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ABSTRACT: Carbon capture and storage has been identified as an important and viable
technology for climate change mitigation. The technology allows CO2 generated from large-
scale sources, such as power plants and other heavy industries, to be captured and stored in
deep geological formations. However, when CO2 is stored in geological formations, there are
possibilities of formation damage, which may reduce injectivity and storage capacity. In this
study, formation damage during CO2 injection and storage is reviewed through different
experimental studies. The study has shown that the interaction between CO2, formation
water, and rock minerals often results in mineral dissolution and precipitation, which affect
reservoir permeability and porosity, which could possibly cause formation damage,
compromising the reservoir storage capacity. This study also reveals that formation damage
could be caused by the precipitation of sulfate scales, salt, and carbonate minerals.
Additionally, in several studies, rock minerals were observed to dissolve and create free
particles that were transported to occupy pore spaces along the fluid flow path, reducing
permeability and impacting CO2 injectivity and storage. It is worth noting that the reviewed experiments present short-term effects
of formation damage on geological formations, while in reality, CO2 storage is a long-term project, thus eliciting the need for more
studies in that regard.

1. INTRODUCTION
Controlling climate change requires prompt action to mitigate
the effects of anthropogenic CO2 emissions to the atmosphere,
which can lead to global warming.1,2 Capturing CO2 released
from massive fuel combustion3 activities, such as trans-
portation, power, and industrial processes,4−11 and storing it
in deep geological formations, like aquifers, depleted reservoirs,
coal seams, and salt caverns, is a crucial and essential strategy
for addressing global warming mitigation.12−17 However, CO2
is injected into the reservoir formations at a depth more than
800 m deep to achieve this objective. These formations have
high permeability and porosity and an effective caprock with
low-permeability properties to act as a seal in preventing CO2
from escaping to the surface.18−22 Thus, according to studies,
injecting a substantial volume of CO2 with its associated
impurities into geological formations poses several challenges,
including chemical changes to the formation rock that cause
formation damage and reduce the injectivity capacity of
reservoirs.23−28

In addition, formation damage happened when a change in
geochemical equilibrium occurred as a result of CO2
impurities, brine water, and rock mineral reactions.29

According to recent research by Khurshid and Afgan, the
interaction of CO2, water, and rock could lead to severe
formation damage, such as plugging and blocking the porous

reservoir system and impairing the permeability of the
formation reservoir.30,31 Additionally, the reactions may alter
the grain size, wettability, and porosity of the rock formation as
a result of mineral dissolution and precipitation, which
consequently would affect CO2 injection into a geological
formation, caprock integrity,32 and structural injectivity of the
reservoir.33−36 Therefore, to accurately predict the injectivity
plan and storage capacity, particularly for long- and short-term
storage of CO2 in a geological formation, it is crucial to
determine the influence of CO2 and its mechanisms on brine
water and rock mineral reactions.37−40

Numerous studies have reported that injecting CO2 into
geological formations can disrupt the geochemical equilibrium
through dissolution and precipitation processes, which affect
the reservoir mineral phases.14,41−47 However, it has been
mentioned that, by having a small number of secondary
minerals present in the formation after CO2 injection,
considerable changes in permeability and porosity can be
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seen through precipitation.48,49 Similarly, Shao et al. reported
that the permeability could decrease when the precipitation
size is nearly equal to the size of the pore throats in the porous
system of the formation.29

According to studies by Karaei et al.,20 Al-Ameri et al.,50 and
Dawson et al.,51 the injection of CO2 into reservoir formation
dissolves rock minerals by in situ weak and strong acids.
However, reactive rock minerals, like magnesium and calcium,
have also been observed to interact and react with CO2 to
generate carbonate precipitations.52,53 Furthermore, carbonate
precipitations have been witnessed during high and low pH
measurements.20,54,55 Different kinds of literature presented
CO2 sequestration in geological formations through solubility
mechanisms. Their results have reported that solubility
mechanisms are significantly affected by the temperature and
pressure of injected CO2 and the salinity of the formation
reservoir.56−62

On the other hand, other studies have indicated that
permeability will be reduced, while others have stated that
permeability will be increased during the sequestration of

CO2.
20 These reports showed the critically significant

challenges during CO2 injection, which need addressing and
attention for future projects. Some of the challenges presented
with these reports were geo-mechanical and geochemical, such
as dissolution and precipitations63−68 of reactive minerals that
can change the injectivity of CO2 and block pores during
precipitation, consequently reducing the permeability of the
formation.69,70

However, the Basava-Reddi et al. investigation71 revealed the
existence of various gaseous contaminants in CO2 streams
injected into geological formations, such as SO2, O2, N2, and
H2S. This stream can adversely impact transport, sequestration,
and storage processes. For example, SO2 and NO2 may react
with brine water to form an acidic medium, which will then
react with rock minerals to cause dissolution and precipitation,
compromising caprock integrity near-wellbore zones and
allowing leakage of CO2 to the surface or overlying
formations.17 Additionally, the precipitate formed may block
porous media, lowering CO2 injectivity.72,73

