forecasting 
Hybrid model 
ANN 
LSTM 
Energy 

A B S T R A C T   

Due to weather and political fluctuations that significantly impact the production and price of energy sources, 
enhancing data distribution and reducing data complexity is crucial to achieving accurate forecasting. Addi-
tionally, it is essential to provide a flexible forecasting model capable of handling rapid changes in the energy 
market and effectively anticipating energy supplies and demands. This study introduces a novel method to deal 
with energy market fluctuations in the long and short term and provide highly accurate forecasts for various 
energy data. It uses the Enhancing Transformation Reduction (ETR) method to improve the stationarity of the 
data, reduce seasonality and trend, and resolve rapid fluctuations. The output of ETR is then passed into a hybrid 
forecasting model referred to as “ Time-Series Forecasting Model using Long Short-Term Memory integrated with 
Artificial Neural Networks” (TLIA). The TLIA model benefits from transfer learning, which transmits the output 
of the LSTM layers into the ANN layers, enabling TLIA to base its work on the best performance and continue 
improving it. The study evaluates and tests its methods using six different datasets, including the electricity 
dataset of Victoria State, the oil price for the West Texas Intermediate, the Elia Grid load dataset, and wind power 
production. In addition to its characteristics, ETR accelerates and enhances the TLIA processing to achieve the 
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highest accuracy compared to seven forecasting models in all six datasets. The TLIA is often 40 times or more 
superior to competing models. Compared to another model, the Mean Absolute Error (MAE) results of TLIA range 
between (0.008 and 0.088) versus (0.77 and 4318.544).   

1. Introduction 

Renewable and non-renewable energy needs have grown to affect 
many parts of our society, making this one of the most difficult issues of 
the 20th century. Therefore, protecting energy availability is a crucial 
target on a global scale [1]. Energy is imperative for sustaining social 
welfare and economic growth, raising living standards, and achieving 
social security [2]. Energy resources are considered a pivotal factor in 
economic and sustainable development [3,4]. Hydrocarbon resources 
and renewable energy are the primary supply energy sources worldwide 
[5]. Renewable energy and fossil fuels are used in every part of 
contemporary society [1,5]. The remarkable demand for energy has 
escalated significantly due to the technological revolution in different 
industrial sectors and infrastructure development. Thus, it is important 
to find a technique that has the capability to forecast energy supplies/ 
demand accurately. In the 20th century, machine learning (ML), 
including deep learning (DL) methods, has emerged as the most cutting- 
edge technology that could provide an accurate forecast in various 
aspects. 

Energy supply, demand, and pricing fluctuate continuously during 
the day, month, and year. In this context, forecasting energy fluctuations 
is a precise way to avoid energy sector uncertainties [6]. The reliability 
of forecasting in the energy market sectors is [1] regularly a main pre-
dictor in planning and making decisions for companies, investors, and 
governments [7,8]. Numerous studies have been conducted to forecast 
the energy sectors, including oil price [8,9], oil production and con-
sumption [10,11], wind energy [12–14], electricity price [7,15,16], 
electricity load [16–18], and solar energy [19]. Moreover, due to the 
volatile, nonlinear, complicated, and chaotic properties of energy gen-
eration and price, it has always been challenging to correctly anticipate 
the direction of the energy market time series, particularly in light of 
recent weather and energy price fluctuations [12]. As a result, previous 
studies demonstrated the significant role of forecasting techniques in the 
energy sector [18]. The role of machine learning and deep learning in 
the energy sector has blossomed significantly as the optimal approaches 
for predicting energy prices, supplies, and demands. 

Machine learning (ML) has emerged as an alternative approach for 
conducting energy forecasting and surveillance. Its main target is to use 
automatic learning to build a reliable energy forecasting model [20]. 
Machine learning has attained remarkable performance when fore-
casting renewable and fossil fuel energy. Furthermore, several studies 
were conducted to establish ML algorithms that could forecast energy 
supply and demand. Previously, traditional approaches for forecasting, 
such as the autoregressive integral moving average, random walk, 
generalized autoregressive conditional heteroscedasticity, and vectorial 
autoregression, have been utilized [21]. Traditional approaches have 
acceptable predictive effects for variables with linear correlation, but 
they cannot identify the nonlinear properties of time series data. 
Consequently, with the growth of machine learning, several improved 
approaches for processing nonlinear data have been developed [21]. 

For nonstationary and nonlinear carbon price forecasting, [22] 
suggested a new multiscale nonlinear ensemble learning paradigm that 
uses empirical mode decomposition (EMD) to simplify the data and a 
least square support vector machine (LSSVM) with a prototype kernel 
function. In [23], the authors divided data processing into two stages. 
First, the carbon price network transferred the carbon price data to map 
the price based on the coarse granulation method. The second stage 
effectively extracted information fed from the first stage to reconstruct 
the original carbon price data using the topology structure. Principal 
component analysis (PCA) was utilized by [24] to transform the input 

dataset into a subset containing the most informative factors. The PCA 
output was input into various ML prediction methods to forecast the 
carbon price; the PCA results sped up the prediction process but 
decreased its precision. Alrassas et al. [25] developed a time series 
forecasting model for oil production using oil production data. They 
integrated an adaptive neuro-fuzzy inference system and a slime mould 
algorithm to develop the model, and the results show a remarkable 
performance for forecasting oil production. Lee J. et al. [18] compared 
traditional forecasting, machine learning, and the hydride model to 
identify the optimal peak load prediction models for electricity load in 
Korea. Machine learning demonstrated high performance in forecasting 
the peak load forecasting model for electricity. Al-qaness et al. [13] 
developed an efficient machine-learning model to forecast wind power 
energy. The authors employed an optimized dendritic neural regression 
(DNR) with an integrated seagull optimization algorithm and Aquila 
optimizer to train and optimize the DNR parameters. The performance 
of the developed forecasting model reveals excellent results. Yang W 
et al. [26] developed an advanced forecasting model for electricity 
prices using an adaptive data preprocessing algorithm, a kernel-based 
extreme learning machine, and a chaotic sine cosine algorithm. The 
integrated model demonstrated high performance with excellent results. 
Ultimately, the application of machine learning to fossil and renewable 
energy has gained more attention due to its capability to tackle the is-
sues of energy models and predict them effectively. Although the ML 
approaches have offered adequate performance and continue to be uti-
lized, they cannot handle more complicated or large datasets. Numerous 
researchers have converted to deep learning techniques for this and 
other reasons. 

