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In this study, integrated approaches based on multivariate analysis (MVA), machine
learning (ML), and geochemical analysis are proposed to investigate the potential of
hydrocarbon reserves and total organic carbon (TOC) prediction. These approaches em-
ployed the MVA technique as a future selection method in source rock evaluation. We used
geochemical data from 30 core samples taken equally from wells SS-5 and SS-7. Geo-
chemical parameters, namely TOC, free hydrocarbon, thermal pyrolysis hydrocarbon,
hydrogen index, production index, and oxygen index, were determined for statistical eval-
uation. IBM SPSS statistical software and MATLAB (R2020a) were used for MVA and ML,
respectively. The performance of the models built using MVA and ML were evaluated by,
among others, coefficient of determination (R2) and mean square error (MSE). Findings
revealed that fair through good to excellent source rock with TOC ranging from 0.85 to 2.95
wt% are hosted in the Triassic beds of Tanga. A high 1.61% Ro at a mature peak of 463 �C
predominates with the existence of type III/II kerogen that can produce both oil and gas.
Considering TOC prediction from conventional well log data, optimized Gaussian process
regression showed the best performance followed by MVA and support vector machine,
giving the MSEs of 0.5629, 0.6172, and 0.7023, respectively. In terms of prediction accuracy,
their R2 values of 0.952, 0.9346, and 0.835, respectively, were in good agreement with the
geochemical results. The concurrence of geochemical analysis, ML, and MVA revealed that
the Tanga basin has great hydrocarbon potential of great economic importance. The study
revealed that combining MVA and other methods can be applied to assess the hydrocarbon
resource potential of other prospects around the globe.

KEY WORDS: Source rock, Geochemical analysis, Cluster analysis, Factor analysis, Pearson’s
correlation coefficient(r), Machine learning.

INTRODUCTION

The machine learning (ML) and Rock–Eval
pyrolysis techniques have been widely used to
evaluate source rocks. Despite the fact that previous
approaches face vast challenges in terms of com-
puting efficiency and Rock–Eval fallacy (Dembicki
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Jr, 2009; Xie et al., 2018), an alternative method of
multivariate analysis (MVA) as an adopted method
in investigating source rock for a better result is
required. The assessment of source rock is often
predicted based on the amount of total organic
carbon (TOC), the quality, and the capability of
thermal maturation (Omran & Alareeq, 2018; Aziz
et al., 2020). Rock–Eval pyrolysis is the most used
technique in geochemical screening (Chalk et al.,
1997; Lafargue et al., 1998; Mashhadi & Rabbani,
2015; Hakimi et al., 2017; Gentzis, 2018). It is also
used for petroleum, soil, and sediments analysis at
the industrial level (Carvajal-Ortiz & Gentzis, 2015;
Mashhadi & Rabbani, 2015; Romero-sarmiento
et al., 2016, 2017). Artificial neural networks (ANN),
support vector machine (SVM), and Gaussian pro-
cess regression (GPR) are the most employed
methods of ML for predicting TOC and evaluation
of source rock (Bolandi et al., 2017; Asante-Okyere
et al., 2020; Mahmoud et al., 2020; Rui et al., 2020).
However, ANN, SVM, and GPR classifiers may lead
to the challenge of over-fit, iterative tuning of
parameters, and selection of best kernel function
(Xie et al., 2018; Golden et al., 2019; Rui et al., 2020;
Mulashani, et al., 2021a, 2021b).

To provide the distinctive to these techniques,
it�s vitally important to integrate them with multi-
variate analysis (MVA), which is significantly con-
nected with the principle of statistics, which means
measuring and evaluating more than one indepen-
dent statistical variable times-wise (Johnson &
Wichern, 2002; Izenman, 2008). MVA has several
sub-methods for variables analysis that lead to a
much deeper improved analysis of source rock
evaluation. MVA techniques of clustering by K-
means, factor analysis, principal component analysis,
and the person correlation coefficient were applied.
The present study examines the performance of
integrating geochemical, MVA, and machine learn-
ing techniques to enhance results accuracy.

The research firstly investigated the benefit of
combining MVA, geochemical analysis, and ML in
the evaluation of source rock and in the prediction
of TOC. Secondly, we intended to ascertain the oil
and/or gas hydrocarbon potential of the case study
area. Thirdly, the study revealed the best method for
source rock assessment. For further investigation,
several wells have been drilled in this basin. This
study revealed that a combination of multiple tech-
niques can lead to improved source rock evaluation.

