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A B S T R A C T   

The world’s energy demands are growing at an unprecedented rate, and the exploration of new hydrocarbon 
sources is more important than ever. Therefore, the objective of this study was first to quantitatively analyze 
hydrocarbon source rock potentiality of the Triassic-Jurassic of Mandawa Basin based on the generalized group 
method of data handling neural network (g-GMDH), Machine learning, and Geochemical using well logs data. 
Then a novel g-GMDH was presented to predict a continuous geochemical log profile of TOC, Tmax, S1, and S2. It 
was observed that the basin’s hydrocarbon source rocks are classified as fair to very good source rocks with TOC 
contents ranging from 0.5 to 8.7 wt%. The source rocks contain mixed kerogen type II and III, which are oil and 
gas-prone, ranging from immature to mature source rocks. The results of the predictive models indicated that the 
g-GMDH model trained better whilst generalizing well throughout the testing data than both GPR and SVM 
models. Specifically, the g-GMDH when tested on unseen data had the least value of MSE = 0.18, 2.35, 0.08, and 
61.74 for TOC, Tmax, S1, and S2 respectively, and MAE = 0.45, 1.37, 0.17 and 11.55 for TOC, Tmax, S1 and S2 
respectively. The g-GMDH model was further applied to assess the source rock and predict the geochemical 
information in the East Lika well, which lacks core data. The proposed model can offer rapid and real-time values 
of geochemical indicators and are independent of laboratory-dependent parameters therefore, can be adopted as 
an improved technique for evaluating source rocks in frontier basins.   

1. Introduction 

The global demand for energy is increasing at an alarming rate, 
driven by a growing population, urbanization, and industrialization [1]. 
According to the International Energy Agency (IEA), global energy de-
mand is set to rise by 4.6% in 2023, with fossil fuels remaining the 
dominant energy source, accounting for 75% of the total energy mix 
[2–4]. However, the outbreak of COVID-19 pandemic in 2020 has 
significantly impacted the energy sector, resulting in a decrease in de-
mand by 4% in 2020 [5]. As the demand for energy continues to rise, the 
search for new sources of energy becomes increasingly critical. One of 
the most significant sources of energy is fossil fuels, particularly oil and 

gas, which are extracted from sedimentary rocks [6–9]. The quality and 
quantity of these fossil fuels are largely determined by the properties of 
the source rock, such as total organic carbon (TOC) content, thermal 
maturity (Tmax), and hydrocarbon generation potential (S1 and S2). On 
the other hand, the analysis of source rock potentiality in sedimentary 
basins has been limited due to the scarcity of appropriate samples for 
geochemical analysis [10,11]. Analysis has mostly depended on a few 
chosen samples, including cuttings samples, or sidewall cores cuttings 
samples, which mostly fail to offer a comprehensive account of the 
sequence of lithological changes. 

The most reliable method of quantifying the source rock and deter-
mining TOC, Tmax, S1 and S2 parameters is by performing organic 
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geochemical analysis on core samples in the laboratory [12]. However, 
coring is an expensive exercise and time-consuming to be conducted on 
all wells [13,14]. In cases where there may not be enough core data, 
readily available drill cuttings are usually used to compensate [15,16]. 
The challenges of using drill cuttings are that it is difficult to reconcile 
with depth and can be contaminated [17]. Due to that, attempts have 
been made to generate geochemical profile values from geophysical well 

logs based on the knowledge that well log parameters can detect the 
presence of organic matter of a source rock [18,19]. On the contrary, 
heterogenicity of sedimentary basins, complex mineral matrices and li-
thology present in reservoirs requires the user to understand the density 
of the mineral matrix for better interpretation of well logging data such 
as sonic and density well loggings [20]. Due to the low porosity of these 
reservoirs, the logging response to porosity might be readily mis-
interpreted by other mineral information. As a result, determining the 
continuous profile of geochemical parameter of sedimentary basins 
formation remain challenging. 

In recent years, there has been a growing interest in using machine 
learning techniques to evaluate the source rock potentiality and predict 
geochemical parameters from well log data. This is because machine 
learning models have the advantage of being able to adapt and learn to 
the dynamic conditions of the reservoir such as depositional and for-
mation environment while utilizing the complete set of well logs for 
better prediction [21–23]. Several studies such as [24–38] have 
demonstrated the effectiveness of machine learning techniques in pre-
dicting geochemical parameters from well logs. Mulashani, Shen [39] 
without considering source rock potentiality used standard GMDH 
model to predict TOC, S1, and S2 from well log data. Their results 
showed that the standard GMDH model outperformed Passey’s con-
ventional method of ΔlogR and standard ANN algorithms of BPNN and 
RBFNN. These results highlight the superior performance of the stan-
dard machine learning over conventional methods. Wang, Wu [40] used 
a convolutional neural network (CNN) model to predict TOC, S1 and S2 
from well log data of the Shahejie Formation. According to their find-
ings, the CNN model was able to accurately predict these parameters, 
with R2 ranges from 0.74 to 0.84. 

Ahangari, Daneshfar [41] used the hybrid model of PSO-LSSVM to 
predict the three geochemical parameters of TOC, S1 and S2 from well 

Table 1 
Summary of the previous study used for prediction of geochemical parameters.  

References Method Parameters Inputs Limitation 

Ahangari, 
Daneshfar 
[41] 

PSO- 
LSSVM 

TOC, S1 
and S2 

DEN, CNL, 
RT, GR, and 
AC 

It is prone to overfitting 

Shalaby, 
Malik [42] 

BRNN Tmax and 
TOC 

GR, RHOB, 
RT, DTC and 
NPHI 

Requires a large 
amount of 
computational 
resources 

Alizadeh, 
Maroufi 
[43] 

ANN TOC and S2 DT and RT It is time consuming 

Amosu, 
Imsalem 
[44] 

SVM TOC GR, ILD and 
DT 

Highly sensitive to the 
choice of parameters 

Mandal, 
Rezaee 
[46] 

ELM TOC GR, RHOB, 
LLD, DT and 
NPHI 

It is a black box model, 
which means it’s 
difficult to interpret 

Handhal, Al- 
Abadi 
[45] 

kNN TOC GR, RT, DN, 
AC and NCL 

It is sensitive to the 
value of k 

Barham, 
Ismail 
[47] 

FFNN Tmax and 
TOC 

BD, GD, RT, 
DTC, DTSH, 
SGR, U, TH 
and K 

It is computationally 
expensive  

Fig. 1. Location of study area from (a) World view (b) Tanzania map (c) wells used in the study.  
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Fig. 2. Lithostratigraphy of the Mandawa basin adapted from Ref. [39].  
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logs data. Another study conducted by Ref. [42] revealed that BRNN 
outperformed the GPR, SVM, RF and LR in the prediction of Tmax and 
TOC from well logs. The results demonstrated that the machine learning 
techniques can capture the nonlinear relationship between the well-log 
data, TOC and Tmax, which may not be fully understood by existing 
linear models. Alizadeh, Maroufi [43] estimated the TOC and S2 by 
utilizing ANN model. Moreover, the TOC was successful predicted from 
well logs data by different researchers using SVM, ELM and kNN 
[44–46]. Barham, Ismail [47] developed FFNN model for estimation of 
Tmax and TOC from conventional well logs. 