The numerous innovations in the domain of neural networks (NNs) 
have given rise to deep learning [27]. Deep learning techniques were 
developed and have been employed to tackle various predicting issues 
for several years [19]. The application of deep learning for forecasting 
the energy sector has dramatically increased due to its high efficiency 
and ability to achieve optimal results [19,28,29]. DL models were 
developed for use in computer science domains, e.g., hyperspectral 
image classification [30], carbon trapping [31], and natural language 
processing [32]. Recently, DL has expanded to several applications in 
the field of energy sectors. Because the artificial neural network (ANN) 
model provides high precision and rapid processing, it was utilized to 
forecast oil production or extraction [33]. Lago et al. [27] developed an 
efficient DL framework to predict electricity prices. The results indicate 
that the deep learning models achieve excellent performance. Chen et al. 
[34] applied data augmentation to predict wind power, considering the 
physics-oriented and data-oriented time-series wind data augmentation 
approaches. The advanced augmentation method and predicting algo-
rithm are engaged over five turbines. The results point out that the data- 
oriented outperformed the physics-oriented. Yazici et al. [35] intro-
duced an advanced deep-learning approach to forecasting the daily and 
weekly crude oil price (COP) by integrating an optimized variation 
mode decomposition to decompose COP data into multiple modes to 
augment the performance of predicting and an AdaBoost Random Forest 
to carry out forecasting modeling on high-frequency modes. The results 
show that deep learning forecasting is a powerful framework for 
building forecasting models, making it an attractive option for enabling 
sustainable strategic planning for oil prices. Although deep learning has 
introduced powerful approaches for improving prediction operations, 
each method focuses on extracting specific types of characteristics and 
possesses its own constraints. 

Due to the data disparities and the necessity to establish a flexible 
forecasting model that can analyze and cope with the varied datasets 
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while still giving high accuracy, several researchers have begun adopt-
ing and developing hybrid models. The hybrid model is the model that 
incorporates many models; its data undergoes a variety of approaches 
and processes to extract more features and provide better accuracy than 
the non-hybrid (single) models [36]. In [18], the authors demonstrated 
the efficacy of time series, machine learning, and hybrid approaches for 
forecasting Korea’s peak load dataset. They integrated SARIMAX output 
with SVR, long short-term memory (LSTM), and ANN techniques to 
create hybrid models. They found that the hybrid models outperformed 
the other methods because the hybrid model performed better by 
merging the time series and machine learning models into a single 
model. The feasibility and applicability of energy price prediction were 
demonstrated in [37] by using the convolutional neural network (CNN) 
with batch normalization (BN) and LSTM to anticipate day-ahead elec-
tricity prices for the electric power markets’ (PJM) regulation zone 
preliminary billing data. The authors in [38] created an adaptive hybrid 
model based on variational mode decomposition, SARIMA, self-adaptive 
particle swarm optimization, and a deep belief network to predict short- 
term electricity prices; the hybrid model outperformed single models in 
many electricity markets. Moreover, many papers also concluded that 
hybrid models provide superior processing and results [39–41]. On the 
other hand, developing a complex model or combining many different 
methods in one model to address the complex data resulted in “over-
fitting,” a problem that required additional techniques such as “dropout” 
and “regularization” to resolve [36,42,43]. In the end, this caused the 
model to operate more slowly. 

1.1. Main paper contributions 

Despite the growth of time series forecasting methods, an appro-
priate forecasting process is still required to deal with abrupt changes in 
data sequence caused by natural, climatic, or political developments in 
the energy sector. This study provides a novel way to process time series 
datasets. The input data goes through two stages. The first stage uses a 
new technique, called enhancing transformation reduction (ETR). The 
ETR technique minimizes the data’s complexity by eliminating season-
ality and trends from the input data and boosting its stationarity. The 
ETR method was utilized for the first time in [44] to improve the data 
distribution of hyperspectral images. The output of the ETR is sent into 
the second stage, a hybrid forecasting model that contains LSTM and 
ANN models, called “transferring LSTM into ANN” (TLIA). In many in-
stances in DL, using deep networks or combining different subnetworks 
does not improve forecasting because these end-to-end approaches 
adjust the total produced weights in each training epoch. In the TLIA, 
between the LSTM and ANN layers, transfer learning techniques (TL) are 
employed to prevent recalculating the entire set of weights. The TLIA 
model processes and forecasts the time series data for the ETR method’s 
output. In order to evaluate the efficacy of the presented methodologies, 
the ETR method is fed six distinct energy market time series datasets. 
The six datasets have distinct data distributions, sizes, and degrees of 
complexity. Briefly, the main contribution of this work can be recapped 
as follows:  

• We present a new forecasting model based on advanced deep 
learning techniques for the volatile energy market.  

• An efficient preprocessing method, enhancing transformation 
reduction (ETR), was developed. The ETR can minimize the 
complexity of the input dataset due to its high capability of elimi-
nating seasonality and trends from the input data and boosting its 
stationarity. Thus, the enhanced ETR can smooth the preprocessing 
stage of the proposed TLIA forecasting model.  