GEOLOGICAL SETTING

Tanga basin is one of the new potential pools
for hydrocarbon reserves in Tanzania’s coastal
basins situated near the Kenya border in the
northern part of Tanzania (Fig. 1). Coastal basins
(Tanga, Ruvu, and Mandawa) were speculatively
formed by the initiation process of the Permo-Tri-
assic Continental rift. The Tanga basin is mainly
influenced by the Tanga fault, which trends in NNE-
SSW (Fig. 2). From Permo-Carboniferous to lower
Jurassic, the column of sedimentary bedrocks in
these basins starts with the continental Karoo se-
quence. The Karoo rocks are largely represented by
conglomerate and shale (Ngerengere Formation)
fluviatile arkosic sandstones that characterize the
Selous-Ruvu-Tanga rift reservoir (Mbede & Dualeh,
1997; Kapilima, 2003). The Karoo sediments in the
Tanga Basin are referred to as Tanga beds(Wopfner,
2002; Said et al., 2015). Tanga beds are formally
classified as lower, middle, and upper sequences
(Fig. 3).

MATERIALS AND METHODS

Sample Selection

In total, 30 core samples, 15 each from wells SS-
5 and SS-7, were selected for analysis. Each sample
was washed with dichloromethane to remove resid-
ual drilling fluids. Sixty (60) g of each sample was
crushed into powder by a motor and pestle. Each
powdered sample was put into a crucible for geo-
chemical analysis (Chalk et al., 1997; Behar et al.,
2001; Carvajal-Ortiz & Gentzis, 2015; Wu et al.,
2017).

Geochemical Analysis of Source Rock

The geochemical investigation was performed
by Rock–Eval pyrolysis 6, where the TOC, thermal
maturity (Tmax), free hydrocarbon (S1), production
index (PI), CO2 released during thermal breakdown
of kerogen (S3), hydrogen index (HI), thermal
pyrolysis hydrocarbon (S2), and oxygen index (OI)
were identified. The determination and quantifica-
tion of parameters were used to assess the Tmax and
quality of the source rock (Li et al., 2018; El Hajj
et al., 2019). A portion of about 69.98 mg from each
sample was measured and examined by pyrolysis.
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Samples were kept in a helium-inert atmosphere at a
constant temperature of 700 �C during parameters
quantification. TOC Eq. 1, HI Eq. 2, OI Eq. 3, and
PI Eq. 4 were calculated from pyrolysis data (Peters,
1986; Mashhadi & Rabbani, 2015; Hazra et al., 2017;
Godfray & Seetharamaiah, 2019).

%TOC ¼ 0:082 S1 þ S2ð Þ þ S3�=10 ð1Þ

HI ¼ 100� S2
TOC

ð2Þ

OI ¼ 100� S3
TOC

ð3Þ

PI ¼ S1
S1 þ S2½ � ð4Þ

Source Rock Evaluation Based on Multivariate
Analysis

Different multivariate statistical techniques
using well log data of GR (gamma-ray), DT (sonic),

MSFL (resistivity), CALI (caliper), PEF (photo-
electric effect), RHOB (bulk density), and NPHI
(neutron porosity) were performed through IBM
SPSS statistical tool (version 26). These techniques
included K-means clustering, principal components
analysis (PCA), Pearson’s correlation coefficient (r),
and factor analysis (FA) to enhance the accuracy of
source evaluation and TOC prediction (Shen et al.,
2019; Asante-Okyere et al., 2020).

K-Means Clustering

K-means clustering algorithm is defined as an
intensive way of unsupervised machine learning
techniques for which the dataset is categorized into
k number that keeps the inner point of clusters as
closer as possible while maintaining their area for
predetermined non-overlapping clusters (Al-Mohair
et al., 2015; El Nady et al., 2015a, 2015b). K-means
clustering method was determined stepwise as indi-
cated in model summary (Fig. 4) where Knee and
Silhouette methods were applied to find the number
of the cluster from well log data.

Figure 1. Location map of Tanzania country a and study area of Tanga basin b from which Well SS-5 and Well SS-7 were extracted.
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The centroid for clusters was considered as:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� aÞ2 þ x� bð Þ2þ x� nð Þ
q

ð5Þ

ruwhere D represents the Euclidian distance of each
selected well log data, x, b; and n are variables.
Centroids for per cluster were identified as the sum
of squared error by reducing the objective function
(Edwards et al., 1999; Bramer, 2016; Zaremotlagh
et al., 2016), thus:

E ¼
X

k

i¼1

X

p�ci
dist Gp;C ið Þ

� �

2

ð6Þ

where E represents the sum of square error of all
selected data, Gp, represents well log data in space,
C(i) is the centroid. Then, for all selected well log
data, the weighted summation and standard devia-
tion, which represent the distinct centroids of all
cases, were expressed respectively as:

A ¼ 1

n

X

n

i¼n

ai ð7Þ

where A is mean of specific variables collection, ai
represents the sub-variables, and n represents the
total count of variable numbers, and

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

xi � xð Þ2

n� 1

s

ð8Þ

where S stands for standard deviation, x is variable
value in the data, x is average of specific variables, n
is number of variables in the data set.