Although, most of these computational learning models attain the 
greatest performance but the user requires to specify regularization 
parameters and the optimum model parameters can be achieved through 
manual adjustment of training parameters. Similar, most of these models 
suffers some drawbacks including low computational speed, overfitting 
and converging at local minima. Thus, it is necessary to develop more 
advanced machine learning algorithms that can improve the accuracy of 
source rock potentiality and predictions while overcoming these limi-
tations. Table 1 Summaries the limitations of previous machine learning 
techniques used to predict geochemical parameters. Based on the liter-
ature survey, it was observed that there have been limited studies that 
focus on the application of machine learning methods for predicting 
complete profile of geochemical results such as TOC, Tmax, S1, and S2. 
However, hydrocarbon source rock potentiality assurance of organic 
matter and geochemical analysis of sedimentary basin formations re-
quires estimation of a complete profile of thermal maturity parameters 
of TOC, Tmax, S1, and S2. This makes the estimation of all geochemical 
parameters from geophysical well-log data and hydrocarbon source rock 
potentiality analysis a promising research area in the application of 
machine learning. 

Therefore, the objective of this study was first to integrate a novel 
self-organizing neural network approach of generalized group method of 
data handling (g-GMDH), generated geochemical, wireline log and 
cuttings sample data to produce detailed hydrocarbon source rocks 
distributions in the sediment successions of the Mbuo, Mbate and Mita 
Gamma wells of the Mandawa Basin in South-East Tanzania. Then we 
utilized a novel g-GMDH neural network to predict continuous changes 
in geochemical indicators suite of TOC, Tmax, S1 and S2. The g-GMDH 
algorithm is a powerful data-driven approach for modeling complex 
nonlinear relationships between variables and dealing with multidi-
mensional data. It is particularly useful because it can automatically 
select the most important features and interactions, which can reduce 
the risk of overfitting and enhance the model’s performance for gener-
alization. This algorithm works by using a divide-and-conquer strategy 
to build a series of nested models. At each level, the model selects the 
best input variables from the preceding layer, resulting in a highly 
flexible and adaptable approach that is well-suited for a wide range of 
data and modeling tasks. To the best of our knowledge, this is the first 
study to apply the g-GMDH method for the prediction of source rock 
potentiality, organic richness and maturity parameters based on well log 
data. The findings of this study will provide valuable insights into the 

application of machine learning techniques in the energy industry and 
will contribute to the development of more efficient and cost-effective 
exploration strategies. 

2. Geological setting and stratigraphy of the study area 

The Mandawa basin is located on the southern coast of Tanzania 
(Fig. 1b), bordered to the north by the Rufiji River and to the south by 
the Ruvuma Saddle. The basin’s geological evolution has been studied 
by various scholars, including [48–50]. The Karoo rifting, Gondwana 
breakup, East African rift system, and opening of the Somali basin are 
the primary factors that influenced the Mandawa basin’s evolution 
[51–53]. 

The Mandawa basin’s depositional history was mainly influenced by 
the Gondwana breakup. Before the breakup of Gondwana, the deposi-
tional environment was continental with both deltaic and fluvial de-
posits dominating the area [54]. As the rifting and drifting developed, 
the Paleo-Tethys transgression led to the formation of restricted barrier 
reefs and marine embayment, isolating several saline lagoons during the 
early to middle Jurassic [55]. During the late Jurassic to early Creta-
ceous, the basin was exposed to rapid subsidence, leading to the depo-
sition of clastic sediments, including the fluvial and alluvial deposits of 
the Mandawa and Mavuji groups. The constant decrease of the coastal 
Mandawa basin’s mid-to-outer shelf zone during the Paleogene led to 
the development of the Kilwa group [56]. 

The Mandawa basin’s source rock consists of Nondwa shales of the 
lower Jurassic Pindiro Group and Mbuo Claystone of the upper Triassic 
Pindiro Group [57]. The Mandawa Basin’s sedimentary sequence ranges 
from Triassic to Neogene and it is controlled by coastal deposits to 
shallow marine shelf of carbonate, evaporitic and siliciclastic facies. The 
study area consists of Mbate, Mbuo, and Mita Gamma exploration wells 
(Fig. 1c). 

The basin comprises five primary groups: Mandawa, Kilwa, Pindiro, 
Songosongo, and Mavuji (Fig. 2). Kilwa Group consists of four forma-
tions which are Masoko, Pande, Kivinje, and Nangurukuru. The group is 
made up of a uniform sedimentary package that consists series of clays, 
claystones, and marls, as well as abundant fossils such as benthic fora-
minifera and nummulites [58]. The Mbuo, Mihambia, and Nondwa 
Formations of Pindiro Group are the one that defines Karoo’s sediments 
[59]. The Nondwa Formation, which has a peculiar border surface, 
covers the Mbuo Formation, which is the Pindiro Group’s first sedi-
ments. Two sedimentary members make up the Mbuo Fm. The base of 
the Mbuo sandstone is where the transition from metamorphic rocks to 
clastic sediments took place, whilst the Nondwa formation’s evaporates 
covered the upper part member of the Mbuo claystone [60]. Fluvial, 
alluvial and lacustrine are the environment in which the deposition of 
the Mbuo Formation took place [61]. 

The Mavuji group is made up of three formations which are 
Makonde, Kitiruka, and Kihuluhulu. The Kihuluhulu formation has the 
strongest exposed outcrops and is the easiest to reach compared to the 
other two formations. The Kihuluhulu Formation sits between the 

Table 2 
Statistical parameters of the input data used to build the model.  

Well names Statistical features DT (μs/f) GR (API) LLD (ohm.m) NPHI (%) RHOB (g/cc) SP (mV) 

Mita Gamma Minimum 59.31 33.18 1.52 3.12 2.23 52.48 
Maximum 127.73 88.65 22.15 37.79 2.47 80.33 
Average 95.63 62.61 6.29 19.24 2.37 66.71 
Standard Deviation 15.19 13.84 5.05 8.92 0.08 9.90 

Mbate Minimum 185.57 5.70 0.88 0.09 2.14 − 31.06 
Maximum 439.10 84.08 6.33 0.42 2.58 − 5.61 
Average 285.17 53.43 2.96 0.29 2.35 − 23.16 
Standard Deviation 76.98 28.42 1.73 0.08 0.14 7.89 

Mbuo Minimum 217.33 57.95 0.68 0.14 1.78 − 32.43 
Maximum 444.30 125.54 43.08 0.39 2.61 − 2.56 
Average 307.75 85.38 8.35 0.28 2.39 − 19.21 
Standard Deviation 54.46 16.79 10.94 0.07 0.21 7.39  
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Kipatimu and Nangurukuru Formation, separated by the unconformity 
of Turonian-Santonian. The Kihuluhulu Formation fine-grained sand-
stones, siltstones, and mudstones from the shoreface to offshore filled 
the basin [62]. The Kilwa Group has been suggested to include the newly 
described Lindi Formation (upper Albian – Coniacian) [63]. 

