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a b s t r a c t

In Hyperspectral images (HSI), dimensionality reduction methods (DRM) play a critical role in reducing
the input data dimension and complexity. As much as the deep learning methods (DLM) have presented
very aggressive achievements, preprocessing methods and DRM are very important to enhance the
learning of DLMs. This study introduces a novel DRM called Compression and Reinforced Variation
(CRV), which is used to reduce the input data dimension. The CRV minimizes the gap between the
big and small related data in each class and omits the noise and redundant data. It selects the most
informative features and normalizes them to enhance data distribution before inserting them into
the learning model. The learning model of this study is multi-hybrid deep learning (MHDL) model to
improve the extraction of multi-class HSI and spectral–spatial features. MHDL is a novel classification
model that includes hybrid layers of conventional neural networks and batch normalization to avoid
overfitting, normalizing the training, and extracting the spectral–spatial features for HSI. The proposed
CRV provided highly efficient methods for reducing the HSI dimension and improving the classification
accuracy of the MHDL model. In contrast to other conventional DRMs, CRV gave the highest accuracy
in the shortest time. CRV-MHDL was also compared to seven existing classification models for three
distinct datasets, and the findings demonstrated that the CRV-MHDL outperforms all of them by more
than 2%. The code of this study is available at this link: https://github.com/DalalAL-Alimi/CRV.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The classification of Hyperspectral images (HSI) is a neces-
ary process for different earth observation applications [1], such
s war areas [2], military [3,4], environmental monitoring [5],
griculture [6], small object detection [7–9], food quality [10],
edical [11,12], and others. HSI can extract spectral data from
undreds of surface object continuous spectrum segments. The
patial resolution of HSI data sets has substantially improved due
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to the rapid development of remote-sensing technology, which
vastly improves the ability of HSI data sets to express distinct
objects appropriately.

As described in [1], there are several critical challenges with
HSI classification tasks. For example, hyperspectral data has hun-
dreds of band values, and the information between the spectral
bands is usually redundant, resulting in a large data dimension
and a high computing demand. More so, the presence of mixed
pixels causes significant interference in the categorization of HSI,
as a single pixel frequently correspondings to numerous object
categories and is commonly misclassified. Furthermore, manually
labeling HSI samples are expensive, resulting in a tiny number of
off-the-shelf labeled samples.

In high-dimensional data analysis, visualization, and mod-
eling, dimensionality reduction methods (DRM) are commonly
employed as preprocessing. DRM seeks to increase the perfor-
mance of estimated accuracy, visualization, and comprehension
of learned knowledge in general. DRMs can generally be divided
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Abbreviations

HSI Hyperspectral Image
DRM Dimensionality Reduction Method
CRV Compression And Reinforced Variation
MHDL Multi-Hybrid Deep Learning
FSA Feature Selection Algorithm
PCA Principal Component Analysis
LDA Linear Discriminant Analysis
ICA Independent Component Analysis
KPCA Kernel PCA
mRMR Minimum-Redundancy Maximum-Relevance
DL Deep Learning
CNN Convolution Neural Network
CDSCN Cascade Dual-Scale Crossover Neural Network
3D Three Dimensional
2D Two Dimensional
FSM Feature Selection Method
BN Batch Normalization
RAF ReLu Activation Function
FC Fully Connected Layer
MP Max-Pooling Layer
MLP Multilayer Perceptron
HybridSN Hybrid Spectral CNN

into feature extraction and feature (band) selection [13–17]. The
DRM is one of the most critical HSI processes, aiming to re-
duce model complexity and overfitting, and these new lower
dimensions of features represent the original ones. The feature
extraction approach reduces the dimensionality through particu-
lar mathematical processes to generate a new subset of features
that are a part of the original dataset and retain only the pertinent
data that can improve the final goal while discarding the rest. On
the other hand, feature selection algorithms (FSA) select a subset
of features most relevant to the problem to improve computa-
tional efficiency and reduce generated model errors by deleting
unrelated features or noise. FSA methods have three types, filter,
wrapper, and embedded [14,18,19].