Factor Analysis

Factor analyses in this work were executed
through the principal axis factoring method to assist

Figure 2. a Major structural faulting zones of Tanzania coastal basin. b Geological map of coastal basins ( modified from Kapilima (2003)

and Said et al. (2015).
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in well log data interpretation (Zhou et al., 1983;
Zumberge, 1987; El Nady et al., 2015a, 2015b).
Standardization of the data was made by subtracting
the mean from the values of the corresponding log
and then dividing the difference by the standard

deviation to ensure that the well log data have the
same content and format for analysis (Walden et al.,
1992). The rotation was prohibited as criticized by
Temple (1978), Pan et al. (2017), and Gian-
nakopoulou et al. (2018).

Figure 3. Illustration of the stratigraphy of the Tanga basin from the oldest lithology (Basement) to

youngest lithology.

Evaluation of Source Rock Potentiality and Prediction



Principal Components Analysis

Principal components analysis of the selected
well log data was carried using SPSS statistical
software. To determine the best statistical factor
approach, rotation through varimax with Kaiser
normalization was considered.

Pearson�s Correlation Analysis

Analysis by Pearson correlation (r) was used to
anticipate the linear relationship between well log
data and TOC (Bolandi et al., 2017) to determine
the importance of each factor in TOC prediction and
reservoir assessment (Handhal et al., 2020). It was
calculated as:

rx;y ¼
covðx; yÞ
rxry

ð9Þ

where r is the linear correlation between two vari-
ables x, and y, rx represents the standard deviation
of x, cov represents the covariance and ry represents
the standard deviation of y. Well log data including
GR, NPHI, DT, RHOB, LLD, PEF have great
influence on rock formation as they measure or-
ganic-rich of rock, concentration hydrogen atom,

Figure 4. Schematic diagram of the model summary.

Figure 5. Variable significance values.

Figure 6. Division of the dataset into two sets (one for training

and the other for testing).
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bulk density, matrix resistivity content, which affect
the TOC level of rock formation.

MACHINE LEARNING ALGORITHM

ML is a computational technique that creates a
model with the help of sample data. In current days
some ML and deep learning techniques have been
used for creating the model for TOC prediction
(Amiri Bakhtiar et al., 2011; Mahmoud et al., 2019,
2020; Rui et al., 2020). Two ML algorithms have
been used to predict TOC values from the Tanga
basin. A complete selected well log data was used
for ML analysis. SVM and GPR were the algorithms
used for this purpose (Rui et al., 2020; Mulashani,
et al., 2021a, 2021b). These two algorithms have
been widely used in engineering, industrial, and
medical aspect to perform various tasks like face
detection, image classification, and making a reliable

prediction (Priddy & Keller, 2005; Suzuki, 2011;
Alquisom, 2016; Shalaby et al., 2019). Regression
modeling through SVM and GPR algorithms was
performed in MATLAB (R2020a) to assess the
geochemical performance.

Support Vector Machine

The kernel function Eq. 10 was used in model
building to predict TOC through support vector
regression (Vapnik 2013). The key objective of SVM
is to acquire the smallest loss function f(x) and the
curve as flat as possible (Kaloop et al., 2020), thus:

f xð Þ ¼
X

l

i¼1

ai � a�i
� �

k xi; xð Þ þ b ð10Þ

where kxi; x stand for kernel function, xiandx are
training and testing data respectively, ai � a�i are

Table 1. Geochemical results for wells SS-5 and SS-7 of Triassic source Tanga basin

Sample

number

Depth

(m)

TOC

(wt%)

S1 (mg

Hc/g)

S2 (mg

HC/g)

S1 + S2 (mg

HC/g)

HI (mg

Hc/g)

OI (mg

Hc/g)

Tmax (
�C)

Ro

(%)

PI (S1/

(S1 + S2)

S1/TOC (mg

Hc/g/wt%)