3. Material and methods 

3.1. Wireline logs acquisition and data handling 

Samples and logs used were acquired from Mbate, Mita Gamma and 
Mbuo wells in an uncased wellbore with 0.15 m between each data 

point. According to TPDC standards, well log measurements suit of SP, 
DT, GR, NPHI, LLD and RHOB were processed and made available in Log 
ASCII Standard (LAS) format. The data in LAS format were then care-
fully handled to a spreadsheet (Excel®) with an interval corresponding 
to sample cuttings intervals. During data processing, feature selection 
(variable selection) was performed to identify and delete obsolete, un-
necessary, and redundant data attributes that have a negative impact on 
a predictive model’s accuracy or may minimize the model’s accuracy. 
The statistical analysis of all the data from three wells is shown in 
Table 2 Source rock evaluation and interpretation of wire logs involved 
the utilization of both high resolution and low-resolution data. 

To avoid overfitting and bias, the data were normalized by using 
Box-Cox transformations technique (Equation (1)) 

y(λ) =

⎧
⎪⎨

⎪⎩

y(λ) − 1
λ

if λ ∕= 0

log (y) if λ = 0
(1)  

Whereas y is a list of n strictly positive numbers. The selected technique 
enables the computational learning algorithm to execute faster, im-
proves the model’s accuracy, reduces the overfitting, and also it de-
creases the complexity of the model [64]. It’s better to note that before 
doing normalization, the resistivity data were first log-transformed to a 
better distribution of data which improves prediction performance. 
After variable selection, and normalization the data was then distributed 
using pair-plot in Fig. 3. 

Three wells namely Mbate, Mbuo, and Mita Gamma, which have a 
complete set of well log suites and measured core data of TOC, Tmax, S1, 
and S2 data, were employed to develop the machine learning models. 58 
samples data from Mbuo and Mbate were used to train the models. The 
developed models were tested on the unseen Mita Gamma well which 
consisted of 25 sample data of TOC, Tmax, S1, and S2. Data were 

Fig. 3. Pair-plot of the data after power transformation with Box-Cox technique.  

Fig. 4. Well logs and geochemical data for Mbuo well.  
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carefully split into training and testing to ensure a balanced dataset to 
avoid high variance whilst covering a range of lithological and maturity 
variations present in the basin. The core samples were taken from the 
depth intervals 1660–3335 m for Mbuo well, 1058–2135 m for Mbate 
well and for Mita Gamma well were from 1630 to 2150 m interval. The 
well log suite and geochemical results of Mbate, Mbuo, and Mita Gamma 
wells are illustrated in Fig. 4, Figs. 5 and 6. 

3.2. Rock-eval pyrolysis technique 

The Mandawa basin shows promise for hydrocarbon exploration. 
However, its development has been limited due to lack of comprehen-
sive data and geological complexities, which contribute to uncertainties 
in geochemical parameters prediction and analysis. The study area 
consists of four exploration wells, which are Mbate, Mbuo, Mita Gamma, 
and East Lika. Mita Gamma, Mbate and Mbuo wells intersected both the 
Nondwa Formation and silicic limestones of the Mihambia Formation of 
the Mandawa basin whereas only East Lika well intersected the Nondwa 
sequences (Fig. 2). The rock-eval pyrolysis was performed to provide 
measured data as a reference point for thermal maturity parameters of 
TOC (wt. %), volatile hydrocarbon (S1 in mg HC (hydrocarbon)/g rock), 
hydrocarbon derived from kerogen pyrolysis (S2 in mg HC/g rock), the 
temperature at the highest yield of S2 (Tmax in ◦C). The rock-eval py-
rolysis followed in this study were based on the methodology described 
by Ordoñez, Vogel [65]. The samples were then taken to a laboratory for 

analysis; 67 g of each sample was crushed, sieved into a powder form, 
and then extracted and analyzed. The Rock-Eval was run with a tem-
perature schedule of 25 ◦C min− 1, where the final temperature in the 
pyrolysis oven exceeds 750 ◦C, and in the oxidation oven 800 ◦C. 

3.3. Gaussian process regression (GPR) 

Gaussian process regression (GPR) is a statistical machine learning 
technique that models an unknown function as a Gaussian process with a 
mean and covariance function. The mean and covariance function can 
be based on prior knowledge or not [66,67]. The covariance hyper-
parameters in a Gaussian process model are estimated from the data 
using a Type II maximum likelihood method. The data is first centered to 
assume a zero-mean function [68]. The output at new (test) inputs is 
then predicted by computing the predictive posterior distribution. More 
details about GPR are provided in supplementary file. 

3.4. Support Vector Machines (SVM) 

Support Vector Machine (SVM) is a powerful machine learning al-
gorithm used for classification and regression analysis. It works by 
finding the hyperplane in a high-dimensional space that best separates 
the different classes [44]. The SVM algorithm finds the best hyperplane 
to separate data points of different classes with the least error. The hy-
perplane is chosen to maximize the distance between it and the nearest 
data points from each class [69]. The SVM algorithm can handle 
non-linearly separable data by utilizing a kernel function to map the 
input data into a higher-dimensional space. In this expanded space, the 
data points might become linearly separable, enabling the SVM algo-
rithm to identify a decision boundary [70]. More explanation about SVM 
is found in supplementary file. 

3.5. Generalized structure of GMDH (g-GMDH) model 

The g-GMDH neural network is an advanced data analysis, predic-
tion, and modeling tool, offering numerous advantages in a wide range 
of applications. Firstly, its robustness and adaptability allow it to 
effectively handle complex, nonlinear, and noisy data, making it suitable 
for diverse domains [71]. Secondly, the automatic model selection 
feature eliminates the need for predefined structures, iteratively 
generating and evaluating models to find the optimal fit while reducing 
overfitting risk. Additionally, g-GMDH’s interpretability fosters a better 
understanding of relationships between input and output variables, 
aiding informed decision-making. Its scalability enables the efficient 
processing of large datasets through parallel processing capabilities, 
making it an excellent choice for big data applications and real-time 
analysis. Lastly, the network’s reduced training time, attributed to its 
inductive nature and iterative model generation process, allows for 
faster model development and deployment, enhancing overall perfor-
mance and efficiency. 

The g-GMDH neural network is well-suited for predicting geochem-
ical parameters because it can handle large and complex datasets, and it 
can automatically identify and extract relevant features from the data. 
By analyzing source rock potentiality, the g-GMDH neural network can 
learn patterns and relationships that can then be used to make accurate 
predictions. The goal for GMDH is to identify a function ̂f that is used as 
an estimation rather than an actual function, f, to evaluate the output 
(geochemical parameters), y, with a given input vector U = (u1, u2, u3, 
…, un), as close to its actual output as possible, p (geochemical param-
eters). As a result, if you have a single output and n data pairs with 
numerous inputs, you’ll get: 

yi = f (ui1, ui2, ui3, ...., uin) (i= 1, 2, 3, ....,M) (2) 

The output t can be evaluated by GMDH using any given input vector 
U = ui1,ui2,ui3, ....,uin, implying: 

Fig. 5. Well logs and geochemical data for Mbate well.  