• We developed a new forecasting model called TLIA, which combines 
the processing and characteristics of the LSTM and ANN models 
using the hybrid concept. This combination helps extract more fea-
tures and provides more flexibility to deal with any complex 
datasets. 

• The TLIA model incorporated the concept of transfer learning be-
tween the two utilized models. The transfer learning layer functions 
as a valve, allowing processing to move in only one direction (for-
ward) and preventing processing from returning to the LSTM’s 
layers. Utilizing the transfer learning layer expedites the procedure 
and improves the results.  

• Comprehensive and extensive evaluation experiments were carried 
out using six different energy datasets with comparisons to the state- 
of-art deep learning methods. 

2. Methods 

This section describes in detail the study’s two main methods: the 
enhancing transformation reduction method and the transferring of the 
LSTM into an ANN model. 

2.1. Enhancing transformation reduction method 

In this study, all the datasets are unsupervised and include only one 
column (univariate datasets). The sequence input data is divided into 
multiple input patterns called samples, where 60-time steps (s) are used 
as input, and a one-time step is used as output for the one-step prediction 
being learned. Thus, during the time (t) for the input data (x), the (xt+1) 
is the prediction of (xt-1); it can be presented as follows: 

X =
{(

x1,1, x1,2, x1,3,⋯, x1,s
)
,⋯,

(
xt,1, xt,2, xt,3,⋯, xt,s

) }
and f (X) = xs+1 (1)  

where s is the time step for the input data, which is equal to 60 in this 
study (s = 60), and the predicted step is one. (s) represents the time steps 
(t), xands ∈ Randt ∈ T. 

Enhancing transformation reduction (ETR) is a new feature extrac-
tion method. It is used for many purposes: to enhance the data distri-
bution, reduce outliers and noise, increase the classes’ variation, and 
speed up the processing, according to [44]. This study employs the ETR 
to improve feature extraction for the time series forecasting model by 
improving data distribution, increasing the data stationary, and 
decreasing data complexity. In the ETR method, the data goes through 
two parts: enhancing the features and transformation. The first part 
scales and highlights the informative data, and the second part reduces 
the noise and removes any seasonality from the data. 

2.1.1. Enhancing the features 
The first part is to enhance the data scaling and highlight the infor-

mative values, which will help smooth the training, increase the data 
stationary, and speed up the training. 

The input data (x) has the d and h dimensions. The covariance is 
taken firstly for x(t,s) to enhance the variation between the time series 
values to be unique for recognition, representing features after creating 
the sequences features. 

Cx =

(
∑s

i=1
(X i − X )(X i − X )

T

)/

s − 1 (2)  

where X is the mean of X . The dimension of C is (s× s). 
As is known, the serial values in time series datasets are typically 

quite near. Hence it is important to increase the variation and correla-
tion values of the features. By removing the coefficient correlation ma-
trix of x(t,s) from the covariance matrix C(s,s), the following equation 
solved the issue. 

Ĉx = Cx − εx, (3)  

the range values of ε is between 1 and − 1. 
Next, the eigenvectors of Ĉ are used to generate the weight matrix 

(W) with a specified size s, which is then multiplied by X, the primary 
data, to obtain the new distribution without trend. 
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T t×s = X t×s×(W s×1)
T (4) 

The new data distribution (T t×s) is fed into the second part of the 
ETR method to remove any seasonality and reduce the gap between the 
serial values and the noise and outliers. 

2.1.2. Enhancing the transformation 
This part works to reduce the noise and change the position of the 

values by passing the newly transferred dataset (T ) through the 
morphological dilation method (MD). The MD method works to high-
light small values and limit large values, and thus this will help reduce 
the seasonality phenomenon. 

The MD operation depends on two matrixes, mask (K) and marker 
(R). The mask matrix is already generated from the first part of the ETR, 
Kt×s = T t×s. The marker matrix will also be generated from (T t×s) and 
the values of the R matrix must be less or equal (T ) values. So, firstly to 
create the R matrix, the maximum values of each instance in (T t×s) is 
obtained: 

M t = argmax(T t) × Ã◦ (5)  

where Ã◦ is a constant value, it should be very small between zero and 
one. Ã◦ helps to reduce the gap between values as much as possible, 
which will reduce extremist values. 

The M t vector is converted into a matrix by repeating this vector s 
times, M t×s. Now, the two matrixes (K and R) are used in the MD process 
to obtain the new unseasonal matrix. 

Dδ
K(R ) = δn

K(R ) = δ1
K

(
δn− 1

K (R )
)
∧ K (6)  

where K ≥ R , n ≥ 1, δ denotes the MD process, and ∧ indicates the 
pointwise minimum. 

The mask matrix controls the new matrix generated by the MD 
method. The peak values in the R image act as seed values that spread 
out to fill in the K image, so the distance between the large and small 
values will be smaller. Thus, the MD reduced the outliers and the skewed 
distribution. 

The final step in the ETR is normalizing the output of the MD method 
using the Gaussian distribution. So, the second part of the ETR is to 

remove any seasonality and make the data more stationary. 

2.2. Transferring the LSTM into ANN model 

This study’s forecasting model is a hybrid model that uses the TL 
method to extract the features of the input data from two different types 
of layers: LSTM and ANN. The TL transfers the output of the LSTM into 
the ANN layers and prevents backpropagation modification in the LSTM 
layers. This section describes the LSTM and ANN layers and the TLIA 
model. 