WSS-5–10 138.67 0.98 1.13 2.72 3.85 277.55 33 460 1.12 0.29 1.15

WSS-5–12 143.82 1.07 1.25 3.12 4.37 291.59 19 451 0.96 0.29 1.17

WSS-5–15 157.41 1.15 1.18 3.34 4.52 290.43 16 461 1.14 0.26 1.03

WSS-5–16 160.82 1.01 0.98 3.25 4.23 321.78 22 456 1.05 0.23 0.97

WSS-5–17 174.23 1.51 1.73 3.64 5.37 241.06 16 456 1.05 0.32 1.15

WSS-5–27 191.89 0.85 0.98 3.12 4.1 367.06 21 454 1.01 0.24 1.15

WSS-5–29 1100.65 0.91 1.07 3.78 4.85 415.38 2 444 0.83 0.22 1.18

WSS-5–32 1110.30 1.24 1.27 3.45 4.72 278.23 17 456 1.05 0.27 1.02

WSS-5–34 1120.58 1.16 1.49 3.49 4.98 300.86 20 447 0.89 0.30 1.28

WSS-5–36 1130.52 2.59 2.69 4.51 7.2 174.13 23 453 0.99 0.37 1.04

WSS-5–42 1220.45 1.38 1.34 3.61 4.95 261.59 22 456 1.05 0.27 0.97

WSS-5–57 1240.81 2.75 2.59 4.74 7.33 172.36 14 455 1.03 0.35 0.94

WSS-5–59 1260.82 2.95 2.78 5.04 7.82 170.85 34 463 1.17 0.36 0.94

WSS-5–61 1280.82 2.51 2.53 4.55 7.08 181.27 30 463 1.17 0.36 1.01

WSS-aa5-

66

1302.81 2.56 2.28 4.76 7.04 185.94 17 461 1.54 0.32 0.89

WSS-7–14 123.22 2.72 2.21 4.49 6.7 165.07 21 450 0.94 0.33 0.81

WSS-7–18 137.35 1.11 1.17 3.39 4.56 305.41 21 458 1.08 0.26 1.05

WSS-7–13 153.64 0.88 0.98 2.98 3.96 338.64 10 451 0.96 0.25 1.11

WSS-7–25 190.71 1.04 1.01 4.01 5.02 385.58 11 454 1.01 0.20 0.97

WSS-7–26 198.12 0.99 0.85 3.16 4.01 319.19 21 457 1.07 0.21 0.86

WSS-7–28 1109.22 1.12 1.25 3.09 4.34 275.89 22 456 1.05 0.29 1.12

WSS-7–32 1120.20 1.14 0.9 3.34 4.24 292.98 35 459 1.41 0.21 0.79

WSS-7–35 1131.73 1.51 1.11 3.35 4.46 221.85 28 458 1.08 0.25 0.74

WSS-7–37 1148.57 1.37 1.25 2.84 4.09 207.30 17 461 1.14 0.31 0.91

WSS-7–40 1210.16 2.42 2.57 4.49 7.06 185.54 29 458 1.58 0.36 1.06

WSS-7–48 1230.79 1.65 1.64 3.77 5.41 228.48 17 453 1.43 0.30 0.99

WSS-7–49 1250.23 2.52 0.79 4.64 5.43 184.13 28 460 1.52 0.15 0.31

WSS-7–50 1270.55 2.51 1.43 5.01 6.44 199.60 12 450 1.48 0.22 0.57

WSS-7–52 1290.70 2.46 2.78 4.38 7.16 178.05 24 461 1.4 0.39 1.13

WSS-7–53 1305.81 2.15 2.95 4.86 7.81 226.05 14 457 1.61 0.38 1.37
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Lagrangian multipliers. Optimization was done by
the Lagrange multiplier (Azimi-Pour et al., 2020).

Gaussian Process Regression

GPR was performed through kernel function to
measure similarities and predict the value of un-
known data (Rui et al., 2020). The technique can
compute a response for the model’s input variables
which makes it more beneficial than others (Wu
et al., 2006; Kaloop et al., 2020). The output z of the
GPR model is assumed through the function f xð Þð Þ
of Gaussian noise model, thus:

zt ¼ f xtð Þ þ et ð11Þ

where f ðxÞ stands for Gaussian process, et model
noise which obeys normal distribution (Eq. 12),

etNð0; r2nÞ with variance r2e and mean = 0 for the n

observation (Kaloop et al., 2020).

f xð Þg
p

m xð Þ; k x; x0ð Þð Þ ð12Þ
GPR involves covariance kðx; x0Þ and means

functions ðm xð ÞÞ of the data. The covariance iden-
tifies the dependence values existing at different
input points xandx0. The k is kernel function, which
is defined as:

k x; x
0

� �

¼ r2 exp � x� x
02

2l2

� �

ð13ÞFigure 7. Plot of TOC vs S2 to evaluate the generative ability

of hydrocarbons showing fair to good source rock.

Figure 8. Cross-plot of Tanga shale formation indicating most samples are type II and type III kerogen.
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where r2 stand for variance and l for scale length.
The model data are calculated using Bayesian
inference when kernel parameters are being de-
tected.

TOC from geochemical study and well log data
(GR, MSFL, CALI, PEF, RHOB, and NPHI) were
used for TOC prediction. The importance of each
log was ranked by considering its gain value. The
importance of TOC prediction was increasing with
the scores (Fig. 5), the order of importance was
RHOB<CALI<GR<MSFL<PEF<NPHI.
For cross-validation with two datasets, 70% as
training data and 30% as testing data were consid-
ered (Fig. 6). The studied dataset involved 30 core
samples taken equally from wells SS-5 and SS-7. The
process was repeated 10 times to assess the stability
of the algorithms. The best performing model was

studied in terms of loss functions R2 (coefficient of
determination), RMSE (root mean square error),
and MSE (mean square error) (Eqs.14, 15, and 16)
because these functions are used for error estimation
between real values ( ti) and predicted ( pi) (Asante-
Okyere et al., 2020):

R ¼
Pn

i¼1ðt � tÞ p� pð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1ðt � tÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1ðp� pÞ

p

q ð14Þ

MSE ¼ 1

n

X

n

i�1

ðti � piÞ ð15Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i�1

ðti � piÞ
s

ð16Þ

Figure 9. Plots of S2 vs TOC showing that most of the studied samples are mixed type II and III (oil/gas

prone).
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where n is total number of data points, t is mean
measured parameter value, and p is mean predicted
parameter value.