Fig. 6. Well logs and geochemical data for Mita Gamma well.  
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yi = f̂ (ui1, ui2, ui3, ...., uin) (i= 1, 2, 3, ....,M) (3) 

To tackle this difficulty, a general relationship is established by 
GMDH within the reference of the output and input parameters. The 
goal is to find the GMDH network that minimizes the square difference 
between the expected and actual output, as follows: 

∑M

i=1
[ f̂ (ui1, ui2, ui3, ...., uin) − pi]

2→min (4) 

The Kolmogorov-Gabor polynomial, also identified as the poly-
nomial series, or the Volterra function in complex discrete form is 
known as the Volterra series [72,73], can serve to illustrate how input 
and output parameters generally relate to one another in the mode of: 

p= ao +
∑N

i=1
aiui+

∑N

i=1

∑N

j=1
aijuiuj +

∑N

i=1

∑N

j=1

∑N

k=1
aijkuiujuk + ... (5) 

The GMDH network can simplify Equation (5) by using a partial 
quadratic polynomial equation [71]. 

Fig. 7. Type of the GMDH network design.  

Fig. 8. Flowchart of the generalized structure of combinatorial GMDH algorithm.  
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y=W
(
ui, uj

)
= ao + a1ui + a2uj + a3u2

i + a4u2
j + a5uiuj (6) 

This network of associated neurons generates the mathematical as-
sociation between the input-output variables stated in Equation (4). The 
variance between the predicted (y) and actual (p) is reduced by 
computing the weighting in Equation (5) coefficients using regression 
techniques as each pair of the inputs (ui and uj) is minimised [74]. Fig. 7 
depicts the GMDH network design in a schematic form. 

A tree of polynomials is formed using the quadratic equation from 
the provided equation (5), where the least squares method can be used 
to compute the weighting coefficients. For each pair of output-input 
data, a weighting coefficients Wi of quadratic function is derived as 
follows: 

E =

∑M

i=1
(pi − Wi())

2

M
→min (7)  

In order to match the general form of GMDH algorithms, the possibility 
for dual independent variables among the total n input parameters is 
drawn. Then construction of the regression polynomial is described in 
equation (7), which in the sense of least-square suits the dependent 
observations better. Consequently C2

n = n(n − 1) /2, observations can 
create quadratic polynomial neurons {(pi; uxi, uyi); (i= 1, 2,3....M)} for 
various x, y ∈ {1,2,3, . . . .n} in the first layer of feed-forward network. 
The triples of M data can be created {(pi; uxi, uyi); (i = 1,2, 3....M)}, 
making use of x, y ∈ {1,2, 3, . . . .n} the form of: 

Fig. 9. Modified Van Krevelen plot indicating types of kerogens of the samples 
from Mandawa. (Hydrocarbon Potential (S2) versus pyrolysis TOC). 

Fig. 10. Modified Van Krevelen diagram showing HI vs OI for kerogen classi-
fication for the Nondwa, Mihambia, and Mbuo Formations. 

Fig. 11. Modified Van Krevelen plot showing thermal maturity and kerogen 
types of Hydrogen Index (mg HC/g TOC) vs pyrolysis Tmax (◦C). 

Fig. 12. Source rock characterization based on genetic potential and richness 
of the analyzed samples. 
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⎡

⎢
⎢
⎣

u1x u1y : p1
u2x x2y : p2
... ... : ...

umx umy : pm

⎤

⎥
⎥
⎦ (8) 

It is possible to express the following matrix expression directly using 
the quadratic sub-expression shown in Equation (8) as follows: 

Aa=P (9) 

A vector of unknown weighting factors in quadratic polynomial is 
illustrated as a in Equation (10): 

a= [a0, a,1a2, a3, a4, a5]
T (10) 

Superscript, T, indicating the transposition of matrix: 

P= [p1, p2, p3, ...pM ]
T (11) 

Standard equations are solved using an approach known as least- 
square, which was created using the multiple regression analysis idea, 
which is in the form of: 

a=
(
ATA)− 1AT P (12) 

Equation (12) signifies the optimum quadratic weighting coefficients 
given the vector in Equation (2). To tackle the issue of linear dependency 
and equation complexity, the g-GMDH can build a higher-order poly-
nomial [75]. By minimizing the fitness function in Equation (13), In 
order to build the best model structure, the sub-samples are utilized 
during training: 

AR(s)=
1

NB

∑NB

i=1
(zi − zi(B))2 (13) 

The fitness function is based on the d-fold cross-validation criteria, 
which randomly selects training and testing subsamples considering all 
information in data samples. A comprehensive search is conducted on 
models classified of similar complexity, allowing the entire search 
termination rule to be planned. The models are compared to the 
measured samples, and the process is repeated till the criterion is 
reached. Because of the constraint imposed by the computation time, it 
is suggested to increase the number of parameters in the model after a 
specific number of iterations, as this will improve the model’s 

Fig. 13. Source rock characterization for the type of hydrocarbon to be 
generated for analyzed samples from Mandawa. 

Fig. 14. g-GMDH model structure.  

Table 3 
Hyperparameter setting for g-GMDH model.  

Hyperparameters TOC Tmax S1 S2 

Population size 100 50 80 50 
Mutation rate 0.2 0.1 0.2 0.2 
Crossover rate 0.7 0.6 0.8 0.7 
Number of hidden 

layers 
2 2 2 2 

Number of neurons in 
each layer 

20 12 16 10 

Stopping criterion 200 
iterations 

100 
iterations 

150 
iterations 

200 
iterations 

Selection rate 0.6 0.5 0.6 0.6  

Table 4 
Error performance results in TOC prediction during training and testing.  

Model MSE MAE 

Train Test Train Test 

g-GMDH 0.1137 0.1841 0.2019 0.4503 
GPR 0.1686 0.3399 0.3005 0.6010 
SVM 0.2671 0.5033 0.3492 0.6990  

Fig. 15. Performance of the g-GMDH, GPR and SVM models during training 
and testing in TOC prediction. 
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performance. Then, in the set of best-chosen variables, complete ar-
ranging approaches are used until progress is minimal. This gives the 
option of including more input information and saving successful 

elements between layers to get the best model. In the first phase, the user 
defines the data sample for the model. Several layers are used to express 
model complexity during the second step. In the third step, the best 

Fig. 16. Cross plots between actual and prediction TOC values using (a) g-GMDH, (b) GPR and (c) SVM models during training.  

Fig. 17. Cross plots between actual and prediction TOC values using (a) g-GMDH, (b) GPR and (c) SVM models during testing.  
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models are created, and the best model is chosen in the fourth step. 
During the fifth stage, discriminating criteria are used to complete the 
extra model definition, as shown in Fig. 8. 

4. Results and discussion 

4.1. Geochemical evaluation of Mandawa source rocks 

This study examined the quality and quantity of organic matter in 
Triassic to Jurassic source rocks from selected Mandawa basin wells, 
along with their potential to generate oil and gas. The results revealed 
that the Nondwa Formation has relatively high TOC values, ranging 
between 0.6 and 8.7 wt%, whereas the TOC content in the Mbuo For-
mation vary from 0.5 to 7.4 wt%. Compared to all evaluated strati-
graphic sections, the Mihambia rocks showed the lowest TOC content 
ranging from 0.7 to 2.1 wt%. S2 is widely used to identify types of 
organic matter during Rock-Eval pyrolysis by assessing the 
hydrocarbon-generating potential [76]. The Mbuo formation showed S2 
values ranging from 0.2 to 13 mg HC/g rock, Mihambia and Nondwa 
Formations had S2 values ranging from 0.39 to 2.83 mg HC/g rock and 
0.31–88.52 mg HC/g rock respectively. 