2.2.1. LSTM 
LSTM-based modeling methods are widely used nowadays in various 

applications, including energy [45,46], medicine [47,48], pollution 
[49,50], and business [51,52]. Because the recurrent neural network 
(RNN) has a limited memory, which reduces its learning performance, 
the LSTM was developed to compensate for this shortcoming. By aug-
menting the usual RNN’s hidden state with a cell state, the LSTM can 
handle long-term dependencies between features. In LSTM, three gates 
are available: forget (f), input (i), and output(o). The following are the 
formulations of the LSTM structure: 

ft = σ
(
Wf .ht− 1 + xt.Uf + bf

)
(7)  

it = σ(Wi.ht− 1 + xt.Ui + bi) (8)  

C̃t = tanh(Wc.ht− 1 + xt.Uc + bc) (9)  

Ct = (Ct− 1⨂ft)⊕

(

it ⨂ C̃t

)

(10)  

ot = σ(Wo.ht− 1 + xt.Uo + bo) (11)  

ht = ot⨂ tanh(Ct) (12)  

where x represents the input data at a time (t), W exemplifies trainable 
weight, candidate values (C̃), C is to present the cell state, and h rep-
resents the hidden state. Each gate has its own recurrent weight (W) and 

Fig. 1. The structure of the TLIA model.  
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input weight (U). Moreover, σ stands for the sigmoid function, which can 
be represented as: 

σ(x) = 1/(1 + exp( − x)) (13)  

tanh is the activation function, and it is represented as follows: 

tanh(x) = (exp(x) − exp( − x))/(exp(x) + exp( − x)) (14)  

2.2.2. ANN 
The ANN model resembles the neuron-based nervous system of the 

brain. Like the natural nervous system, these neurons can learn and 
make judgments. The three layers of this model are input, hidden, and 
output. Each of these layers has its unique function. The input layer is 
responsible for receiving simulation-required data. The hidden layer is 
in charge of data processing and simulation. The output layer offers the 
ultimate outcome. The general structure of the ANN model is depicted in 
Fig. 1. Multilayer perceptron learns by adding hidden layers and a 
backpropagation technique between the input and output layers. The 
output value of each neuron in the hidden layer is determined by the 
following formula, which is based on the sum of all input data weights 
(w) and the node activation function (Φ): 

ŷj = Φ

(
∑i

i=1
w ijxi + bi

)

(15)  

where x is the input data into the ANN node, i is the number of the input 
data, j is the layer number, and b represents the bias. The activation 
function (Φ) is ReLu used: 

Φ = max(0, x) (16) 

The transfer LSTM into ANN (TLTA) model consists of two LSTM 
layers, two ANN layers, a dropout layer between each LSTM and ANN 
layer, and a dense output layer. ReLu is the activation function in ANN 
layers, Fig. 1. In DL techniques, the processing goes in forward and 
backward paths; “forward propagation” and “backward propagation/ 

backpropagation.” During forward propagation, the input data travels 
from the first to the last layer, generating the weights and prediction 
values. The loss function evaluates the forward propagation operation’s 
predictions. The loss function in the TLIA model is the mean squared 
error: 

MSE =
(∑(

yj − ŷj
)2
)/

n (17)  

where n is the number of observations, and y is the actual value. 
The number of neurons in the TLIA model equals the generated time 

step (60) from the input data, as seen in Fig. 1 and the 2.1 section. The 
task of backpropagation is to improve the previously created values of 
weight and threshold based on the loss function’s findings. These two 
orientations are continued until the highest degree of accuracy is 
attained. In the TLIA model, the backward propagation procedure is 
halted in order to change the LSTM layers’ output, and it only works in 
the ANN layers. Training and produced weights in LSTM are propagated 
into ANN layers without update or modification during training. The 
ANN layers undergo both forward and backward training. Consequently, 
the produced weights of ANN layers are modified throughout training. 

3. Experiments 

This study evaluated the proposed methods, the “enhancing trans-
formation reduction (ETR)” method and the “transferring long short- 
term memory (LSTM) into an artificial neural network (ANN) (TLIA)” 
model, using six distinct datasets. In addition, the TLIA model was 
compared to many well-known forecasting models. Therefore, this sec-
tion describes the datasets used. In addition, it covers the operation of 
the ETR method with the TLIA model and exhibits its performance in 
several ways. 

3.1. Datasets 

This study used six different datasets with different data distributions 

Table 1 
The description summary for the six datasets used in the study.  

# Dataset Record Date: dd/mm/yyyy Collection Mean Std Min Max 

1 Demand 2106 01/01/2015–06/10/2020 Daily  120035.48  13747.99  85094.38  170653.84 
2 RRP 2106 01/01/2015–06/10/2020 Daily  76.08  130.25  − 6.08  4549.65 
3 Solar Exposure 2105 01/01/2015–06/10/2020 Daily  14.74  7.95  0.70  33.30 
4 Elia Grid Load 277,396 01/01/2015–29/11/2022 Daily, each 15-minute  8383.97  1410.18  2494.10  12869.52 
5 Oil Price 475 30/03/1983–01/09/2022 Monthly  44.72  28.79  10.42  140.00 
6 Wind Power 1536 03/12/2022–10/12/2022 Daily, two times each 15 min  75.66  78.97  2.50  448.60  

Fig. 2. The data distribution of the six datasets: (a) Demand, (b) RRP, (c) Solar Exposure, (d) Elia Grid Load, (e) Oil Price, and (f) Wind Power dataset.  

D. AL-Alimi et al.                                                                                                                                                                                                                               



Applied Energy 343 (2023) 121230

6

and perioded of collection to test and evaluate the ability of the TLIA 
model:  

• The first dataset is Victoria Daily Electricity: It is a collected daily 
electricity dataset for the second-largest state in Australia, Victoria, 
from the beginning of 2015 until 20201. It has 13 columns beside the 
date column, and this study uses the following columns:  
o Demand: It is the daily total electricity demand in megawatt- 

hours.  
o RRP: a suggested retail price is AUD$ per megawatt-hour.  
o Solar exposure: It is a daily total solar energy unit in MJ/m2.  