RESULTS AND DISCUSSION

Geochemical Characterization of Source Rock

Table 1 displays geochemical data obtained
from pyrolysis.

Quantity of Organic Matter

Characterization of the Triassic Tanga source
rock samples was carried following the methodology
by Peters (1986) and Omran and Alareeq (2018).
The cross-plots of TOC (wt%) against S2 were
plotted to discriminate the indigenous hydrocarbon
from a non-indigenous hydrocarbon. The TOC val-
ues of 0.85–2.95wt% indicated that the majority of
samples were fair to good sources rock while some
were excellent (Fig. 7) (El Kammar, 2015; Wang
et al., 2020).

Figure 10. Tmax versus PI cross-plot indicating that most of the samples are in the main stage of

hydrocarbon generation.
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Type of Kerogen

HI was plotted against OI and Tmax to antici-
pate kerogen categories of the Triassic Formation
source rock. Figure 8 illustrates that the Tanga basin
contained mostly Type II kerogen with the ability to
generate oil with minor gas, and kerogen type III
suggesting a source rock rich in gas prone (Langford
& Blanc-Valleron, 1990; El Nady et al., 2015a,
2015b; Omran & Alareeq, 2018).

To infer kerogen classes in this formation, the
S2 against TOC (Fig. 9) was plotted additionally for
complete verification of organic matter quality. We
found that the wells contained both types II and II/
III together with type III kerogen. The HI values of
the analyzed samples ranged from 165.7 to
415.38 mg/g, which fall into the gas-oil generation
window that reveals the kerogen type according to
the classification by Peters (1986).

Thermal Maturity of Organic Matter

The Tanga shell formation yielded Tmax ranging
from 444 to 463 �C with mean of 456 �C (Table 1).
The formation is interpreted as mature to post-ma-
ture class source rocks based on the Tmax vs PI plot
(Fig. 10) (Wu et al., 2017). The relationship depicted
by this plot indicates that many of the assessed
samples are in the stage of hydrocarbon generation
(El Nady et al., 2015a, 2015b).

Source Rock Generation Potential

Figure 11 presents the HI vs Tmax plot for
source rock evaluation potential. It confirms that the
Tanga reservoir is rich in oil with few samples
showing gas-prone distribution within OM. In addi-
tion, the relationship between geochemical findings
was assessed by correlation coefficient (R2), (Eq. 10,
Fig. 12). Regarding S2 and TOC (Fig. 12a), there is

Figure 11. Cross-plot of HI against Tmax indicating the thermal maturity stage of the basin where most of

the data are in the late to post mature stage.
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Figure 12. Cross-plots showing a linear relationship between a TOC and S2, b TOC and S1, c TOC and HI, d S2 and HI, e

S1 + S2 and TOC, and f S2 and S1.
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strong positive correlation (R2 = 0.891); likewise, S1
and TOC (Fig. 12b) depicted a highly positive cor-
relation of (R2 = 0.966), HI and TOC (Fig. 12c)
showed strong negative correlation (R2 = 0.817),
and S2 and HI (Fig. 12d) have moderate positive
correlation (R2 = 0.552). Moreover, there is high
positive correlation of R2 = 0.856 between S1 + S2

and TOC (Fig. 12e) and a strong positive correlation
of R2 = 0.856 between S1 and S2 (Fig. 12f). A good
positive correlation (R2 = 0.981) was anticipated by
the model. According to the classification by Ed-
wards et al. (1999) and El Nady et al. (2015a, 2015b),
the relationship between TOC and HI as well as
between S1 + S2 and TOC can be used to assess
maturity level. The negative correlation between HI
and TOC affirms variation in the occurrence of the
former. High amounts of HI can often be found at a
certain maturity level but it does not occur in less
mature or over-mature stages. The highly strong
positive correlation between S1 + S2 and TOC
(Fig. 12e) indicates that wells SS-5 and SS-7 are
highly related and that their hydrocarbon generating
potential is high.