The indicator or measure of the hydrocarbon’s type (oil or gas) to be 
generated is termed as the hydrogen index (HI) and has values between 
51 and 1000 mg HC/g TOC. The oxygen index (OI) varies from 16 to 
225 mg/g. At a maximum of S2, the temperature is termed as Tmax 
which is a measure of source rock maturity. Tmax exhibited temperature 
values that varies from 417 to 473 ◦C, suggesting maturation differences 
from immature to mature source rocks. The geochemical results from 
this study provide valuable insights into the hydrocarbon-generating 
potential of Triassic to Jurassic source rocks in the Mandawa basin. 

The Nondwa Formation and Mbuo Formation show promising charac-
teristics for oil and gas generation, while the Mihambia rocks exhibit 
lower potential. The findings from this research contribute to our un-
derstanding of the petroleum system in the Mandawa basin and can 
assist in future exploration and production efforts in the region. 

4.1.1. Quality of organic matter 
The determination of kerogen type for a given source rock is critical 

for estimating oil and gas potential. The Hydrocarbon Potential distri-
bution namely TOC and S2 indicators were used to assess the quality of 
the formation units on kerogen types. Followed Clayton and Ryder [77], 
the TOC versus S2 cross plot was used with the support of kerogen type 
characterization using the Oxygen Index (OI) and Hydrogen Index (HI) 
technique, as described by Ref. [78]. 

In analyzing the source rock, the kind of organic matter (kerogen) is 
regarded the second most essential criterion. Physicochemical approach 
may also be used to distinguish the kerogen type. The differences in 
organic matter are due to its original composition. The organic matter in 
prospective source rocks must be of a kind that may produce petroleum. 
Waples [79] determined that organic matter is divided into three cate-
gories. Many researchers such as, Cruz Luque and Aguilera [80] modi-
fied Van Krevelen diagram to present three different types of organic 
matter, the graph of hydrogen index (HI) versus the oxygen index (OI). 
The authors explained that type II-III combined kerogen with HI values 
between 200 and 350 mg HC/g TOC and/or S2/S3 values within 5 and 
10 is expected to create both oil and gas. Type II (350 ˂  HI ˂  700 and/or 
10 ˂ S2/S3 ˂ 15) and I (HI ˃ 700 and/or S2/S3 ˃ 15) kerogen may 
produce liquid hydrocarbons and is typically generated from marine and 
lacustrine organic matter. On the other hand, samples containing HI 
values less than 50 mg HC/g TOC and/or S2/S3 ratios less than 1 con-
sists of inert components with no capacity to generate hydrocarbons. 

According to the results, Mbate, Mbuo, and Mita Gamma wells 
intersected most of the Lower Jurassic/Triassic Mbuo Formation source 
rocks are kerogen Type III, with a few samples confirming mixed 
kerogen Types II/III (Fig. 9). Variations in TOC generated by either 
oxidation or CO2 addition to the system might create the observed 
scattered points. mixed terrestrial/marginal and Terrestrial marine 
depositional environments are characterized by kerogen Type III and 
mixed II/III, respectively. The existence of Type I, II, and III is also 
shown in the modified Van Krevelen diagram utilizing Oxygen Index 
(OI) and Hydrogen Index (HI), with most of the samples suggesting Type 
II and Type III. Fig. 10 illustrates that Types II and III account for the 
bulk of the samples, whereas Types I are insignificant. 

The majority of the Lower Jurassic Nondwa Formation data plots in 
the gas-prone Type III, grading to mixed Types II/III, Type II and Type I, 
which usually are of terrestrial origin. A few samples scatter in the mixed 
Types II/III fields (Fig. 9). These samples indicate terrestrially derived 
organic matters. On the other hand, the organic matter contents in the 
Mihambia rocks are mainly composed of gas-prone Type III and inert gas 
(Figs. 9 and 10). 

4.1.2. Thermal maturity 
In this study, the pyrolysis technique was used to determine the 

thermal maturity degree of the source rocks; data for Tmax (0C), and PI, 
were computed as described by Espitalié, Deroo [78]. With small out-
liers in the immature and condensate zones, the plot of HI vs Tmax 
demonstrates that the Mita gamma and Mbuo wells of the Mbuo and 
Mihambia Formations source rocks are inside the mature zone of the oil 
window (Fig. 11). This suggests that these formations have reached an 
advanced stage of thermal maturity, indicating their potential for hy-
drocarbon generation. Mbate well of the Nondwa Formation source 
rocks, on the other hand, are seen to be in the immature zone, grading 
into the mature oil window (Fig. 11). This implies that the Nondwa 
Formation is in an early stage of maturation and is gradually progressing 
towards the point of oil generation. The Tmax maturation range is 
mainly influenced by the type of kerogen. Because of the intricacy of 

Table 5 
Error performance results in Tmax prediction during training and testing.  

Model MSE MAE 

Train Test Train Test 

g-GMDH 3.38425 2.35512 1.02119 1.37521 
GPR 11.23226 6.29555 2.23773 1.35261 
SVM 17.02091 9.14027 3.23219 2.56066  

Fig. 18. Performance of the g-GMDH, GPR and SVM models during training 
and testing in Tmax prediction. 
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Type II kerogens’ molecular structure, source rocks containing Type I 
kerogens have a small range, but Type II kerogens have a greater range 
[81]. As a result, the study findings highlight the significance of kerogen 

type in influencing the maturation process of source rocks. Tmax values 
for source rocks from the Lower Jurassic Mbuo Formation (Mbuo well) 
vary from 422 to 473 ◦C (mean = 440 ◦C) in this analysis, suggesting a 

Fig. 19. Cross plots between actual and prediction Tmax values using (a) g-GMDH, (b) GPR and (c) SVM models during training.  

Fig. 20. Cross plots between actual and prediction Tmax values using (a) g-GMDH, (b) GPR and (c) SVM models during testing.  
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mature source rock with significant hydrocarbon potential. Similarly, 
the Mid-Jurassic Mihambia Formation (Mita gamma well) exhibits an 
average Tmax value of 437 ◦C, suggesting a mature level of kerogen, 
further supporting its suitability as a potential source of hydrocarbons. 
On the other hand, the Lower Jurassic Nondwa Formation (Mbate well) 
displays the lowest Tmax values ranging from 417 to 446 ◦C (mean =
431 ◦C), which signifies an immature to early mature grade. Although it 
is not fully matured yet, it still shows potential for oil generation as it 
approaches the mature stage. 

4.1.3. Source rock generation potential 
According to Hunt [82], source rocks with generating potential (GP) 

(mg HC/g rock) < 2; 2 to 5; 5 to 10 and > 10 are considered to present 
poor, fair, good, and very good generation potential, respectively. The 
generation potential versus TOC cross plot (Fig. 12) is applied with the 
backing of the HI versus TOC cross plot of Jackson, Powell [83] to 
interpret generation potential with respect to source rock’s kerogen type 
and maturity. 

The important information required in the initial exploration stages 
is the presence or absence of effective source rock. By analyzing the 
results from cross plots, the hydrocarbon generation potential varies 
with different kerogen types and maturity levels. The GP versus TOC 
cross plot is a useful tool for assessing the hydrocarbon potential of 
source rocks of the Mandawa basin. the source rocks with high TOC 
content and relatively low GP, indicate a high quantity of organic 
matter, but with poor hydrocarbon-generating potential. On the other 
hand, source rocks with both high TOC and high GP are indicative of 
excellent hydrocarbon generation potential. 