Principal component analysis (PCA), linear discriminant anal-
sis (LDA), independent component analysis (ICA), kernel PCA
KPCA) [5,20,21], and region-aware latent features fusion-based
lustering [18] are examples of feature extraction methods. The
ost common compressing method in HSI is PCA. PCA uses the
orrelation between features to find data patterns. It aims to iden-
ify the highest variance directions in high-dimensional data and
roject them onto a subspace with the same or fewer dimensions
s the original. On the other hand, KPCA is nonlinear unsuper-
ised features extraction, the kernelized version of PCA [5,10,22–
4]. LDA is a linear supervised feature extraction method that
ims to minimize class variations. The general concept behind
DA is very similar to PCA.
In contrast, PCA attempts to find the orthogonal component

xes of maximum variance. LDA aims to find the feature subspace
hat optimizes class separability. Thus, it increases computational
fficiency, reduces overfitting, and highlights the quality of the
lassification. It has been widely used to classify agricultural
nd food products and other applications based on hyperspec-
ral data [25–27]. ICA is a linear, supervised feature extraction;
onsidered a further step of PCA and a powerful tool for ex-
racting source signals or valuable information from the original
ata. Compared to the PCA and LDA, ICA optimizes higher-order
2

statistics such as kurtosis (non-Gaussian), yielding independent
components [20].

In FSA, filter methods nominate features according to specific
predefined criteria before feeding to a learning model such as
minimum-redundancy maximum-relevance (mRMR), trivariate
mutual information-clonal selection algorithm, distance-based
criteria, consistency-based criteria, and manifold learning-based
criteria [28,29]. The wrapper method chooses and evaluates the
candidate features through a chosen training model. So, the
research algorithm of the best subset of features is basically
‘‘wrapped’’ around the model. This feature selection method is
considered costly due to its computational complexity and the
long execution time. It is better in classification than in the
filter methods, but filter methods are faster, less complex, and
better chosen for high dimensional datasets compared to wrapper
methods. Recursive feature elimination (SVM-RFE) is one of the
wrapper methods. The SVM-REF employs the weight vector as
a ranking criterion to select the features that lead to the most
considerable margin of class separation. The embedded methods
use the advantages of filters and wrappers methods like the least
absolute shrinkage and selection operator and the partial least
square [14,19,30,31].

Over the past decades, automatic feature representation and
extraction using machine learning techniques have gained pop-
ularity over handcrafted techniques for HSI classification [32,
33].

For instance, invariant attribute profiles [34] and texture pro-
files [35] were effective techniques for extracting spatial–spectral
features from HSI. In addition, methods such as sparse rep-
resentation, known as subspace-based learning and manifold
learning [36,37], have proven their ability to capture the high-
dimensional structure of HSI by mapping the high-dimensional
original space to low-dimensional subspace. However, the meth-
ods mentioned above are limited in data fitting and representa-
tion ability [38,39]. In recent years, deep learning models (DL)
have superseded the methods mentioned above on many levels,
including feature extraction or representation, feature selection,
and classification [40].

2. Literature review

Many DL models have been proposed to address the problems
of traditional feature representation and HSI classification. The
convolution neural network (CNN) and its variants are well-
known DL models based on hierarchical feature learning and
classification [41]. CNNs are widely used in HSI classification
problems. They are commonly composed of a stack of the convo-
lutional layer with different kernel sizes and activation functions
to represent and extract features. CNNs can be used to build shal-
low or deep structures based on the complexity and abstraction of
the extracted features. The DL models can detect different levels
of abstraction, thus extracting various features from the HSI.
Different designed structures and networks can be distinguished
based on the DL model architecture. For instance, Zhao et al. [42]
used a combination of two CNN networks representing shallow
and deep network structures. The shallow network extracts the
small object’s features (low-abstract features) while the deep
network extracts the big object’s features.

Moreover, Cao et al. [43] proposed a cascaded network ar-
chitecture named cascade dual-scale crossover neural network
(CDSCN) to elicit the features from the HSI. The CDSCN was
trained on a small number of HSI using a CNN with different
kernel sizes to extract spatial and spectral features. The de-
veloped CDSCN was used to overcome the overfitting problem
and to improve the classification accuracy by employing batch
normalization and dropout regularization techniques [38]. Cao
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t al. [44] performed HSI classification using an active deep learn-
ng model with Markov random field to improve the model
erformance in classification accuracy. The model was trained
sing a CNN network on a small set of 30 labeled pixels with
eature selection to actively select informative pixels only. The
roposed HSI classification model showed better accuracy than
he baseline and other existing models. Hang et al. [45] integrated
he attention mechanism in their HSI classification model. The
uthors developed a CNN with an attention mechanism where
wo network branches for spectral–spatial classifications were
uilt using spectral–spatial attention. In addition, the adaptively
eighted summation technique combined the results of the two
ranches. The experiment demonstrated that the developed sub-
etworks based on the attention mechanism outperformed the
xisting models. Yu et al. [46] used a fusion mechanism to build
n HSI classification model using 2D-3D CNN architecture.
The model employed the 2D CNN sub-network as a feature ex-