HYDROCARBON POTENTIAL BASED
ON MULTIVARIATE STATISTICAL
ANALYSIS

K-means Clustering

The optimal result of TOC prediction by the K-
means model was achieved at the overall RMSE) of
0.6172 and MSE of 0.381 (Table 2). The results show
that taking two clusters (K-means 1 and K-means 2
in Table 3) leads to the best bar graph clustering
pattern (Fig. 13) because each log shows an almost
equal range in their predictions. The minimum dis-
tance within points in a cluster (WCSS) gave a good
average silhouette value of 0.7. The F-values of
11.184 for TOC, GR, MSFL, CALI, PEF, RHOB,
and NPHI indicate the influence of each variable on
clustering (Table 2). Moreover, RMSE and R
(Eqs. 10, 12) were estimated to quantify the devel-
oped models (Table 3). The predicted result for
TOC suggests a good performance agreement with

Table 2. Results of ANOVA for wells SS-5 and SS-7 cluster

Well Logs Mean Square DF MSE RMSE DF F SIG

NPHI 29.000 1 0.000 0.000 28 1,603,173,194.43 .000

RHOB 29.000 1 0.000 0.000 28 196,021,444.518 .000

PEF 29.000 1 0.000 0.000 28 4,798,945.391 .000

CALI 28.999 1 0.000 0.000 28 1,068,457.300 .000

MSFL 28.999 1 0.000 0.000 28 665,749.092 .000

GR 20.331 1 0.310 0.556 28 65.672 .000

TOC 4.264 1 0.381 0.6172 28 11.184 .002

Table 3. K-means distance and cluster membership

Case Number Sample ID Cluster Distance TOC

1 WSS-5–10 1 0.432 0.98

2 WSS-5–12 1 0.175 1.07

3 WSS-5–15 1 0.091 1.15

4 WSS-5–16 1 0.329 1.01

5 WSS-5–17 1 0.573 1.51

6 WSS-5–27 1 0.269 0.85

7 WSS-5–29 1 0.393 0.91

8 WSS-5–32 1 0.280 1.24

9 WSS-5–34 1 0.348 1.16

10 WSS-5–36 2 0.671 2.59

11 WSS-5–42 2 0.542 1.38

12 WSS-5–57 2 0.850 2.75

13 WSS-5–59 2 1.040 2.95

14 WSS-5–61 2 1.009 2.51

15 WSS-5–66 2 0.781 2.56

16 WSS-7–14 2 0.911 2.72

17 WSS-7–18 2 0.817 1.11

18 WSS-7–13 2 1.060 0.88

19 WSS-7–25 2 0.937 1.04

20 WSS-7–26 2 1.357 0.99

21 WSS-7–28 2 1.273 1.12

22 WSS-7–32 2 0.781 1.14

23 WSS-7–35 2 0.644 1.51

24 WSS-7–37 2 0.749 1.37

25 WSS-7–40 2 0.874 2.42

26 WSS-7–48 2 0.654 1.65

27 WSS-7–49 2 1.005 2.52

28 WSS-7–50 2 0.617 2.51

29 WSS-7–52 2 1.576 2.46

30 WSS-7–53 2 0.685 2.15
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geochemical data. This implies that well log data
have great influence on the prediction of TOC.

Factor Analysis

The findings of this analysis indicate that, based
on principal axis factoring under eigenvalue extrac-
tion, one factor was the optimal solution for factor
determination, as previously described by El Nady
et al. (2015a, 2015b) and Pan et al. (2017). All con-
ventional well log variables except one showed
strong positive relationship with TOC (Table 4). In
addition, the validity of the result was confirmed by
checking the Kaiser–Meyer–Olkin (KMO) spheric-
ity and Bartlett’s test of sphericity (p-value) (Ta-
ble 5). The KMO was 0.816, which indicates good
variable identity.Bartlett�s test was significant at a p-
value of 0.00, which is reasonably strong for inter-
pretation (Brian, 2004).

Principal Components Analysis

The relationship between well log data and
TOC has been studied by Shalaby et al. (2019). The
results in Table 6 show the best two components
extracted by PCA. Component 1 includes GR,
MSFL, CALI, PEF, RHOB, and NPHI, whose
loadings are 0.847, 0.957, 0.956, 0.956, 0.957, and
0.957, respectively. These variables contributed
effectively in determining TOC. Component 2 in-
volves mainly TOC (with loading of 0.960), which
contributed effectively in determining the percent-
age weight of TOC.

Figure 14 indicates the relative distribution of
the variables within the data set, where the length
dimension of the vector along the axis reflects a
variable�s contribution to the corresponding factor
loading (Pan et al., 2017). The higher the axis re-
ceives relative factor loadings, the more the variable
vector resembles the factor axis as indicated by
component 1 (GR, RHOB, CALI, PEF, and MSFL)
and component 2 (TOC). Table 7 presents the total
variance explained by each component. Component
1 accounted for> 76% of the total variance while
component 2 explained about 19.564% of the rota-
tional variance. Positive correlations were observed
among the variables (RHOB, GR, CALI, PEF,
MSFL, and NPHI) within the dataset. This indicates
that these variables were significantly related to each
other in the factor determination.

Figure 13. Cluster analysis of well log data from wells SS-5 and SS-7 indicating the effect of each variable in

forming the clusters.