The Mbuo Formation with respect to current maturity is indicated to 
have poor to very good gas generation potential; averages: TOC = 2.41 
wt%, S2 = 2.79 mg HC/g rock, HI = 102.44 mg HC/g TOC) and the 

source rock is more likely to produce the gas at peak maturity at these 
potential ratings as well. The TOC, S1, and S2 data further suggest gas 
generation potential for Mbuo. On the other hand, the data for the 
Nondwa Formation suggest the existence of fair, very good, and excel-
lent source rocks trends for oil and gas generation. However, some 
isolated zones are indicated to be poor sources (Fig. 12; averages: TOC 
= 2.35 wt%, S2 = 12.28 mg HC/g rock, HI = 312.28 mg HC/g TOC). 

Despite a limited number of data, the source rocks in Mihambia 
Formation are suggested to be fair to a good source of kerogen Type III, 
and as such, they have the potential for gas generation (Figs. 11 and 13). 
The mean TOC, S2 and HI values for this formation are 1.51 wt%, 1.58 
mg HC/g rock, and 97.57 mg HC/g TOC, respectively. Their HI and TOC 
cross-plot in Fig. 13 provides more evidence for these findings. 

Overall, the assessment suggests that the Mbuo Formation is more 
likely to produce gas at peak maturity, given its gas-prone nature with 
moderate to high HI values and relatively low S2 values. On the other 
hand, the Nondwa Formation exhibits a more complex hydrocarbon 
generation potential, with indications of both oil and gas-prone source 
rocks. The presence of fair, very good, and excellent source rock trends 
within the Nondwa Formation suggests a broader range of hydrocarbon 
possibilities. 

4.2. Hydrocarbon potential based on machine learning 

4.2.1. g-GMDH model development 
The proposed g-GMDH model consisted of six input neurons and two 

hidden layers with four neurons, h1, h2, h3, and h4, for first layer and two 
neurons, v1 and v2 for second layer. The output of the model was rep-
resented as y. The model was coded in MATLAB R2021a. Fig. 14 presents 
a neural network structure for the proposed model while the hyper-
parameters setting which produce the best results for the model are 
presented in Table 3. 

4.2.2. Performance indicators 
In this study, we implemented g-GMDH, GPR, and SVM models in 

MATLAB R2021a. The models were run on window 11 operating system 
with 2.8 GHz Intel Core i7-1065G7 processor. The mean absolute error 
(MAE), coefficient of determination (R2) and mean square error (MSE) 
were the statistical measures used to evaluate the selected models’ 
performance. R2 measures the strength and direction of the linear 
relationship of the selected model variables, MSE measures the relative 
average square of the errors and represents the stability or quality of the 
models while MAE describes the errors model in terms of expressing the 
same phenomenon between paired observations. The R2, MSE, and MAE 
mathematical expressions are given in supplementary file. 

4.2.3. TOC prediction 
The results of the prediction of total organic carbon (TOC) from the 

training and testing data using three different models was presented in 
Table 4. For the training data, the g-GMDH model achieved the lowest 
MAE and MSE values of 0.2019 and 0.1137, respectively. The GPR 
model also performed relatively well, with MSE values of 0.1686. The 
SVM model had the highest MSE value of 0.2671. For the testing data, 
the g-GMDH model achieved the lowest MAE and MSE values of 0.4503 
and 0.1841, respectively. The GPR model had MAE and MSE values of 
0.6010 and 0.3399, respectively. The SVM model had the highest MSE 
value of 0.5033 and MAE value of 0.6990. As shown in Fig. 15, findings 
show that the g-GMDH model had the best overall performance for 
predicting TOC from the training and testing data. The GPR models also 
achieved relatively good performance, while the SVM model had the 
poorest performance. Furthermore, the results from the testing data 
suggest that the g-GMDH model was more robust and had better pre-
dictive accuracy compared to the other models. 

Due to the ability to get uncertainty of the anticipated value, the 
models had a high level of accuracy, as the R2 values of the training and 
testing datasets were above 0.8. The g-GMDH model had the highest 

Table 6 
Error performance results in S1 prediction during training and testing.  

Model MSE MAE 

Train Test Train Test 

g-GMDH 0.00511 0.08563 0.03725 0.17526 
GPR 0.06057 0.15598 0.15955 0.20868 
SVM 0.07486 0.38414 0.19644 0.39439  

Fig. 21. Performance of the g-GMDH, GPR and SVM models during training 
and testing in S1 prediction. 
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Fig. 22. Cross plots between actual and prediction S1 values using (a) g-GMDH, (b) GPR and (c) SVM models during training.  

Fig. 23. Cross plots between actual and prediction S1 values using (a) g-GMDH, (b) GPR and (c) SVM models during testing.  
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performance, with an R2 value of 0.9852 for the training dataset 
(Fig. 16) and 0.9336 for the testing dataset (Fig. 17). The GPR model had 
the second-highest performance, with an R2 value of 0.9391 for the 
training dataset and 0.8924 for the testing dataset. The SVM model had 
the lowest performance, with an R2 value of 0.8536 for the training 
dataset and 0.8326 for the testing dataset. Overall, the three models 
were able to accurately predict the TOC with high accuracy, which in-
dicates that these models can be used to successfully predict the TOC. 

The robustness and predictive accuracy of the g-GMDH model, 
particularly on the testing data, indicate that it is a suitable and reliable 
approach for predicting TOC in the studied dataset. The results also 
highlight the importance of choosing an appropriate modeling tech-
nique when predicting complex geological parameters like TOC, and the 
g-GMDH model seems to be a promising choice for this particular 
application. One of the key findings of the study is that the TOC content 
in the basin varies significantly, with some intervals having high TOC 
values that indicate good petroleum potential. This observation has 
important implications for petroleum exploration and production in 
Tanzania, as it suggests that identifying intervals with high TOC values 
can help target areas with good petroleum potential. 

4.2.4. Tmax prediction 
Table 5 presented the results of models obtained during the predic-

tion of Tmax in training and testing phases. The g-GMDH was the most 
effective model among the other two models with the lowest MSE and 
MAE values both for training and testing data as shown in Fig. 18. The 
MSE and MAE values for the training data were 3.38425 and 1.02119, 
respectively for this model. Similarly, for the test data, the MSE and MAE 
values were 2.35512 and 1.37521 respectively. It can be seen that GPR 
had a mean squared error (MSE) of 11.23226 for training and 6.29555 
for testing, and a mean absolute error (MAE) of 2.23773 for training and 
1.35261 for testing. On the other hand, SVM had an MSE of 17.02091 for 
training and 9.14027 for testing, and an MAE of 3.23219 for training and 
2.56066 for testing. Overall, g-GMDH had a lower MSE and MAE than 
other models, indicating that it is more accurate in predicting the Tmax. 

Table 7 
Error performance results in S2 prediction during training and testing.  

Model MSE MAE 

Train Test Train Test 

g-GMDH 11.55488 61.74456 1.27891 4.1445 
GPR 45.47719 93.79075 3.76621 5.0137 
SVM 51.76251 131.97055 4.90752 6.47348  

Fig. 24. Performance of the g-GMDH, GPR and SVM models during training 
and testing in S2 prediction. 