Figure 1. Conceptual flowchart of carbon dioxide injection and storage, which results in formation damage.
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Most of the research did not study in detail the formation
damage caused by CO2 storage in geological formations. In
contrast, Mohamed and Nasr-El-Din74 investigated formation
damage in only saline carbonate reservoirs. At the same time,
other kinds of literature pay little attention to the impact of
formation damage on other geological formations, such as
sandstone formations. Xie et al.75 investigated the formation
damage caused by fine migration during CO2 storage when
kaolinite minerals were present. Additionally, the research
performed by Luc et al. on reactions between CO2, NOx, and
the core of CO2 storage rock claimed that fine migrations were
observed in scanning electron microscopy (SEM) images,
which might result in permeability change.76 Although
injecting and storing CO2 in geological formations can offer
long-term storage capacity and security, it can also release
particle suspensions at an unprecedentedly high flow rate,
which may impact the formations.

Therefore, the primary objective of this research is to
provide a comprehensive assessment of formation damage
during CO2 injection and storage in geological formations
through experimental studies. The formation damage has been
seen as the potential challenge that lowers the injectivity and
storage capacity because the result the project storage capacity
and economic viability might be compromised. The study

describes effects of CO2 injection and storage on mineral
dissolution and precipitation, permeability changes, and
alteration of grain size and sorting properties, which
significantly caused the formation damage. Additionally, the
mechanisms of formation damage are elaborated in detail with
vivid examples from the lab findings that will provide insight
and awareness during injection and storage activities.
Furthermore, the challenges and perspectives for further
research were clearly described and recommended for
necessary action. This study may offer essential information
during the feasibility study and implementation of new CO2
injection and storage projects in geological formations.

2. CONCEPT OF FORMATION DAMAGE DURING CO2
SEQUESTRATION

Formation damage restricts and weakens the flow path of fluids
to the porous system, affecting the injectivity and economic
viability of projects.77−79 Understanding the mechanisms of
CO2 storage and injection into the geological formation is
crucial because the properties of the formation may change,
causing formation damage to the formation rock.80−82

Reservoir formation is altered sooner or later after CO2 enters
it.83 Similarly, CO2 can dissolve into brine water, resulting in
changes in the pH of the media of the reservoir. In addition,

Figure 2. Conceptual models of formation damage mechanisms during CO2 injection and storage: (a) salt precipitation and (b) dissolution and
precipitation of active minerals. This figure was reproduced with permission from ref 116. Copyright 2014 Elsevier.
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CO2 can react with active minerals in the reservoir rock,
causing precipitation and dissolution, which change the
formation properties, resulting in abnormal reservoir perform-
ance;81 the illustration of the conceptual flowchart of CO2
injection to the deep reservoir and the resulting formation
damage is presented in Figure 1, while its mechanisms of
formation damage are demonstrated in Figure 2.

According to Sbai and Azaroual, several mechanisms have
contributed to the formation damage, such as active mineral
precipitation and trapped particles, causing blocking/plugging
and bridging processes, particularly in porous environments.
Also, clogging of the suspended particles at the pore throats
during an unprecedented flow rate of CO2 storage could result
in restriction of production and a loss in permeability
surrounding the injector zone.34,45 Research by Mohamed
and Nasr-El-Din showed the reduction of CO2 injectivity in
carbonate rock as a result of the formation damage resulting
from the precipitation of carbonate minerals and sulfate scales.
Usually, sodium sulfate in brine water causes formation
damage as a result of the precipitation of calcium sulfate.84

However, high formation damage was reported from the
dolomite rock as a result of the reaction between CO2 and
silicate minerals. Similarly, in either homogeneous or
heterogeneous rocks,85 formation damage may happen as a
result of precipitation or the blockage of water,74 making the
damage more severe.86

Furthermore, numerous researchers from the field and
experimental studies have demonstrated that the dissolution of
active minerals may raise permeability or porosity,87,88 but this
is not well-suggested because the increase of permeability may
result in a high flow rate of CO2 during injection, which could
potentially result in a reduction in the pressure gradient,
particularly at the near wellbore zones.89 On the other hand,
the permeability reduction may significantly decline during
mineral precipitation and mobilization of the physically inert
minerals.90 Similarly, permeability may be substantially
reduced when secondary mineral precipitates and seals the
pore throats and fractures of the reservoir formation, leading to
formation damage.91 Therefore, understanding the impact of
the formation damage is essential for designing and planning
CO2 injection and storage operations in geological formations.
2.1. Alteration of Permeability. Permeability is a key

characteristic of geological reservoirs that allows for the most
effective use of the formation.92 It is crucial to analyze for both
economic viability and appropriate storage. According to an
experiment conducted by Karaei et al.,20 there is significant
formation damage when confining or injection pressure and
temperature change in carbonate aquifers with a low-
permeability formation in the Iranian formation. The experi-
ment involved three different fluids: brine water, seawater, and
freshwater. These fluids were injected into core samples to
identify potential changes on permeability.