• Oil Price Dataset: It provides monthly information for the West 
Texas Intermediate (WTI) crude oil price2 (USD/Bbl). WTI crude oil 
is regarded as the New York Mercantile Exchange (NYMEX) ’s 

underlying commodity and one of the most important global oil 
benchmarks.  

• Elia Grid Load Dataset: Historical electric load data from the 
Belgian company Elia Grid; it is open data from the OpenDataElia 
website3. It is a daily collection of the load every 15 min.  

• Wind power production Dataset: It is also from the OpenDataElia 
website, which was collected two times each 15 min for the Flanders 
region, Belgium. 

All datasets are float numerical data, each with different data dis-
tributions, as seen in Table 1 and Fig. 2. The summary description of 
these datasets is in Table 1. 

Each dataset was split into 80% for training and 20% for testing. The 
number of epochs was five, and the batch size was one. The value of the 
Ã◦ constant in the ETR was 0.3 for the datasets. 

3.2. Evaluation 

Mean absolute error (MAE), root mean square error (RMSE), and root 
mean square percentage error (RMSPE) were applied to assess the model 
efficiency. The average error magnitude of the model is known as MAE, 

and its equation is as follows: 

MAE = 1

/

n
∑n

i=1
|yi − ŷi| (18)  

where yi represents the real value, ŷi represents the prediction value, 
and n indicates the number of samples. 

RMSE expresses the variations between the forecast and actual 
values. It calculates the size of the residuals and estimates their distri-
bution. RMSE is determined as below: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1

/

n
∑n

i=1
(yi − ŷi)

2

√
√
√
√ (19) 

RMSPE measures the results compared to the actual ones, giving the 
error percentage form. It is calculated as follows: 

Fig. 3. The processing steps of the study.  

Table 2 
The results of EDF for the whole six datasets used.  

Evaluation Dataset Demand RRP Solar Exposure Elia Grid Load Oil Price Wind Power 

ADF Statistic: Main − 3.953 − 11.040 − 2.515 − 10.646 − 2.230 − 2.142 
ETR ¡13.479 ¡14.624 ¡17.824 ¡114.046 ¡10.754 ¡9.672 

P-value: Main 0.002 0 0.112 0 0.195 0.228 
ETR 0 0 0 0 0 0 

Critical Values: 1%: − 3.433 − 3.433 − 3.433 − 3.430 − 3.444 − 3.435 
5%: − 2.863 − 2.863 − 2.863 − 2.862 − 2.868 − 2.863 
10%: − 2.568 − 2.568 − 2.568 − 2.567 − 2.570 − 2.568  

Table 3 
The EDF results for a pried time for each dataset.  

Evaluation Dataset Demand RRP Solar Exposure Elia Grid Load Oil Price Wind Power 

ADF Statistic: Main − 2.113 − 2.770 − 0.396  − 1.422  − 0.933 − 1.221 
ETR ¡6.285 ¡6.934 ¡10.288  ¡3.393  ¡3.723 ¡7.462 

P-value: Main 0.239 0.063 0.911  0.571  0.777 0.664 
ETR 0 0 0  0.011  0.004 0 

Critical Values: 1%: − 3.449 − 3.449 − 3.449  − 3.534  − 4.332 − 3.468 
5%: − 2.870 − 2.870 − 2.870  − 2.906  − 3.233 − 2.878 
10%: − 2.571 − 2.571 − 2.571  − 2.591  − 2.749 − 2.576  

1 https://www.kaggle.com/datasets/aramacus/electricity-demand-in-vict 
oria-australia.  

2 https://www.kaggle.com/datasets/sc231997/crude-oil-price. 3 https://opendata.elia.be. 

D. AL-Alimi et al.                                                                                                                                                                                                                               

https://www.kaggle.com/datasets/aramacus/electricity-demand-in-victoria-australia
https://www.kaggle.com/datasets/aramacus/electricity-demand-in-victoria-australia
https://www.kaggle.com/datasets/sc231997/crude-oil-price
https://opendata.elia.be


Applied Energy 343 (2023) 121230

7

Fig. 4. The actual and ETR values for the six datasets.  

Table 4 
The RMSE results for the forecasting model with and without transferring.  

MAE LSTM-ANN TLIA 

Demand  0.036  0.027 
RRP  0.019  0.018 
Solar Exposure  0.015  0.011 
Elia Grid Load  0.068  0.068 
Oil Price  0.066  0.088 
Wind Power  0.008  0.008  

Table 5 
The training and testing times for the LSTM-ANN and TLIA models are in 
seconds.  

Dataset LSTM-ANN (s) TLIA (s) 
Training T. Testing T. Training T. Testing T. 

Demand  126.207  19.374  40.231  19.568 
RRP  126.094  18.519  36.158  21.489 
Solar Exposure  124.720  19.437  34.408  19.484 
Elia Grid Load  20806.077  2893.82  11543.739  3116.245 
Oil Price  31.400  4.174  12.362  4.813 
Wind Power  91.018  13.220  31.140  15.772  

D. AL-Alimi et al.                                                                                                                                                                                                                               



Applied Energy 343 (2023) 121230

8

RMSPE (%) =

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1

/

n
∑n

i=1
((yi − ŷi)/yi)

2

√
√
√
√

)

× 100 (20)  

3.3. Experiment results 

All the used datasets were first cleaned of any null and non-numeric 
values. Then sixty-time steps (features) were created from each dataset. 
These sixty newly generated features were fed into the ETR method to 
enhance the stationarity of the data. The output of the ETR method was 

then split into training and testing sets. The train set was entered into the 
TLIA model. Finally, the production of the TLIA model was evaluated by 
the test set and the different evaluation measurements. Fig. 3 summa-
rizes and depicts all these steps. 

3.3.1. Stationariness test 
An Augmented Dickey-Fuller Test (ADF) is a statistical test to 

determine whether the time series data is stationary [53]. Having a 
stationary dataset helps obtain better forecasting and more accurate 
predictions than a nonstationary one. First, the entire datasets were 

Table 6 
The RMSE values for all datasets.  