Fig. 25. Cross plots between actual and prediction S2 values using (a) g-GMDH, (b) GPR and (c) SVM models during training.  
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g-GMDH also had a lower error in both training and testing sets, sug-
gesting that it is better at generalizing its predictions. The lower error of 
g-GMDH can be attributed to its ability to capture nonlinear relation-
ships between features in the dataset. 

Furthermore, the results obtained from the prediction of Tmax using 
three different models are presented in Figs. 19 and 20, respectively. The 
R2 scores of the g-GMDH, GPR and SVM models on the training dataset 
are 0.9646, 0.8763 and 0.8316, respectively while for the testing data-
sets are 0.9403, 0.8203 and 0.7588, respectively. From these results, it is 
clear that g-GMDH has the highest R2 score both on the training and test 
datasets, indicating that it is the best model for predicting Tmax. This is 
followed by GPR and SVM, The R2 scores for all the models are relatively 
high on the training dataset, but the scores drop slightly on the test 
dataset, suggesting that the models are performing well on the training 
data but not as well on the test data. This may be due to over-fitting of 
the data on the training set. To improve the results, it is necessary to use 
regularization techniques or cross-validation to minimize the effect of 
over-fitting. The higher accuracy of g-GMDH can be attributed to its 
inherent ability to capture nonlinear relationships between various 
features present in the dataset. Standard ML models of GPR and SVM 
might struggle to efficiently model complex, nonlinear interactions in 
the data, leading to less performance compared to g-GMDH. The flexi-
bility of g-GMDH in discovering and incorporating such nonlinear re-
lationships allowed it to provide more accurate predictions for Tmax. 

4.2.5. S1 prediction 
The present study is aimed to analyze the results of three machine 

learning models for the prediction of S1 during training and testing. The 
models used are g-GMDH, GPR and SVM. The results are presented in 
Table 6 and Fig. 21. The g-GMDH model was found to be the most ac-
curate model with the lowest MSE (0.00511) and MAE (0.03725) values 
in the training dataset. The MAE and MSE values in the testing dataset 
are 0.17526 and 0.08563, respectively, indicating a slight increase in the 
prediction error. The GPR model showed slightly higher error in the 
training dataset compared to the g-GMDH model, with MAE and MSE 

values of 0.15955 and 0.06057, respectively. In the testing dataset, the 
MAE and MSE values are 0.20868 and 0.15598, respectively while that 
of SVM had an error margin of MAE and MSE values of 0.39439 and 
0.38414, respectively. Regarding the GPR and SVM models, their rela-
tively higher errors in both the training and testing datasets indicate 
limitations in capturing the underlying patterns of the S1 data. These 
models might struggle to handle nonlinearity or complex interactions, 
leading to inferior performance compared to g-GMDH. 

The results of the prediction of S1 during both the training and 
testing phases of the modeling process are visualized in Figs. 22 and 23, 
respectively. The best overall results were obtained with the g-GMDH 
model, which had an R2 of 0.9905 for training dataset and 0.9218 for 
testing dataset. This indicates that the model was able to accurately 
predict S1 values in both datasets. The GPR performed slightly worse, 
with an R2 of 0.8886 for training dataset and 0.8584 for testing dataset. 
Finally, the SVM model had the lowest R2 values, with 0.8622 for 
training dataset and 0.8086 for testing dataset. The slightly lower R2 

values observed for the GPR and SVM models indicate that they might 
not be as effective in capturing the complex patterns and variations 
present in the S1 data. The performance differences could be attributed 
to the models’ respective capabilities in handling nonlinear relation-
ships, which are often prevalent in geological datasets. Overall, the re-
sults suggest that the g-GMDH model is the most reliable for predicting 
S1 values in both the training and testing datasets. 

4.2.6. S2 prediction 
The results for the S2 prediction are presented in Table 7. The g- 

GMDH model had the lowest MSE and MAE errors for both the training 
and testing datasets. The MSE and MAE errors for the training dataset 
were 11.55488 and 1.27891 respectively. Similarly, the MSE and MAE 
errors for the testing dataset were 61.74456 and 4.14456 respectively. 
The GPR model gave slightly higher errors than the g-GMDH model. The 
MSE and MAE errors for the training dataset were 45.47719 and 
3.76621 respectively. Similarly, the MSE and MAE errors for the testing 
dataset were 93.79075 and 5.0137 respectively. Finally, The SVM model 

Fig. 26. Cross plots between actual and prediction S2 values using (a) g-GMDH, (b) GPR and (c) SVM models during testing.  
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had the highest errors among the other two models. The MSE and MAE 
errors for the training dataset were 51.76251 and 4.90752 respectively. 
Similarly, the MSE and MAE errors for the testing dataset were 
131.97055 and 6.47348 respectively. Overall, the g-GMDH model had 
the lowest MSE and MAE errors for both the training and testing datasets 
(Fig. 24). The lower MSE and MAE errors of the g-GMDH model indicate 
its ability to provide more accurate predictions and better capture the 
underlying patterns in the S2 data. The g-GMDH model’s strength lies in 
its ability to handle nonlinear relationships and complex interactions in 
the dataset, which are common in petroleum geology data. This in-
dicates that the g-GMDH model is the most suitable model for the pre-
diction of S2. 

The performance of the three models used to predict S2 was further 
evaluated with respect to R2. The results of the training and testing are 
shown in Figs. 25 and 26. The highest R2 value of 0.9564 was obtained 
by the g-GMDH model, followed by the GPR model with 0.8772 and the 
SVM model with 0.8304 during the training phase. In the testing phase, 
the g-GMDH model achieved the highest R2 value of 0.9144, followed by 
GPR with 0.8388 and SVM with 0.7763. It is evident from the results 
that the g-GMDH model outperformed the other two models. The g- 
GMDH model achieved a higher R2 value of 0.9564 during the training 
phase, thus indicating its high efficacy in predicting S2. Similarly, the g- 
GMDH model also achieved the highest R2 value of 0.9144 during the 
testing phase, which further validates its superior performance. More-
over, the high R2 values obtained by the g-GMDH model indicate its 

strong ability to provide accurate predictions, making it a valuable tool 
for petroleum geologists in predicting S2 values. The g-GMDH model’s 
ability to handle nonlinear relationships and complex interactions in the 
data allows it to better approximate the true S2 values. On the other 
hand, the slightly lower R2 values obtained by the GPR and SVM models 
suggest that they may not be as effective in capturing the complexities 
present in the S2 data. These models might struggle to handle nonlinear 
relationships and could be limited in their predictive accuracy compared 
to the g-GMDH model. These results indicate that g-GMDH is the most 
suitable model for predicting S2 values. Its superior performance 
compared to GPR and SVM highlights its potential as an essential tool in 
petroleum geology for accurately predicting S2, which is crucial for 
various reservoir characterization and exploration tasks. 