ractor while the 3D sub-network as a band correlation exploita-
ion network to extract the spectral features using small kernels.
he proposed model performed well on the 40-feature extraction
ask, which improved the overall classification accuracy. Kang
t al. [47] combined different levels of features automatically
xtracted using a dual-path CNN and residual learning mecha-
ism to improve the classification accuracy. Paoletti et al. [48]
eveloped a novel residual pyramid bottleneck to balance the
odel’s computational complexity and accuracy. The proposed
odel elongated the spectral domain while reducing the ex-

racted spatial shape features. Moreover, the residual connection
nd attention mechanism were widely used to perform HSI clas-
ification and feature extraction, such as in the works conducted
y Alipour-Fard [49], Haut et al. [50], Wu et al. [51], and Xu
t al. [52].
Even though DRMs were introduced to enhance the compu-

ation complexity and the data dimension, enhancing the feature
election methods and data distribution are still needed before
eeding the input data into the learning model. Furthermore,
any studies were proposed for HSI classification in the litera-

ure, using various classification techniques, such as the classical
achine learning approaches, support vector machine [9], and
ecision tree [53]. Advance deep learning approaches have been
sed recently to enhance the classification process of the HSI,
uch as recurrent neural networks [54,55] and conventional neu-
al networks (CNN) [56–58]. Although deep learning methods
emonstrated impressive performance in classifying HSI, they
till face certain limitations, such as dealing with and training
ifferent class sizes in multi-classes datasets (HSI) equally and
nhancing the feature extraction of spectral–spatial features si-
ultaneously. So, this study sums up the challenges of HSI as

ollows:

• Each class does not have a fixed size or appearance in
HSI. Further, these images were mainly collected from var-
ious sources with varying resolutions, which complex the
classification process.

• The HSIs are well-known for their enormous size varia-
tions, the number of classes and bands, the varied sizes of
each class, and the data distribution’s intricacy. All of these
factors make selecting effective features more difficult.

• Designing a training model that can handle all the HSI
challenges and achieve a high classification accuracy for the
spectral–spatial features of various classes and sample sizes
simultaneously.

his article proposes a novel feature selection method (FSM)
hat increases the variance and filters the data to reduce the
and number in the input dataset and enhance the classification

nd training performance. This FSM is called Compression and

3

Reinforced Variation (CRV). It minimizes the gap between the big
and small related data of the same class and omits the noise and
redundant data. Moreover, CRV normalizes the selected features
before feeding them into the classification model to reduce its
complexity and overfitting. The classification model of this study
is the multi-hybrid deep learning (MHDL) model, whose structure
enhances the classification of spectral–spatial features of multi-
class HSI. It is based on the hybrid layers of 2 and 3D-CNN and
batch normalization (BN) to optimize the extraction and void
the overfitting. The significant contributions of this study are as
follows:

• To introduce a novel feature selection method called Com-
pression and Reinforced Variation (CRV) thus to pick critical
features and reduce dimensionality.

• To implement CRV to improve data compression and clas-
sification. The CRV can improve the data distribution of all
HSI to be more efficient and decreases performance time.

• To develop a multi-hybrid deep learning (MHDL) model
to enhance the extraction of multi-class HS datasets and
spectral–spatial features.

• To utilize the multi-size kernel of CNN layers and BN layers
at the time of feature extraction to improve the extraction
of the various classes and prevent overfitting.

3. Proposed methodologies

This section provides complete information on the operation
of the compression and reinforced variation (CRV) method and
explains this study model’s structure, multi-hybrid deep learning
(MHDL).