Dataset CNN-LSTM LSTM GRU RNN 2LSTM 2GRU ANN MM-TLIA TLIA 

Demand  5940.126  4162.758  3241.593  1711.042  23.260  1860.969  2597.872  50.982  0.027 
RRP  50.227  0.810  8.380  7.915  2.858  10.190  0.250  0.247  0.018 
Solar Exposure  4.793  3.504  3.829  1.676  0.026  0.026  1.004  0.022  0.011 
Elia Grid Load  6.993  72.831  72.290  44.473  44.804  43.904  6.993  6.993  0.068 
Oil Price  1.025  0.545  0.991  0.865  0.463  1.249  0.280  0.127  0.088 
Wind Power  112.991  106.476  111.619  16.739  1.260  1.903  25.523  0.211  0.008  

Table 7 
The MAE results for the six datasets.  

Dataset CNN-LSTM LSTM GRU RNN 2LSTM 2GRU ANN MM-TLIA TLIA 

Demand  4318.544  3286.544  2685.226  1290.880  16.826  1516.840  2019.962  50.982  0.026 
RRP  22.652  0.452  1.705  7.698  0.875  2.959  0.250  0.247  0.018 
Solar Exposure  3.222  2.574  2.858  1.272  0.026  0.025  0.704  0.022  0.010 
Elia Grid Load  6.993  56.584  56.662  36.627  35.335  35.062  6.993  6.993  0.068 
Oil Price  0.770  0.479  0.809  0.804  0.370  0.942  0.280  0.119  0.088 
Wind Power  106.763  105.525  109.377  14.300  1.029  1.195  20.380  0.210  0.008  

Table 8 
The RMSPE (%) evaluation for the six used datasets.  

Dataset CNN-LSTM LSTM GRU RNN 2LSTM 2GRU ANN MM-TLIA TLIA 

Demand  5.225  3.896  2.900  1.375  0.022  1.666  2.451  0.045 0 
RRP  100.732  2.169  11.857  36.399  12.723  7.019  1.116  1.105 0.082 
Solar Exposure  88.291  69.432  74.393  28.934  0.274  0.343  19.338  0.241 0.116 
Elia Grid Load  0.082  0.830  0.827  0.509  0.514  0.500  0.082  0.082 0.001 
Oil Price  3.080  1.435  2.515  1.473  1.168  3.149  0.562  0.226 0.176 
Wind Power  186.923  199.238  198.475  30.696  2.340  2.060  58.469  0.409 0.015  

Fig. 5. The results of the nine models for the Demand dataset.  
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examined before and after employing the ETR, as shown in Table 2. 
Second, particular temporal values were taken and evaluated from each 
dataset before and after applying the ETR, Table 3. Some datasets (De-
mand, RRP, and Elia Grid Load) are shown to be stationary in Table 2 
since the ADF statistical results are greater than the critical levels. In 
contrast, the output of the ETR has higher stationarities for all datasets; 
there is a significant difference between the values of the ADF for actual 
and ETR data. 

Table 3 displays the results of the ADF for a certain period: From the 
first three datasets, the first year (365 days) was examined, one day (69 
recordings) was evaluated from the Elia Grid Load dataset, one year (12 
records) was examined from the Oil Price dataset, and one day (194 
records) was tested from the Wind Power dataset. All these parts exhibit 
non-stationarity for their real values but were transformed to statio-
narity using the ETR method. The p-value of the ETR output is less than 
0.05, and the ADF statistic for the six datasets is less than the critical 
levels. All experiments were conducted on Windows 10 with Python 
running on a GPU with 4 GB of RAM, and the Elia Grid Load dataset was 

run on a server with a GPU with 26 GB of RAM because it is a huge 
dataset that requires a large RAM. 

Fig. 4 depicts the differences between the actual and ETR series 
values for all datasets. All the ETR series appear to be centred around 
zero, with no noticeable trend or seasonality. Importantly, the ETR 
approach minimized the presence of skewed and outlier data, and all 
datasets appeared to be stationary. The ETR reduced the distance be-
tween the values, which increased the correlation and removed the time 
dependence between them. It transformed the input data to be more 
stable and normal, with no time-dependent structure and consistent 
variation over time. 

3.3.2. Transferring LSTM into ANN model 
The TLIA model was fed the ETR output. The initial layer of the 

model is an LSTM layer, followed by a dropout layer to reduce over-
fitting and accelerate processing. The LSTM is distinguished by its long 
memory, which memorizes lengthy time series and contributes to its 
high accuracy in forecasting. The output of the initial dropout layer was 

Fig. 6. The results of the nine models for the RRP dataset.  

Fig. 7. The results of the nine models for the Solar Exposure dataset.  
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passed to the second LSTM layer and a subsequent dropout layer. The 
weights produced by these layers were transmitted to the first layer of 
the ANN using the ReLu activation function in order to filter the ANN 
outputs and send them to the subsequent layers. The layers of ANN strive 
to extract and enhance the extracted features. 

The primary idea of the TLIA model is to stop updating the generated 
weights of the LSTM layers throughout the training time; the weights 
were only generated during the forward operation. ANN layers adjust 
the weights’ generation operation in the model according to the model 
loss function (mean squared error). The LSTM-ANN model was devel-
oped to permit backwards updating, whereas the TLIA model does not 
permit backwards updating in the LSTM layers. The LSTM-ANN model 
was designed to illustrate the difference between permitting and pro-
hibiting updating the backpropagation (backward) operation in the 
LSTM layers. Table 4 displays the differences in RMSE values between 
the LSTM-ANN and TLIA models for each dataset. 