4.3. Model comparison 

The study compared the performance of three different machine 
learning models of g-GMDH, GPR, and SVM, in predicting four different 
parameters, TOC, Tmax, S1, and S2. The results of the study showed that 
g-GMDH performed the best in predicting all four parameters, followed 
by GPR and SVM in that order. From Fig. 27 it revealed that g-GMDH 
model had the highest performance in predicting TOC, Tmax, S1, and 
S2, indicating its superiority in handling the complexity of the datasets. 
GPR model showed good performance in predicting the parameters, but 
not as good as g-GMDH. It is still considered to be a powerful model for 

Fig. 27. Plots between predicted g-GMDH, GPR, SVM and actual values for (A) TOC (B) Tmax (C) S1 (D) S2.  
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handling complex data. SVM showed reasonable performance in pre-
dicting the parameters, but not as good as g-GMDH or GPR. SVM is 
known for its ability to handle large datasets and non-linear relation-
ships, but in this study, it did not perform as well as the GPR models. 
SVM showed the lowest performance in predicting the parameters, 
indicating that it may not be the best choice for handling the complexity 
of the datasets used in this study. In conclusion, the study showed that g- 
GMDH performed the best in predicting the four parameters of interest, 
followed by GPR and SVM. This suggests that g-GMDH and GPR are 
powerful models for handling complex datasets with non-linear re-
lationships, while SVM may not be the best choices for such datasets. 
However, the performance of these models may vary depending on the 
dataset and task, and more research is needed to confirm these findings. 

4.4. Model verification using East Lika well 

After the g-GMDH model show the success in prediction of 
geochemical parameters of TOC, Tmax, S1 and S2 from three wells in 
Mandawa basin. The East Lika well was used to test the method, as it had 
no geochemical parameters. Fig. 28 shows the well logs of East Lika and 
predicted geochemical data by g-GMDH model. The predicted TOC 
showed a very small difference ranged from 0 to 0.2 wt% which ac-
cording to the classification it falls into the category of poor source rock. 
Similarly, for the Tmax the results showed that the source rock is still 
immature with the range of 420–438 ◦C, for the case of S1 and S2 the 
results ranged from 0.1 to 4.67 mg/g. The evidence for hydrocarbon 
migration can also be observed from depth 2700–2950 m due to the 
relatively higher S1 value compared to the S2. 

5. Conclusion and recommendation 

This study proposed an approach of generalized of group method of 
data handling (g-GMDH) as a novel method in the source rock evalua-
tion and prediction of TOC, Tmax, S1, and S2 from well logs data. The 
following conclusion can be made from the above results 

(1) Based on geochemical findings the Mandawa basin can be clas-
sified as fair to very good source rocks. TOC contents range from 
0.5 to 8.7 (wt.%). Mandawa basin contains oil and gas prone 
characterized by mixed kerogen type II and III laying in oil to 
condensate as immature to mature source rocks.  

(2) Furthermore, this study revealed that the g-GMDH model was the 
most accurate model for the prediction of TOC, Tmax, S1, and S2 
with the R2 value greater than 0.9 and low errors margin in both 
training and testing phases. The GPR and SVM models showed 
inferior performance, indicating that they may not be the best 
choice for predicting these parameters. The findings of this study 
have practical implications for the energy industry, as accurate 
prediction of TOC, Tmax, S1, and S2 is crucial for successful 
exploration and production of hydrocarbons.  

(3) The proposed g-GMDH method was applied to estimate the TOC, 
Tmax, S1 and S2 values for the East Lika-1 well, which lack core 
geochemical data. The results indicated a poor-quality source 
rock in the well and suggested the likelihood of hydrocarbon 
migration between the depths of 2700 m and 2950 m. 

In the future, researchers may investigate how combining different 
types of data, such as seismic and mineralogical data, could improve the 
accuracy of predicting geochemical parameters. They should also work 
on improving the model parameters to increase prediction accuracy and 
efficiency. Furthermore, the model suggested in this study can also be 
applied to predicting other reservoir parameters, such as Porosity and 
water saturation. 
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Nomenclature 

DEN Density 
CNL Compensated Neutron 
RT Resistivity 
GR Gamma Ray 
AC Acoustic 
ILD Induction 
DT Sonic Travel Time 
RHOB Bulk Density 
BPNN Backpropagation Neural Network 
RBFNN Radial Basis Function Neural Network 
LLD Deep Lateral Resistivity 
NPHI Neutron Porosity 
DN Density 
NCL Neutron 
BD Bulk Density 
GD Grain Density 
DTSH Shear Slowness 
DTC Compressional Slowness 
SGR Spectral Gamma Ray 
U Uranium 
TH Thorium 
K Potassium 
TPDC Tanzania Petroleum Development Corporation 
RF Random Forest 
LR Linear Regression 
PSO Particle Swarm Optimization 
LSSVM Least Square Support Vector Machine 
ELM Ensemble Learning Machine 
FFNN Feed Forward Neural Network 
KNN k Nearest Neighbour 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
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[65] Ordoñez L, Vogel H, Sebag D, Ariztegui D, Adatte T, Russell JM, et al. Empowering 
conventional Rock-Eval pyrolysis for organic matter characterization of the 
siderite-rich sediments of Lake Towuti (Indonesia) using End-Member Analysis. 
Org Geochem 2019;134:32–44. 

[66] Su X, Sun B, Wang J, Zhang W, Ma S, He X, et al. Fast capacity estimation for 
lithium-ion battery based on online identification of low-frequency 
electrochemical impedance spectroscopy and Gaussian process regression. Appl 
Energy 2022;322:119516. 

[67] Zhang Z, Ye L, Qin H, Liu Y, Wang C, Yu X, et al. Wind speed prediction method 
using shared weight long short-term memory network and Gaussian process 
regression. Appl Energy 2019;247:270–84. 

[68] Wang Z, Peng X, Xia A, Shah AA, Yan H, Huang Y, et al. Comparison of machine 
learning methods for predicting the methane production from anaerobic digestion 
of lignocellulosic biomass. Energy 2023;263:125883. 

[69] Niu W, Lu J, Sun Y, Guo W, Liu Y, Mu Y. Development of visual prediction model 
for shale gas wells production based on screening main controlling factors. Energy 
2022;250:123812. 

[70] Chen H, Zhang C, Yu H, Wang Z, Duncan I, Zhou X, et al. Application of machine 
learning to evaluating and remediating models for energy and environmental 
engineering. Appl Energy 2022;320:119286. 

[71] Shen C, Asante-Okyere S, Yevenyo Ziggah Y, Wang L, Zhu X. Group method of data 
handling (GMDH) lithology identification based on wavelet analysis and 
dimensionality reduction as well log data pre-processing techniques. Energies 
2019;12(8):1509. 

[72] Najafzadeh M, Azamathulla HM. Group method of data handling to predict scour 
depth around bridge piers. Neural Comput Appl 2013;23(7):2107–12. 

[73] Anastasakis L, Mort N. The development of self-organization techniques in 
modelling: a review of the group method of data handling (GMDH). Research 
Report-University of Sheffield Department of Automatic Control and Systems 
Engineering; 2001. 

[74] Armaghani DJ, Momeni E, Asteris PG. Application of group method of data 
handling technique in assessing deformation of rock mass. Metaheuristic 
Computing Applied 2020;1(1):1–18. 

[75] Ivakhnenko AG. The group method of data of handling; a rival of the method of 
stochastic approximation. Soviet Automat Control 1968;13:43–55. 

[76] Dembicki H. Practical petroleum geochemistry for exploration and production. 
Elsevier; 2022. 

[77] Clayton JL, Ryder RT. Organic geochemistry of black shales and oils in the 
minnelusa formation (permian and pennsylvanian). Wyoming: Powder River Basin; 
1984. 
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