3.1. Compression and reinforced variation method

The hyperspectral dataset is an extensive dataset with many
classes and bands. These classes mostly share the same values in
all classes, called outliers or noise. In many cases, these values
are important to distinguish some classes and support their dif-
ferences, so they cannot be eliminated. The other problem is that
hyperspectral datasets have many repeated bands and redundant
data. Therefore, compressing and choosing quality features are
essential to enhance the classification and the performance speed.
In addition, knowing the input data distribution is necessary to
know if it has a normal or skewed distribution before train-
ing the data; that helps to choose the best data normalization.
Many preprocessing should be applied to the input dataset before
training.

The compression and reinforced variation operation (CRV)
works firstly by reducing the gap between large and small values
to separate and know the critical noise values and taking the
mean of each instance in the dataset. Then subtract it from the
main dataset (x) to get the marker image. This marker image is
used in the dilation process, which reduces the gap between small
and large values according to the x—next, omitting unnecessary
data to figure out the most critical features and choose them for
the final processing. The final process enhances the extracted data
distribution to be normal-like by using Gaussian transformation.

The following parameters are provided in Table 1 to facilitate
the comprehension of the proposed method:

In this study, the process of compressing and choosing features
depends on two images. The first is the main image (x), the input
data. The second is the marker image (S), created based on x.
1. The first step is to generate the marker image as follows:
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Fig. 1. The compression and reinforced variation (CRV) method.
Table 1
The description of the used parameters in the compression and reinforced
variation (CRV) method.
Symbol Description

x The main image, which is the input data
c The number of features for each instance
µ The mean of each instance of the input dataset (x)
r The number of instances
S The marker image, which is created based on x and µ

N The number of samples in each feature
k The reduced dimension
Z The final generated subset with the k dimension.
y The normalization operation for Z and the final output

(a) The mean of each instance should be calculated to
create the marker image (S). The mean is the average
value of each instance for all the features represent-
ing one class. The mean of each instance of the input
dataset:

µc = 1/c
c∑

c=1

(xc) (1)

Where c is the number of features for each instance,
the output is a one-dimensional matrix that includes
the mean value of each row of (x), x ∈ Rn×d.

(b) Then this matrix is repeated to have the exact di-
mension of the main image (x). If c represents the
number of features or bands in x, and r is the number
of instances, the dimension of x is (r × c). q× g are
the numbers of features and instances in µ. So, the
dimension of µ is changed to equal the dimension
of x (q × g = r × c ). So, the multi-dimensional of
µ is µ(r,c), as shown in Fig. 2(b).

(c) Next, the marker image (S) is created by subtracting
the multi-dimension of µ from the input data x,
Fig. 3:

S = x(r,c) − µ(r,c) (2)

2. After getting the marker image, the dilation can be calcu-
lated. Dilation (D) processes the marker image (S) based
on the characteristics of x. It reconstructs the image by
removing all the intensity fluctuations except the intensity
peak. The high points or peaks of the S specify where
processing begins, and the processing continues until the
S values stop changing. Hence, D works to reconstruct the
image by removing all the intensity fluctuations except the
intensity peak. It reduces the gap between small and large
4

values and the outliers, as can be seen in Fig. 4:

D = S ⊕ x =

⋃
b∈x

Sb (3)

where Sb is the translation of S by b.
3. The next step is to omit the output of Eq. (3) from the main

image (x) to get only the essential and rich features that
enhance the variance and classification, Fig. 5:

F = x − D (4)

where x is the main input data, and D is the dilation; the
results of Eq. (3).

4. After that, the mean of Eq. (4) was calculated to know the
top richest features that affect the classification:

MN = 1/N
N∑

N=1

(Fc) (5)

where N is the number of samples in each feature, and F
is the output of Eq. (4).

5. Then, Eq. (4) results are sorted by decreasing order accord-
ing to the rank of the mean of Eq. (5):

FD = sort (−1 × Fm) (6)

where Fm is the F dataset extracted from Eq. (4) and sorted
by M of Eq. (5).

6. In this step, the same column indexes of FDk from the input
data (xd) are taken to get the main subset (Zk). Z has been
placed in an ordered sequence, beginning with the largest,
k is the reduced dimension, and Bx and Bf represent the
band indexes of the input and FD dataset. Hence the new
subset data is part of the main dataset x, where Zk ∈

xd, Bx = Bf and k ≤ d;
{
Zj

}k
j=1 ⊆

{
xj
}d
j=1. In such a

scenario, Z1 denotes the most critical set of data bands,
with subsequent sequences denoting progressively fewer
essential features, Fig. 6. These steps extract the more
practical features and omit the redundant bands (B), which
enhance the classification and variance between classes
and reduce the performance time.