When confining pressure is applied using brine water,
seawater, and freshwater, a permeability reduction (60%) in
brine water (injection core sample) was observed. However,
the decrease in permeability (on an average of 35%) was
observed in brine water injection cores when a constant
pressure was applied to all three samples, and this is because of
the incompatibility reactions between CO2 and mineral
composition in brine water, which resulted in precipitation
and dissolution that might plug and block the porous system.93

Other researchers have reported that CO2 injection into cores
having brine saturated resulted in the decline of permeability as

a result of salt precipitation that plugs the porous media,
leading to an injectivity decline.94−97 Further analysis has
shown that, when brine water was used under similar
circumstances, it was shown that permeability significantly
decreased by 35%. CO2 reacts with the brine water already
present in the porous systems to form carbonic acid according
to eq 1.82

CO H O H HCO2(aq) 2 (aq) 3+ = ++
(1)

Then, carbonic acid may dissociate into hydrogen and
bicarbonate ions, changing the pH of the fluid (pH drop).98

Hydrogen ions may react with rock and dissolve the rock in
porous media, while ions of Mg2+ and Ca2+ seem to increase.
Therefore, dissolution and precipitation may occur, causing
formation damage and loss of the rock integrity.99 This
information is summarized in eq 2.

CaMg(CO ) 2H Ca Mg 2HCO3 2 (aq)
2 2

3+ + ++ + +

(2)

The experiment also examined the impact of confining
pressure ranging from 5 to 15 MPa while maintaining the
injection pressure constant at 1 MPa at 100 °C. The outcome
has demonstrated that all forms of fluid, starting with
freshwater, seawater, and brine water, have experienced a
drop in permeability. However, freshwater caused a 50% drop
in permeability; seawater caused a 53% reduction; and saline
water caused a 60% reduction.

Additionally, it should be noted that the permeability trend
in the saline formation is more severely affected by formation
damage during CO2 injection, in which the permeability was
observed to drop more than in other samples. The
permeability drop is due to the chemical processes that led
to the formation damage from salt precipitation and active
mineral dissolution.45,100

A similar experiment was described by Aminu et al.35 to
assess the effects of injecting CO2 impurities, such as NO2,
SO2, and H2S, into the saline aquifer formation at the Bunter
Sandstone Formation in the Southern North Sea. The
experiment was divided into four CO2 streams: pure CO2,
CO2 with NO2, CO2 with SO2, and CO2 with H2S. In a test
setup, the crashed rock sample was injected into each of the
four streams of CO2 independently (titanium pressure device).
The findings indicated that CO2 impurity impacted the
formation damage, which significantly reduced permeability
and grain size. Additionally, Figure 3 displays the findings of
the experiment and the trend of permeability drop after the
investigation. Observation from Figure 3 demonstrates that the
permeability was raised, and the importance of the formation
damage happening was modest when pure CO2 was
introduced. Furthermore, after exposure to pure CO2, the
permeability of the formation rock has risen by 5.4%. Even
though pure CO2 can react with saline water to create carbonic
acid (eq 2), the dissolution is only partial and leaves behind
certain solid minerals that may make carbonic acid difficult to
dissolve chemically.

Similarly, Sass et al. discovered the same trend that the
presence of NO2 and SO2 can decrease the permeability and
injectivity time as a result of the formation of precipitation.101

Also, from Figure 3, the permeabilities of NO2 and SO2 were
observed to decrease by 41.9 and 6.6%, respectively. The
decrease in permeability is because the acid is strong and may
dissolve more solid minerals than pure CO2, leading to an
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increase in mineral dissolution and precipitation that clogged
and obstructed the porous networks and reduced the typical
injectivity of CO2 into the geological formation.102 Addition-
ally, the permeability of CO2 with H2S increased by 6%,
indicating that the formation is not significantly damaged in
terms of permeability when exposed to H2S. According to
research by Zhang et al., when CO2 and H2S are injected into a
geological formation concurrently, the solubility of CO2
decreases, while the dissolution of H2S may increase the
dissolution of CO2.

103 However, the following is a possible
description and chemical reaction of acidic gases (NO2 and
SO2) that influenced the formation damage.

(i) The influence of NO2 on formation damage: The
exposure of NO2 to the formation rock may react with brine
water to form nitric acid, a strong acid according to eqs 3 and 4
below.

2NO H O HNO HNO2 2 2 3+ + (3)

3NO H O 2HNO NO2 2 3+ + (4)

After this reaction, the pH may show drastic changes by
dropping its values, proving that nitric acid has been formed.
Also, it was further observed that the presence of NO2 resulted
in the dissolution of quartz of about 8.9% of the original
present and a reduction of permeability. Wang et al. report that
the dissolution of quartz from NO2 may result in salt
precipitation, which influences the permeability reduction of
the rock formation.

(ii) The influence of SO2 on formation damage: SO2 in the
rock formation may react with the formation water (brine) to
form sulfuric acid, a strong acid. The possible reaction can be
seen in eqs 5−7.

SO H O H SO2 2 2 3+ (5)

SO H O
3
4

H SO
1
4

H S2 2 2 4 2+ +
(6)

SO H O
1
2

O H SO2 2 2 2 4+ +
(7)

These reactions result in weak acids H2SO3 and H2S, while
strong acid H2SO4 forms in brine water. The reduction of the

pH as a result of CO2 and SO2 mixtures in a sandstone saline
aquifer during injectivity and storage has been confirmed by
Waldmann et al.104

Yu et al. experimented to evaluate the interactions between
CO2, brine water, and rock formation in a depleted reservoir at
the Qing 1 Formation. The core samples were obtained at a
depth of 2427.54 m and simulated under reservoir conditions
at a temperature of 100 °C and pressure of 24 MPa. The
experimental results revealed that the permeability was reduced
because of the production of new mineral precipitation phases,
like solid and kaolinite mineral phases, as listed in Table 1.