The results in Table 4 do not present significant differences between 
the two models. On the other hand, using the transfer weights from the 

LSTM to the ANN accelerated the processing by more than 100 s for 
many datasets and 9 k seconds for the Elia Grid Load dataset, compared 
to the processing of the LSTM-ANN model without the transfer 
approach, as shown in Table 5. The trainable parameters in TLIA were 
reduced from 30 to six. In addition, there was no difference between the 
test times of the two models. So, the TLIA model saved time and did not 
waste it updating generated weights in the forward and backward op-
erations during the training time. 

3.3.3. Comparing forecasting models 
To evaluate the performance of the TLIA model, it was compared to 

seven other forecasting models. Convolutional neural networks with 
long short-term memory (CNN-LSTM) [54], long short-term memory 
(LSTM), gated recurrent units (GRU), recurrent neural networks (RNN), 
2LSTM, 2GRU, and artificial neural network (ANN) models constitute 
the seven models. 

The CNN-LSTM model comprises two CNN (1D-CNN) layers with 60 
filters, a kernel size of 5, and the ReLu activation function. The third 

Fig. 8. The results of the nine models for the Elia Grid Load dataset.  

Fig. 9. The results of the nine models for the Oil Price dataset.  
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layer is composed of sixty LSTM units. Then, two dense layers (FC 
layers) consisting of 30 and 10 units are followed by the ReLu activation 
function. The last layer is dense, with a single unit for output and results. 
The GRU model comprises a GRU layer. Only one LSTM layer is present 
in the LSTM model. The dense layer for the final results follows the GRU 
and LSTM layers in the GRU and LSTM models. 

The 2GRU model, in comparison, comprises two GRU layers, each 
followed by a 30% dropout layer. Similar to the LSTM model, the 2LSTM 
model consists of two layers of LSTM instead of one, along with a 30% 
dropout layer after each layer, to speed up processing and prevent 
overfitting. The RNN model consists of two RNN layers, each followed 
by a 30% dropout layer. Before feeding the data into these models, the 
MinMaxScaler (MM) method was used to scale the input data to a range 
between − 1 and 1 to accelerate processing. 

The three models with the poorest performance were CNN-LSTM, 
LSTM, and GRU. Perhaps the CNN layers did not supply the right fea-
tures to the LSTM layers, resulting in a substantially less accurate 
outcome from the model. On the other hand, the LSTM and GRU models 
lack sufficient layers to enhance memory and obtain more features, 
which improve forecasting, particularly for large datasets such as Elia 

Grid Load, Tables 6-8. 
It can be observed from Tables 6-8 that 2LSTM and ANN are the best 

models for most datasets compared to the other seven models. Their 
precision differs based on the input dataset. The 2LSTM model is more 
accurate than the 2GRU model since it has more gates and more so-
phisticated calculations. On the other hand, the operation of extracting 
the features from the ANN model is extremely complex. It depends on 
the number of nodes, activation function, optimizer, and a variety of 
other techniques that assist in guiding the direction of achieving the 
highest accuracy in a very short time. 

Most of the time, the hybrid models produce better outcomes than 
the single-method models [6]. The CNN-LSTM, MM-TLIA, and TLIA 
models are hybrids, but as can be seen in Tables 6-8, the MM-TLIA 
outperformed the CNN-LSTM, and the TLIA model performed the best. 
Moreover, as seen in Tables 6-8, the CNN-LSTM model performed worse 
than non-hybrid models like LSTM and GRU. 

The final comparison is between the models MM-TLIA and TLIA. In 
MM-TLIA, the input data were scaled using the MinMaxScaler (MM) 
method, but in the TLIA model, the input data were enhanced using the 
ETR method. The MM-TLIA model was created to evaluate the impact of 
the ETR on the TLIA model’s output. Tables 6-8 show that the ETR aided 
the TLIA model in producing the most accurate forecasts, outperforming 
MM-TLIA and the other seven models. The TLIA is the optimal model for 
all available datasets. In the Demand dataset, the TLIA is more than 50 
times superior to the MM-TLIA. Extremely substantial differences exist 
between TILA and other models’ outcomes. Figs. 5-10 illustrate the 
contrast between the output of the nine models and the actual values of 
the six datasets. As can be seen, the lines that are close to the real value 
line are the MM-TLIA and TLIA lines; however, the TLIA model is the 
closest. 

Table 9 indicates how long it took for each model to be trained on 
each dataset. It shows that the slowest model is the 2LSTM and the 

Fig. 10. The results of the nine models for the Wind Power dataset.  

Table 9 
The training time of the nine models for the six datasets.  

Dataset CNN-LSTM LSTM GRU RNN 2LSTM 2GRU ANN MM-TLIA TLIA 

Demand  76.61  60.53  62.23  86.56  118.58  115.17  8.91  35.07  40.23 
RRP  92.32  57.94  60.86  84.39  118.06  117.11  8.88  33.53  36.16 
Solar Exposure  82.01  58.99  61.03  92.29  116.04  122.37  8.91  34.19  34.41 
Elia Grid Load  16237.04  11697.51  11166.37  153716.64  19845.14  18398.57  6070.65  12712.91  11543.74 
Oil Price  23.39  14.72  15.41  19.66  29.83  28.45  2.62  10.28  12.36 
Wind Power  68.11  45.54  43.85  70.52  85.92  85.10  6.64  25.63  31.14  

Table 10 
The RMSE evaluation results for the three models (ETR-2LSTM, ETR-ANN, and 
TLIA) using the ETR method to transfer the input data of the six datasets.  