Table 4. Results of factor analysis by principal axis factoring

Factor Initial Eigenvalues

Total % of Variance Cumulative %

1 5.990 85.573 85.573

Nyakilla et al.



Moreover, a reliability test was performed for
each variable (Table 8) to check if they are reliable
to each other or not. Figure 15 shows that all vari-
ables were statistically significant to each other,
whereby GR, RHOB, CALI, PEF, NPHI, and
MSFL showed higher inter-item correlation, and

have cumulative factor loading contribution of over
96% at a confidence interval of 95% (Fig. 15, Ta-
ble 8).

Table 5. KMO and Bartlett�s test results

Bartlett’s and KMO

Kaiser–Meyer–Olkin Measure of Sampling Adequacy 0.816

Bartlett’s Test of Sphericity Approx. Chi-Square 1371.390

Df 21

Sig. (p-value) 0.000

Table 6. PCA results: rotated component matrix of each factor loading

Well Logs 1 2

TOC 0.279 0.960

GR 0.847 0.242

MSFL 0.957 0.278

CALI 0.956 0.279

PEF 0.956 0.280

RHOB 0.957 0.278

NPHI 0.957 0.279

Extraction Method: Principal Component Analysis

Rotation Method: Varimax with Kaiser Normalization

Figure 14. Results of PCA showing the interrelationship of variables in the spaces of components 1 and 2.

Component 1 accounts for> 76% and component 2 accounts for 19.56% of the variance in the data.
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Pearson�s Correlation Coefficient (r) Analysis

The results (Fig. 16) show that there were high
positive correlations between DT and TOC
(R2 = 0.784) (Fig. 16a), NPHI and TOC

(R2 = 0.766) (Fig. 16b), GR and TOC (R2 = 0.625)
(Fig. 16c), MSFL and TOC (R2 = 0.783) (Fig. 16d),
RHOB and TOC (R2 = 0.784) (Fig. 16e), PEF and
TOC (R2 = 0.7837) (Fig. 16f), respectively. Fig-
ure 17 presents the implication of the correlation

Table 7. PCA results: eigenvalues, and variance and cumulative variance explained

Component Initial eigenvalues Extraction sums of squared loadings Rotation sums of squared loadings

Total % of Variance Cumulative % % of Variance Cumulative % % of Variance Cumulative %

1 6.065 86.647 86.647 86.647 86.647 76.718 76.718

2 0.674 9.635 96.283 9.635 96.283 19.564 96.283

3 0.260 3.717 99.999

4 3.333E-5 0.000 100.000

5 6.811E-6 9.731E-5 100.000

6 2.131E-6 3.044E-5 100.000

7 1.799E-8 2.570E-7 100.000

Table 8. PCA reliability test results: inter-item correlation, mean, variance of the variables

Items Scale Mean if Item Deleted Scale Variance if Item Deleted Corrected Item-Total Correlation Cronbach’s Alpha

TOC 0.0000000 34.374 0.536 0.991

GR 1.6736663 29.351 0.835 0.975

MSFL 1.6736663 27.955 0.988 0.963

CALI 1.6736667 27.960 0.987 0.963

PEF 1.6736677 27.958 0.987 0.963

RHOB 1.6736667 27.958 0.987 0.963

Figure 15. Reliability statistical test showing significance distribution values of each variable informing

factor.
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Figure 16. Relationships of TOC with a DT, b NPHI, c GR, d MSFL, e RHOB, and f PEF.
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among the well log variables based on heat map by
Pearson correlation. It can be observed that most of
the well log variables have positive correlations with
each other, such as NPHI, RHOB, PEF, CALI, and
MSFL, although GR has a lower correlation with

them possibly due to noise and low number in-
stances within the dataset.

Figure 17. Heatmap of correlations among well log data (PEF, GR, RHOB, MSFL, CALI, and GR).

Table 9. Results of TOC prediction by MVA, SVM, and GPR, with well log data compared to predicted TOC

Sample ID Depth (m) TOC Core (wt%) TOC (wt%)

Predicted by MVA

TOC (wt%)

Predicted by SVM

TOC (wt%)