Furthermore, the permeability reduction was contributed by
the dissolution of clay minerals from the dissolution process of
carbonate cement, which was transported to the fluid flow path
mechanisms and deposited into the porous systems, causing
and restricting the normal passage of the fluid.105

Also, the experimental results have shown the permeability
of the core sample test to decline from 2 to 1 mD as a result of
the formation damage resulting from active mineral reactions
that plugged the pore throat.105 Similar studies were reported
with the same trend of permeability reduction, such as research
by Ross et al. on the experiment of CO2 flooding in sandstone
formation, which revealed a notable decline of permeabil-
ity.106,107 In addition, the permeability decline was observed in
weak minerals, like feldspar, carbonate, etc., dissolved under
reservoir conditions when the experiment was conducted.105

The recent experiment by Tang et al. investigated the effect of
the CO2−brine−rock interaction during the injection and
storage. They examined the impact of CO2 injection on the gas
and water zone in the saline aquifer at a gas field in China’s
South Sea. They have shown that the CO2−brine−rock
interaction can happen in both zones of water and gas because,
during the reaction, water can evaporate to the steam phase,
while CO2 reacts with the brine water, resulting in carbonic
acid. Similarly, the study revealed that the CO2−brine−rock
interaction leads to formation damage because the reaction of
the rock mineral may dissolute and form free particles that can
be transported and fill the pore spaces along the pass of fluid
flow, leading to a severe reduction of permeability.105,108.

Jeddizahed and Rostami investigated the evaporation and
precipitation of salt during the injection rate and the effect of
brine water on the permeability of the core samples. The
experiment utilized sandstone rock, which was injected with
supercritical CO2. However, the sandstone rock was saturated
with NaCl to analyze the salt precipitation during evaporation.
The experimental results are presented in Figure 4.109

Figure 4a shows a considerable decline in permeability when
the injection rate is increased as a result of salt precipitation
into the porous system, which restricts the normal flow of CO2
and lowers the storage security and practicability. The
permeability decline was observed to be 43, 50, and 62% for
the injection rate of 20, 10, and 5 cm3/min, respectively.

Figure 4b shows that, when the salinity increases, the
permeability decreases. Similarly, the salt precipitation

Figure 3. Permeability changes caused by CO2 injection at the Bunter
Sandstone Formation of the U.K. This figure was reproduced with
permission from ref 35. Copyright 2018 Elsevier.

Table 1. Permeability of the Core Samples before and after
the Experiment105

core sample before the experiment (mD) after the experiment (mD)

upstream 3 2
middle 6 5
downstream 29 24
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increased, leading to formation damage. The reduced
permeability was 21, 50, and 66% for the salinity concentration
of S = 50, 100, and 200 g/L, respectively.

A similar study of salt precipitation was performed by Bacci
et al. They conducted laboratory work to research the
alteration of permeability and porosity during the injection
of CO2 into a saline aquifer. The experiment utilized the core
samples saturated with saline water from the St. Bees
Sandstone Formation. The result was observed that, during
the injection of CO2 into the saline aquifer, the formation
damage significantly occurred, caused by salt precipitation,
affecting the permeability and porosity of the formation.110

Moreover, the permeability dropped from 30 to 86%, and
porosity decreased from 4 to 29%. The result is presented in
Figure 5.107 From Figure 5, the change in permeability and
porosity were observed after salt precipitation. The reduction
of porosity was seen to be 22.59−16.02%, accompanied by the
decline of permeability from 7.78 to 1.07 mD. In addition, the

overall permeability decline was 18−60%, while porosity was
1−2%.

Additionally, the experiment presented by Adebayo et al.
showed the permeability reduction from 352 to 111.4 mD after
CO2 injection.111 Figure 6 demonstrated the changes in

permeability from five wells. However, Table 2 shows the
summary of formation damage from the various studies
undertaken in CO2 storage in geological formations.
2.2. Dissolution/Precipitation of Minerals. The dis-

solution/precipitation of minerals during CO2 injection and
storage in a geological formation is an essential issue to be
assessed as a result of the chemical weathering in the host
storage formation. The active minerals are easily dissolved by
the acidic solution,117 resulting in changes in the conditions of
the formation rock, which affect the permeability and cause
formation damage.123 However, the dissolution or precip-
itation of active minerals during the injection and storage of
CO2 is mostly attributable to two mechanisms. The first
mechanism is the reaction of CO2 with brine water, which
exchanges ions and modifies the brine water, resulting in
dissolution.124 The second is when impure CO2 dissolves
previously present minerals, resulting in precipitation.125 These
mechanisms cause variations in the pore volume, pore space,

Figure 4. Description of permeability against the injection rate and salinity effect: (a) description of the injection rate and (b) salinity effect on the
gas flow rate effect. This figure was reproduced with permission from ref 109. Copyright 2016 Elsevier.