7. Finally, this subset (Zk) is fed into normalized data distri-
bution operation to enhance data distribution. The normal-
ization operation is called Gaussian transformation (GT):

y = G−1
y (FZ (Z)) (7)

where FZ is the Cumulative Distribution Function for the Z,
and G−1

y is the Gaussian Cumulative Distribution Function
(GCDF) in y. Eq. (7) normalizes the data to be normal-like,
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Fig. 2. (a) and (b) are the first 10 × 10 data arrays of the IPs dataset. (a) represents the main input image (x), and (b) represents the repeated mean data of each
nstance of x, which represents µ(r,c) .
Fig. 3. (a) and (b) are the first 10 × 10 data arrays of the IPs dataset. (a) represents the main input image (x), and (b) represents the marker image (S).
Fig. 4. (a), (b), and (c) are the first 10 × 10 data arrays of the IPs dataset (the first 10 × 10 data). (a) represents the marker image (S). (b) represents the main
nput image (x). (c) is the dilation operation results (D).
hence reducing the outliers and skewness. Fig. 1 describes
and summarizes the whole steps and processes of the CRV.

.2. The multi-hybrid deep learning model

Due to the nature of HSI, using only spectral information is
ot enough. When many different classes of the input data have
dentical spectral signatures, they can be discriminated through
heir shapes and texture. Furthermore, spatial information helps
dentify each neighboring pixel belonging to which class [5].
5

Thus, fusing spectral–spatial information is necessary to improve
the classification. Because of the ability of conventional neural
networks (CNN) to extract the features and enhance them by their
layers, this study used 3D-CNN to extract spectral–spatial features
and 2D-CNN to enhance the localization of each pixel.

The multi-hybrid deep learning (MHDL) model structure in-
cludes three consecutive layers of 3D-CNN followed by one layer
of 2D-CNN, as seen in Fig. 7; both types of CNN layers have
multi-scale kernels and ReLu as activation function (RAF). RAF
is utilized for a variety of reasons. It has the advantage of in-
troducing non-linearity in CNN. It does not activate all neurons



D. AL-Alimi, Z. Cai, M.A.A. Al-qaness et al. Applied Soft Computing 130 (2022) 109650

s
i
t
i

i
t
b
a
F
o
i

Fig. 5. (a), (b), and (c) arrays from the IPs dataset (the first 10 × 10 data). (a) represents the main input image (x). (b) is the dilation operation results (D). (c)
represents the rich and most influential data.
Fig. 6. (a) is the F data from Eq. (4) sorted descending (FD). (b) The new subset data from the main image x, its features indexes match FD’s features indexes.
Fig. 7. The main framework of the study.
imultaneously, reducing the network’s computational load, so it
s faster than other activation functions. RAF works to prevent
he problem of vanishing gradient. It is also commonly utilized
n deep networks [21,59,60].

3D-CNN layers extract the feature maps of spectral–spatial
nformation, and 2D-CNN enhances the spatial features. Hence
o avoid the overfitting caused by deep learning, this study used
atch normalization (BN) after each fully connected layer (FC),
nd also RAF was used in each FC layer [60–62], as indicated in
ig. 7 and Table 2. In addition, because CNN minimizes the size
f the generated feature map, zero-padding was employed for the
nput data to avoid losing the edge data.
6

4. Experimental

The proposed model in this study and preprocessing operation
were used to train three commonly used hyperspectral image
datasets: the Indian Pines, Pavia-University, and Kennedy Space
Center.

4.1. Datasets

The Indian Pines (IPs) dataset, which contains 16 classes, was
collected by the AVIRIS sensor in Northwest India. The spatial
resolution is 20 m/p with 145 × 145 spatial dimensions. The IPs



D. AL-Alimi, Z. Cai, M.A.A. Al-qaness et al. Applied Soft Computing 130 (2022) 109650

G

d
i
f

I
(
w
m
w

o
S
1

Table 2
The structure of the multi-hybrid deep learning (MHDL) model and its layers.
Layer Input Kernel-Size Activation Output