Dataset ETR-2LSTM ETR-ANN TLIA 

Demand  0.028  30.016  0.027 
RRP  0.140  1.655  0.018 
Solar Exposure  0.112  0.844  0.011 
Elia Grid Load  3.814  22.995  0.068 
Oil Price  0.089  0.199  0.088 
Wind Power  0.233  10.465  0.008  
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fastest is the ANN model. As has been explained, the structure of the 
TLIA models contains the 2LSTM and ANN. Combining the calculations 
of the LSTM and ANN, the TLIA model obtains the benefits of these two 
methods. Moreover, freezing the backpropagation procedure in the 
LSTM layers during training helps extract the input data’s features more 
thoroughly and in less time. In addition to enabling the TLIA model to 
achieve the highest level of accuracy, the ETR technique accelerated the 
model by 1169 s compared to the MM-TLIA model using the Elia Grid 
Load dataset, and the TLIA is the third fastest model with the other 
datasets. 

As seen in Table 10, the best performance was ordered as black, 
green, and blue are the first, second, and third. The ETR method made 
the extraction of the 2LSTM and ANN models much better than the re-
sults in Table 6. The 2LSTM model outperformed the ANN model on 
most datasets using the ETR technique. This means that the ANN layers 
played a significant role in boosting the final accuracy of the TLIA model 
depending on the transferred weights from the LSTM layers, input data, 
and the evaluation of the loss function. The TLIA model maintained the 
excellent performance of the LSTM layers by preventing back-
propagation modification in the LSTM layers and limiting it to the ANN 

Fig. 11. The output of the ETR-2LSTM, ETR-ANN, and TLIA models with the actual values of the Oil Price dataset.  

Fig. 12. The output of the ETR-2LSTM, ETR-ANN, and TLIA models with the actual values of the Wind Power dataset.  

Table 11 
The results of the RMSE for short-term forecasting of the eight models for all datasets and the size of each dataset.  

Dataset Data Set Period CNN-LSTM LSTM GRU RNN 2LSTM 2GRU ANN TLIA 

Demand 365 days  8640.761  2312.791  778.680  1085.617  307.907  1452.692  2549.676  0.017 
RRP 365 days  12.611  1.360  1.727  0.775  0.791  2.737  0.516  0.014 
Solar Exposure 365 days  6.985  1.700  1.513  0.566  0.185  1.053  0.377  0.003 
Elia Grid Load A day (96 records)  67.846  45.225  33.026  101.839  73.563  63.527  24.305  0.039 
Oil Price 6 years (72 records)  0.763  0.541  0.509  1.173  0.417  0.743  0.474  0.022 
Wind Power A day (192 records)  83.932  11.665  33.243  23.472  5.380  14.524  0.984  0.006  
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layers. 
Furthermore, the processing of ANN and 2LSTM models that used the 

ETR took longer than those that used the MM but provided higher ac-
curacy (Tables 6 and 10). After increasing the stationarity of the input 
data, the hybrid model with the transfer learning technique achieved the 
greatest performance across all datasets. Figs. 11 and 12 show the output 
of the models in Table 10 for two datasets, and the closest model to the 
actual data is the TLIA. 

3.3.4. Short-Term forecasting 
As shown in Table 11, eight models were trained with a tiny portion 

of the dataset to determine how they would perform with short-term 
series data. Each dataset has a varied size, except the Demand, RRP, 
and Solar Exposure databases have the same size. Additionally, each 
dataset was allocated 80% for training and 20% for testing. As shown by 
the differences between Tables 6 and 11, the majority of the models 
performed worse than training the entire dataset. In contrast, the ETR 
model provided the most accurate results for all datasets, and its results 
with short-term data are more accurate than those in Table 6, which 
were for the whole data. The ETR method helped the TLIA model be the 
best with any size or type of dataset. 

4. Conclusion 

This study provided a suitable model that can deal with sudden 
fluctuations in the energy market and different kinds of energy datasets 
with varying distributions of data and complexities. This study proposed 
a new method to smooth and increase the data correlation to be more 
stationary using the ETR method. The ETR helped the forecasting model 
obtain better and more accurate predictions and accelerated its perfor-
mance. The forecasting model is called “ Time-Series Forecasting Model 
using Long Short-Term Memory (LSTM) integrated with Artificial Neu-
ral Networks (ANN)” (TLIA). This model was a hybrid that combined the 
features of LSTM and ANN and employed the transfer learning technique 
to stop the modification of the backward propagation of LSTM layers 
and modify their output. The TLIA model used the output of the ETR 
method. The TLIA model was trained using six different energy datasets, 
each with unique data distributions and complexity levels. The findings 
of the TLIA model with ETR were compared with seven different fore-
casting models. The results and the comparisons highlighted the 
following: (1) The ETR method strengthened data correlation, improved 
data distribution, decreased outliers, and eliminated seasonality and 
trends from the input dataset. (2) The ADF test was used to evaluate the 
stationarity of the ETR output and revealed that the ETR method 
increased the stationarity of all datasets, whether for the entire dataset 
or a subset. (3) Because the TLIA model used the transfer learning 
technique, it maintained the best performance of the LSTM and ANN. (4) 
In several cases, the TL accelerated the training of the TLIA model by 
more than 100 s, and in the case of the Elia Grid Load dataset, by more 
than 9000 s. (5) The ETR improved the accuracy of the TLIA model by 50 
times more than MinMaxScaler. (6) For the six datasets, the TLIA model 
with ETR was highly superior to the other seven well-known forecasting 
models and the most flexible model for all datasets. (7) In addition, it 
was also superior when using short-term data from each dataset, but 
most of the other models introduced less accuracy than training the 
entire dataset. The summary is that the study provided a novel approach 
to dealing with energy market fluctuations and provided the best fore-
cast by the TLIA model using the ETR output, which was the most ac-
curate and flexible and outperformed others. Future work will be 
focused on improving the forecasting model. Although the hybrid model 
performs better than a non-hybrid model, it takes longer to process data 
than some non-hybrid models. Consequently, designing a fast model 
with very high accuracy will be the future work’s focus. 
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