Figure 5. Effect of salt precipitation in porosity and permeability
changes. This figure was reproduced with permission from ref 107.
Copyright 2012 Elsevier.

Figure 6. Illustration of the permeability decline before and after the
experiment. This figure was reproduced with permission from ref 111.
Copyright 2015 Elsevier.
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and permeability, which can potentially restrict the route and
lower the injectivity and storage capacity of the formation.126

However, Yang et al.127 reported that rock permeability in
reservoir formation could be altered with a relatively small
amount of dissolution of cementing material present. The
experiment of Zou et al. demonstrated that the natural
fractures and rock matrix have the potential to affect and
change the behavior of hydraulic fracture growth as a result of
the dissolution/precipitation of cementing materials, such as
calcite minerals.128 The chemical weathering in host storage
formation can be described by the general dissolution reaction
of calcite, which is reported by the research of Dreybrodt129

and the experiment of Plummer et al. Similar to this, the
dissolution/precipitation process is seen to consist of three
primary phases that can all happen at once according to eqs
8−10.

CaCO H Ca HCO3
2

3+ ++ +
(8)

CaCO H CO Ca 2HCO3 2 3
2

3+ ++
(9)

CaCO H O Ca HCO OH3 2
2

3+ + ++
(10)

In addition, the mechanisms of the dissolution/precipitation of
calcite can further be described according to the CO2−H2O
system as presented by Usdowski130 as the chemical reaction
of the calcite surface when dissolution and precipitation
happen (eq 11).

From the equation of calcite (eq 10) and the research of
Usdowski, it can be observed that Ca2+ governs the reaction of
H+, H2CO3, and HCO3

−, in which Ca2+ and H+ participated in
dissolution, while H2CO3 and HCO3− precipitated, as seen in
Figure 7

In addition, other studies have reported the permeability and
porosity alteration during CO2 injection as a result of fine
migration and dissolution of clay mineral reactions in
sandstone formations.131−133 Furthermore, the experiment of
Aminu et al. has shown that mineral weight fractions changed

as a result of chemical reactions (dissolution) after CO2
injection, Table 4. Calcite and halite disappeared during the
reaction, and this is due to two facts: first, the salinity of brine
water during formation (reaction) and, second, the stirring
mechanisms that influenced them to disappear during the
experiment. However, ankerite and quartz have shown great
changes in weight fractions, as ankerite showed a substantial
decrease of the weight fraction by 41.57%, while weight
fractions of quartz increased by 11.44%. Also, changes can be
observed in the presence of the test system of NO2, SO2, and
H2S samples. In the presence of NO2 in the test system,
ankerite and quartz minerals change from 10.4 to 15.8 μm
(increase by 34.18%) and from 48.1 to 43.8 μm (decrease by
8.94%) by weight fraction, respectively. In addition, H2S in the
test system reduced the weight fraction of ankerite (8.9 μm)
while increasing the weight fraction of quartz minerals (50.9
μm) as a result of the production of a weak acid and other ions
in water.35 However, H2S can be slightly soluble and dissociate
quickly, as explained in the following chemical equations (eqs
12 and 13):134

H S H O HS H O2 2 3+ + +
(12)

HS H O S H O2 3+ + +
(13)

Further, the dissolution and precipitation mechanisms can be
observed when quartz reacted with acid, like carbonic acid, or
hydrogen ions formed from water dissolution through CO2,
which is also presented in Table 3.

SiO 2H CO Si 2H O 2CO2 2 3 2 3+ + + (14)

SiO 4H Si 2H O2 4 2+ ++
(15)

The dissolution and precipitation of minerals have happened
mainly as a result of attaining the equilibrium between the
formation reservoir and injected CO2. The dissolution and
precipitation degraded either the mineral matrix or the paths
that CO2 may take. Of these facts, the structural integrity of the
formation is compromised,135 especially in seal rock systems.
Trapped CO2 resulted in cations and anions released from the
mineral reaction causing further mineral precipitation and
weakening the caprock.136

However, the research of Moghadasi et al. reported that the
mineral precipitation is challenging in the porous system,
where the permeability was observed to decline to 90%. The
permeability decline can be attributed to the temperature
change, injection period, flow rate, and solution composi-
tion.118 Yu et al. assessed mineral dissolution and precipitation
by conducting experiments and numerical simulation. Sim-
ilarly, different minerals were observed, such as K-feldspar,
albite, quartz, calcite, kaolinite, and dolomite.137 The result was
presented in Figure 7, which shows that some minerals
dissolved and others did not. However, dolomite and calcite120

dissolved during the experiment, while quartz, albite, and K-
feldspar were partially dissolved or not dissolved, like dolomite
and calcite. However, Pearce et al.138 used a core sample from
the targeted zone to test the potential interactions between
CO2, SO2, NO, and pure CO2 during CO2 storage.
Throughout the experiment, the core sample was described
and mineral changes, like calcite and feldspar, were observed.
There have been reports of calcite minerals dissolving, and
calcite minerals occupy the pore spaces in core samples, which
could lower the permeability of the rock. On the other hand,
quartz and kaolinite were observed to precipitate. Weibel et al.