3D-CNN 25×25×BNoa
×1 (3, 3, 7) ReLu 23×23×24×8

3D-CNN 23×23×24×8 (3, 3, 5) ReLu 21×21×20×16
3D-CNN 21×21×20×16 (3, 3, 3) ReLu 19×19×18×32
Reshape 19×19×18×32 – – 19×19×576
2D-CNN 19×19×576 (3,3) ReLu 17×17×64
Flatten 17×17×64 – – 18496
Dense 18496 – ReLu 256
BN 256 – – 256
Dense 256 – ReLu 128
BN 128 – – 128
Dense 128 – Softmax Classes number

aBNo means the number of input data bands.
Table 3
The classes of each dataset and their names and samples number.
# IPs dataset Pavia-University dataset KS Center dataset

Classes Samples Classes Samples Classes Samples

1 Alfalfa 46 Asphalt 6631 Scrub 761
2 Corn-no-till (CN) 1428 Meadows 18649 Willow swamp (WS) 243
3 Corn-mintill (CM) 830 Gravel 2099 Cabbage palm hammock (CPH) 256
4 Corn 237 Trees 3064 Cabbage palm/oak hammock (CPOH) 252
5 Grass-pasture (GP) 483 Painted metal sheets (BMS) 1345 Slash pine (SP) 161
6 Grass-trees (GT) 730 Bare Soil (BS) 5029 Oak/broadleaf hammock (OBH) 229
7 Grass-pasture-mowed (GPM) 28 Bitumen 1330 Hardwood swamp (HS) 105
8 Hay-windrowed (HW) 478 Self-Blocking Bricks (SBB) 3682 Graminoid marsh (GM) 431
9 Oats 20 Shadows 947 Spartina marsh (SM) 520
10 Soybean-no-till (SN) 972 Cattail marsh (CM) 404
11 Soybean-mintill (SM) 2455 Salt marsh (SM) 419
12 Soybean-clean (SC) 593 Mudflats (MF) 503
13 Wheat 205 Water 927
14 Woods 1265
15 Buildings-Grass-Trees-Drives (BGTD) 386
16 Stone-Steel-Towers (SST) 93
Fig. 8. The data distribution for one band of the IPs dataset, (a) is the data distribution before using Gaussian transformation and (b) is the distribution after using
aussian transformation.
ataset has 220 spectral bands, then decreased to 200 after elim-
nating bands encompassing the water absorption zone, spanning
rom 0.4 µm to 2.5 µm, as illustrated in Table 3.

Pavia-University is the second dataset gathered in Northern
taly using the Reflective Optics System Imaging Spectrometer
ROSIS) sensor and includes nine urban land-cover categories
ith 610 × 340 spatial dimensions. The spatial resolution is 1.3
/p. There are 103 spectral bands in the original data set, with
avelengths ranging from 0.43 to 0.86 µm, Table 3.
The Kennedy Space Center (KS Center) data set was obtained

ver KS Center, Florida, by the Airborne Visible/Infrared Imaging
pectrometer (AVIRIS) sensor. It has 13 classes, a resolution of
8 m/p, a size of 512 × 614 pixels, and 176 spectral bands.

All the datasets are at this link (https://www.ehu.eus/ccwintco/
index.php/Hyperspectral_Remote_Sensing_Scenes).
7

4.2. Empirical results and compares

This part explains the output of CRV and four preprocessing
methods of DRM and compares them with CRV. It also explains
the execution of multi-hybrid deep learning (MHDL) and its com-
parison with other models. Keras python was used to design the
purpose model. The GPU with 26 GB RAM was utilized to run all
the experiments.

4.2.1. Compression and reinforced variation results
As reported, the HSIs come with a large number of bands (fea-

tures) with high spectral resolution and repetition. That brings
significant challenges in data transfer, storage, and analysis. Re-
ducing and selecting the crucial features are necessary steps

https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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Fig. 9. The first ten bands of compression and reinforced variation (CRV) preprocessing for the IPs dataset.
n the preprocessing stage. Choosing features should facilitate
earning and enhance the accuracy as much as possible.