Predicted by GPR

WSS-5–10 138.67 0.98 1.34 1.47 1.34

WSS-5–12 143.82 1.07 1.34 1.49 1.34

WSS-5–15 157.41 1.15 1.35 1.49 1.37

WSS-5–16 160.82 1.01 1.33 1.48 1.33

WSS-5–17 174.23 1.51 1.48 1.48 1.48

WSS-5–27 191.89 0.85 1.33 1.43 1.33

WSS-5–29 1100.65 0.91 1.33 1.49 1.32

WSS-5–32 1110.3 1.24 1.33 1.68 1.33

WSS-5–34 1120.58 1.16 1.35 1.46 1.35

WSS-5–36 1130.52 2.59 1.87 1.73 1.87

WSS-5–42 1220.45 1.38 1.51 1.56 1.51

WSS-5–57 1240.81 2.75 1.87 1.71 1.87

WSS-5–59 1260.82 2.95 1.87 1.73 1.87

WSS-5–61 1280.82 2.51 1.83 1.73 1.76

WSS-5–66 1302.81 2.56 1.86 1.71 1.72

WSS-7–14 123.22 2.72 1.86 1.67 1.86

WSS-7–18 137.35 1.11 1.41 1.43 1.41

WSS-7–13 153.64 0.88 1.39 1.43 1.38

WSS-7–25 190.71 1.04 1.36 1.49 1.36

WSS-7–26 198.12 0.99 1.39 1.51 1.39

WSS-7–28 1109.22 1.12 1.47 1.44 1.47

WSS-7–32 1120.2 1.14 1.44 1.53 1.44

WSS-7–35 1131.73 1.51 1.48 1.55 1.48

WSS-7–37 1148.57 1.37 1.45 1.56 1.45

WSS-7–40 1210.16 2.42 1.78 1.65 1.79

WSS-7–48 1230.79 1.65 1.76 1.55 1.57

WSS-7–49 1250.23 2.52 1.78 1.76 1.79

WSS-7–50 1270.55 2.51 1.87 1.73 1.87

WSS-7–52 1290.7 2.46 1.76 1.78 1.76

WSS-7–53 1305.81 2.15 1.85 1.71 1.78
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MACHINE LEARNING

As previously discussed by Shalaby et al. (2019),
well log data of a reservoir are controlled by the
availability level of organic matter. Hence, data for
six-well log variables with good responses were se-
lected as inputs and TOC from geochemical data as
output. The data were trained in MATLAB R2020a

to predict TOC. The method employed a K-fold
cross-validation approach, which protects the data
against over-fitting. Four algorithms from GRP and
six algorithms from SVM were trained. All other
algorithms performed worse than coarse Gaussian
SVM and square exponential GPR (Table 9). Fig-
ure 18 shows the best results from SVM and GPR
based on R2 of predicted TOC values versus geo-
chemical TOC data. GPR gave the best result with
R2 = 0.952 due to its capability in obtaining uncer-
tainty of the predicted model and in yielding good
output for the predicted values. SVM gave a lower
R2 of 0.835, indicating its complication in prediction.

The performance classification accuracy was
assessed based on the optimum model of SVM and
GPR through RMSE and MSE by observing the
ones that produced the least error. The results (Ta-
ble 10) show that the optimum GPR model gave
RMSE of 0.5629 and MSE of 0.3168 at a prediction
speed of 1200 obs/sec under Bayesian optimization)
while the optimum SVM gave RMSE of 0.7023 and
MSE of 0.4933 at a prediction speed of 1700obs/sec).
Comparing the training and test errors (Figs. 19, 20),
GPR gave a small MSE value that indicated its
robustness more than other models. Both models
tend to predict the TOC at a different level of lower
error.

Figure 21 shows the predictability of MVA,
SVM, and GPR models. The results show that all the
models provided good results, which reveal that well
log data are necessary important parameters for
predicting TOC. However, the optimized GPR gave
the best result (R2 = 0.952) followed by MVA
(R2 = 0.935) whereas SVM provided the worst result
(R2 = 0.835).

CONCLUSIONS

The study proposed the advantage of integrat-
ing ML, geochemical, and MVA techniques that
lead to improved prediction of TOC and source rock
evaluation. Based on geochemical findings the
Tanga shell was classified as fair to good source
rocks. They have TOC contents ranging from 0.85 to
2.95 (wt%). They contain oil and gas prone charac-
terized by type II together with III Kerogen laying in
oil to condensate as mature source rocks. TOC
prediction from MVA and ML models suggests a
good agreement with geochemical analyzed values
at R2 above 0.8 for all the models applied. The
prediction results from MVA and ML reveal that

Figure 18. Relationship between TOC values from geochemical

analysis and predicted TOC values from GPR and SVM

modeling.

Table 10. Statistical prediction of optimized TOC model during

training and testing

Model MSE RMSE

Train Test Train Test

GPR 0.1586 0.3168 0.2805 0.5629

MVA 0.1905 0.3810 0.3087 0.6172

SVM 0.2467 0.4933 0.3512 0.7023
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Figure 19. GRP optimized model training (pink curve) and testing (blue curve) for TOC prediction.

Figure 20. SVM optimized model training (pink curve) and testing (blue curve) for TOC prediction.
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optimized GPR was the best model having a lower
value of RMSE = 0.5629, followed by MVA having
an RMSE = 0.6172, and the least performance
model was optimized SVM having RMSE = 0.7023.
Generally, the consensus of geochemical, statistical,
and machine learning methods suggests that the
combination of this interactive method provides
good results and can be applied in source rock
evaluation worldwide.
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