Figure 7. Description of the minerals at the Bunter sandstone
formation and their dissolution and precipitation properties when
CO2 was injected into the sandstone formation. K+, Fe+, H+, and Ca2+

provided the reactants required during precipitation.
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reported that precipitation of minerals, especially carbonate
minerals, is usually common during CO2 injection and
storage.139 Other experiments agreed that the precipitation
of carbonate rock is inevitable during the CO2 reaction.140,141

Usually, the permeability reduction is accounted for as a
result of the presence of dissolution during CO2 injection,
which releases kaolinite, clay materials, and solid-phase
minerals, which plug and block the fractures and pore throat
of the reservoir formation.137 Shiraki and Dunn have reported
similar results that kaolinite minerals were the main challenge
to reduce the permeability after CO2 injection.123 However,
the research of Luquot et al. showed that the permeability was
reduced as a result of the new minerals formed during CO2
storage.107

Moreover, other studies reported the dissolution and
precipitation process of the saline aquifer.142−145 The research

by Zhu et al. described the dissolution process during CO2
injection into the saline aquifer. When CO2 is injected into the
saline aquifer, partial dissolution will happen to the active
minerals, resulting in a pH decrease as a result of the formation
of the acidic condition. During this time, the precipitation of
carbon minerals may also happen, which can affect the
reservoir performance or formation damage, resulting in low
permeability or low integrity of the formation rock. However,
the precipitation and dissolution during CO2 injection and
storage depend upon various factors, such as the formation
type, mineral composition, pressure, and temperature.121,146

However, the acid formed in the geological formation as a
result of CO2 injection and storage has been researched by
numerous researchers with agreement that precipitation and
dissolution might compromise the integrity of rock formation
and also cause formation damage.147,148 The experiment by

Table 3. Summary of Major Dissolution and Precipitation Reactions

focal point description of dissolution and precipitation

CO2 injection into the
carbonate formations

in the carbonate system, injected CO2 or atmospheric CO2 can dissolve in water, forming a weak acid (H2CO3), which can dissociate into
HCO3

− and CO2
− and form H+ ions, causing dissolution and precipitations,118 as observed in the following equations:

H O CO CaCO Ca(HCO )2 2 3 3 2+ +
CO (gas) CO (aq)2 2

CO (aq) H O H CO (aq)2 2 2 3+
H CO (aq) HCO H2 3 + +

HCO CO H3 2
3 + +

precipitation of
carbonate minerals

carbonate minerals may precipitate through a bicarbonate reaction with divalent cations; Ca, Mg, and Fe carbonates may be observed119

HCO Ca CaCO H3
2

3+ ++ +

HCO Mg MgCO H3
2

3+ ++ +

HCO Fe FeCO H3
2

3+ ++ +

dissolution and
precipitation of
minerals

formation of acidic water
acidic fluid with the calcite reaction and calcite dissolution
acidic fluid with the dolomite reaction27,120

CO H O H HCO2 2 3+ ++

CaCO (calcite) H Ca HCO3
2

3+ ++ +

CaMg(CO ) (dolomite) 2H Ca Mg 2HCO3 2
2 2

3+ + ++ + +

acidic fluid with K-feldspar minerals; the precipitation from kaolinite restrains further reaction, causing K-feldspar dissolution to decline

2KAlSi O (K feldspar) 2H 9H O

Al Si O (OH) (kaolinite) 2K 9H SiO (aq)
3 8 2

2 2 5 4 4 4

+ +

+ +

+

+

NaAlSi O (albite) CO H O

NaAlCO (OH) (dawsonite) 3SiO (chalcedony)
3 8 2 2

3 2 2

+ +

+
dissolution of dolomite

rock
injection of CO2 results in the dissolution of dolomite rock121

dolomite 2H Ca Mg 2HCO2 2
3+ = + ++ + +

kaolinite precipitation precipitation of kaolinite was observed121

kaolinite 2CO (g) 2Na H O 2dawsonite 2quartz 2H2 2+ + + = + ++ +

fluid rock interactions dissolution of CO2 to the carbonate rock
H O CO H CO H HCO2 2 2 3 3+ = = ++

CO2 and calcite reactions resulted in Ca2+ and HCO3
− ions122

H O CO CaCO Ca 2HCO2 2 3
2

3+ + = ++

Table 4. Unreacted and Reacted Mineral Samples from the Quantitative X-ray Diffraction (QXRD) Analysis of Mineral Phases
(wt %)35

carrier gas impurity albite analcime ankerite calcite chlorite halite hematite K-feldspar mica quartz

CO2 SO2 18.5 4.0 15.6 <0.5 1.7 0.5 8.5 6.6 44.5
CO2 NO2 18.7 3.7 15.8 1.3 0.6 8.8 7.3 43.8
CO2 H2S 20.0 3.5 8.9 1.1 <0.5 9.1 6.3 50.9
CO2 none 19.5 3.6 10.4 1.1 1.1 0.5 9.2 7.6 48.1
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Cui et al. investigated the dissolution and precipitation of two
formation types: sandstone and carbonate rocks. The results
showed that, for the sandstone, the dissolution was observed in
clay and ankerite minerals, while precipitation was observed in
the plagioclase minerals, which may increase ions of Ca2+ and
Mg2+ in brine water. However, considering the carbonate rock,
the dissolution was seen in dolomite minerals, while the
precipitation was observed in the calcite and ankerite
minerals.149

Various minerals were investigated by Liu et al. during CO2
injection, and observation was performed on the chemical
reaction between CO2, rock, and brine water. The minerals
utilized in the experiment were kaolinite, quartz, Ca-
montmorillonite, calcite, albite, K-feldspar, dolomite, anhy-
drite, illite, chlorite, and pyrite. Table 5 shows the results of the
dissolution and precipitation of these minerals after CO2
injection.83

The change in mineral concentrations considerably affects
the porous or fracture systems, which may cause formation
damage. However, the concentrations of HCO3

−, Mg2+, K+,
SO4, Na+, and Ca2+ were assessed, and the following is the
discussion based on the results shown in Table 4. Because
mineral dissolution may occur during CO2 injection,150 like
dissolution of dolomite, K-feldspar and albite, little concen-
trations of Mg2+, Na+, and K+ were observed, possibly from

dissolution of a small amount of dolomite, K-feldspar, and
albite from sandstone formation.151 Because sandstone
contains calcite minerals, a large amount of HCO3− and
Ca2+ was observed, which was believed from the dissolution of
calcite minerals. Furthermore, the experiment shows that the
pressure increase has little increase in the ion concentrations of
Mg2+ and Na+, while SO4 and K+ remain constant and Ca2+

and HCO3
− were observed to increase. Therefore, increased

pressure led some minerals to dissolve, while some remained
constant.151 Additionally, the concentration of Na+ was
observed to decrease when the NaCl concentration was
increased as a result of the dissolution of secondary
minerals,152 which contained Na+ during the reactions.83

Figure 8 shows the degree of mineral dissolution during CO2
injection to the sandstone formation. However, albite dissolved
more during the interaction with CO2 and brine water than
feldspar as a result of the low entropy and Gibbs free energy
change, which is negative, while feldspar has higher entropy
and Gibbs free energy. Therefore, albite spent lower energy to
dissolve than feldspar. Table 3 presents the summary of the
dissolution and precipitation reactions that occurred from the
various experimental studies.
2.3. Changes in the Grain Size and Sorting. Mineral

dissolution and precipitation led to changes in grain diameters
and distributions in geological formation, resulting in a
reduction of injectivity and storage capacity of CO2 by holding
grains together.119 Badrouchi et al. experimented to investigate
the pore size distribution before and after CO2 injection using
two types of formation samples [Middle Bakken (MB) and two
Three Forks (TF)].67 They employed the nuclear magnetic
resonance (NMR) to provide detailed results and concluded
that the effective porosity decreased from 5.3 to 3.8% for MB
samples, while for TF samples, the effective porosity was
reduced from 7.6 to 6.3%, and the distribution of the pore size
was presented in Figure 9 for detailed analysis. However,
Figure 9 suggests that the pore distributions from all wells have
shown a considerable decline in their distribution to the
formation after injection as a result of dissolved CO2 to the

Table 5. Results of the Dissolution and Precipitation of
Utilized Minerals in the Experiment83

precipitated minerals dissolved minerals
main
ions

unchanged
minerals

dolomite albite HCO3
− anhydrite

kaolinite anhydrite K+ pyrite
quartz calcite Na+

Ca-montmorillonite Ca-montmorillonite Ca2+

illite K-feldspar Mg2+

chlorite

Figure 8. Change of minerals against time. This figure was reproduced with permission from ref 105. Copyright 2012 Elsevier.
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formation rock with active minerals, in which formation
damage was experienced.

In this way, micro-, meso-, and macropores were blocked by
mineral precipitation, leading to low injectivity by plugging and
blocking micropores. Also, Adebayo et al. reported that, when
CO2 was injected, there was an alteration in grain size as a
result of the chemical reaction, which affected the rock
grains,111 and the results are presented in Figure 10. However,
the grain size change contributed to the solubility of grains and
the development of new pores or the formation of macropores
as a result of the joining of micro- and macropores.67

Furthermore, the change in the grain size can be observed as
a result of the closure of micropores or pore throats through
precipitation. The pore distributions have considerable effects
on permeability and porosity.153 However, the research
concerning the change of porosity and permeability before
and after the experiment has been reported by other
researchers.154

The experiment of Zhao et al. showed that pore structures
were affected during CO2 injection, in which the precipitation
of secondary minerals changed the sorting behavior of the rock
formation, especially the pore throats, causing the permeability
to decline.98 The change in pore throats is because of the
strong precipitation of carbonate minerals, feldspar and
quartz.35,73,143,154−156 The results of the experiment of Zhao
et al. are presented in Figure 11.

Figure 11 shows the pore throat diameter before and after
the experiment. However, 0.01−0.1 μm is a small throat, while

0.44−1 μm is a relatively larger throat that decreased. The
decrease was attributed to the precipitation of the active
minerals, which block the small throats (0.01−0.1 μm), while
the large throats decreased as a result of the shrinking of the
diameter after the precipitation of the secondary minerals.151

The experimental studies reported by Aminu et al. also
showed the average grain size and distribution changes in four
samples in a test system that involved pure CO2, NO2, SO2,
and H2S in the test system.35 Each set of sample measurements
is reported in Feret diameter, D (mm), using the geometric
mean equations to calculate the geometric mean, dg (mm), of
the samples,157,158 and the results are plotted in Figure 12. The
formation damage as a result of dissolution and mineral
precipitation considerably affects the grain size and distribution
within the formation. Considering the experiment,35 the
following can be discussed in Figure 12a: exposing CO2 to
the test system caused the average grain size to increase
(geometric mean, dg) from 42.6 to 48.1 μm as a result of the
formation of carbonic acid and the decrease of the pH values.
However, because the reaction resulted in weak acid (carbonic
acid), partial dissolution of solid minerals led to increased
permeability by CO2.

In Figure 12b, the experiment has shown a considerable
increase in the average grain size from 43.8 to 48.1 μm with a
higher chance of pH from 7.65 to 5.23. This increase is
associated with the decrease of permeability as a result of the
formation of a strong acid, like nitric acid, which increases the

Figure 9. Distribution of pore percentages before and after the experiment. This figure was reproduced with permission from ref 67. Copyright
2022 Elsevier.
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dissolution of minerals, leading to plugging and blocking the
porous system, causing the formation damage.33

In Figure 12c, when CO2 and SO2 were introduced, the
average grain size was observed to change from 44.5 to 48.1
μm, as the same changes when CO2 and NO2 were conducted.
However, there was a variation in pH and permeability. The
pH value shows the change from 7.65 to 5.86 as a result of the
acidic medium attributed to strong acid, known as sulfuric acid,
while permeability declined as a result of the dissolution and
precipitation, resulting in the blockage of the porous media.
The last test exposed CO2 and H2S to the test system in Figure
12d, and the following was observed: the average grain size
decreased from 50.9 to 48.1 μm with changes in pH values
from 7.65 to 6.55. However, this is attributed to the acidic
medium and dissolution of minerals.35

3. CHALLENGES AND PERSPECTIVES
Formation damage can be minimized, leading to the injection
and storage of CO2 being effective for geological formations.
However, laboratory experiments discussed in this study
suggested some changes, especially in mineralogical and
chemical reactions. These changes can affect the permeability
and porosity of the formation during CO2 injection and
storage, resulting in complications of formation damage.
Therefore, the following are challenges and perspectives
suggested from this study: (1) Numerous experiments have

Figure 10. Pore size distribution of the core samples before and after the experiment. This figure was reproduced with permission from ref 111.
Copyright 2015 Elsevier.

Figure 11. Pore throat distribution before and after the experiment.
This figure was reproduced with permission from ref 151. Copyright
2015 Elsevier.
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shown the short-term effect of formation damage on geological
formations, while CO2 storage is a long-term project. More
research should be conducted to determine the geochemical
effect after long-term storage to determine the effect of
formation damage.35 (2) The extent of formation damage
depends upon the type, conditions, and location of the
geological formation. However, the process of mineralogical
and chemical reactions can be either beneficial or sometimes
very harmful. Therefore, this study recommends more research
before the injection and storage of CO2 because CO2 is stored
in the form of gas, and it is very easy to escape when leakage
happens as a result of the buoyancy effect of CO2.

159 To avoid
escaping CO2 to the surface, a detailed study should be
performed. (3) How long CO2 stays in the formation and its
monitoring are another challenge to be addressed by
researchers. The study of fault sealing capacity and
petrophysical fault regions are very important. (4) The
challenges of geological heterogeneity in the injection and
storage of CO2 are an important factor in the prediction of the
formation damage in the reservoir because the porous medium
may vary and cause inconsistences.160 (5) The study suggests
that determining the initial composition of brine water is
crucial because the changes of mineralogy, permeability, and
porosity are generally characterized when there are reactions
between them; for example, dissolution of sulfate minerals
causes alteration of reservoir porosity.146 More studies are
recommended to have details of brine water composition.

4. CONCLUSION
This study presented and demonstrated the substantial
previous and ongoing laboratory works in a wide range of
potential formation damage during CO2 injection and storage
in a geological formation. The results of this review study
conclude the following: The reaction between water, rock, and
carbon dioxide impurities caused the formation damage. The
extent of formation damage depends upon the kind of
impurities contained in the stream of CO2. It is necessary to
evaluate the nature of impurities and the quality of the
reservoir before the injection of CO2. Also, it has been seen
that NO2 and SO2 in CO2 streams have the highest impact on
the formation, which compromises the storage and injectivity
efficiencies and safety of projects and may add the cost of
storage, transport, and integrity of the project. When the
dissolution and precipitation occurred, the mineral compo-
nents shifted and plugged the porous media. Also, the study
has shown that the grain sizes have been reduced on average
from 50.9 to 48.1, resulting in a reduction of the permeability
that leads to the occurrence of formation damage. It should be
noted that storing CO2 in a geological formation may reduce
the possibility of formation damage. This study can provide
knowledge that will assist in minimizing the uncertainty of
storage of CO2 in any new geological formation.
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ESEM = environmental scanning electron microscopy
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