In the multi-class HS dataset, it can be noted that the classes
ostly share the same values, especially the smallest values or
hat are called outliers. These values can be outliers for some
lasses but are not for others, and they play a big role in enhanc-
ng the variance. So, the compression and reinforced variation
CRV) method reinforce the variance by reducing the distance
etween the big and small values in each class. That helped to
etect the main and substantial values from the outliers in each
lass. After reducing the gap, CRV can choose the informative
eatures after omitting all the outlier and unnecessary values.
ig. 1 illustrates and summarizes all of the CRV’s operations and
hases.
Fig. 8 shows a big difference between the distribution of the

ataset before and after using GT. The output of GT is stabler and
ore normalized than the data of , Eq. (7). GCDF does not desert
ny value, but it considers the repeated and correlated data as the
requency data, giving them more area under a standard curve,
mproving the classification. Fig. 8(a) shows the data distribution
or one band of the input data of the IPs dataset. This band
as two or more peaks, and each band of the input data has
different distribution with different skewed. After using CRV,

he data distribution was enhanced and became more normal,
ig. 8(b). Fig. 9 shows the first ten bands after using CRV operation
or the IPs database.

After applying CRV, the number of bands for the IPs dataset
as decreased to 30 bands and 15 bands for Pavia-University and
S Center datasets, voiding the redundant features. Then each
raining set was fed into the MHDL framework for analysis and
lassification. Tables 4–9 prove that CRV successfully extracted
nd compressed the critical characteristics and increased classes’
ariation.

.2.2. Comparisons results of different RDMs
CRV’s effectiveness is evaluated by comparing it to other

RMs. These methods are independent component analysis
ICA) [20,31], factor analysis (FA) [29,63], minimum-redundancy
aximum-relevance (mRMR), and principal component analy-
is (PCA) [20]; all of them are linear unsupervised reduction
ethods. Independent component analysis (ICA) generates new
tatistically independent features by reducing the higher-order
ependencies in a given dataset [64]. ICA searches for the features
hat are non-Gaussian and statistically independent. Factor Analy-
is (FA) is a technique for uncovering correlations between latent
8

and manifest variables, similar to PCA. It describes the variance
in multi-class datasets, which helps explain data by reducing the
number of bands and enhancing the variance by dropping the
factors of the lowest variance [64]. The minimum-redundancy
maximum-relevance (mRMR) technique is one of the selection
feature algorithms, which increases individual feature reliance
while minimizing redundancy between any two features. The
redundancy measure in mRMR is not reliant on the classification
problem [14,29,30]. PCA determines the highest variance of the
data to produce the new features, called principal components
(PCs). The orthogonal axes are the directions of the largest data
variance in PCA, which projects the highly dimensional dataset
to a new subspace. The first PC has the highest variance during
the transformation, and the subsequent PCs have decreasing
variances [30,31].

In this part, all the above methods were used as preprocessing
and then fed their output to the proposed model, multi-hybrid
deep learning (MHDL). The output of mRMR was standardized
by StandardScaler of the scikit-learn. The whitening operation is
applied in PCA and ICA. The number of components (features) for
all these preprocessing methods is 30 for the IPs dataset and 15
for the others. Thus, Tables 4–6 represent the results of MHDL
models for ICA, FA, mRMR, PCA, and CRV preprocessing of the
three datasets.

FA and CRV work to choose the most informative features and
normalize them; this help to get very high accuracy. mRMR has
a very strong way of categorizing the data. It prefers to choose a
subset of attributes with the highest correlation within a class and
the lowest correlation with other classes. PCA obtains the features
mean to get their variations. All of these make FA, mRMR, PCA,
and CRV obtain the highest accuracy, and they were almost the
same because they enhanced the variance between the classes, as
seen in Tables 4 and 5.

The KS Center dataset is the most complicated, and because
ICA did not encourage the distribution of the data and develop
independent components, it could not achieve any accuracy with
the IPs dataset. In the KS_Center dataset, FA and CRV with MHDL
got the best results, as shown in Table 6. With the IPs dataset,
CRV acquired the lowest testing time, then PCA. While, with the
KS _Center dataset, the CRV method gave the lowest testing time
after the mRMR.

The performance time of the learning model is not the only
one that can be observed and calculated; there is an exhaustive
time in the preprocessing stage that should be calculated. Fig. 10
shows the execution time of the preprocessing of all methods for
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Table 4
The comparison of the five dimensionality reduction methods for the first dataset (IPs).
# Classes Training

samples
Tasting
samples

ICA FA mRMR PCA CRV

1 Alfalfa 9 37 0.973 1 1 1 1
2 CN 285 1143 0.972 0.981 0.970 0.973 0.979
3 CM 166 664 0.976 1 0.991 1 1
4 Corn 47 190 1 1 0.958 1 1
5 GP 97 386 1 0.997 0.997 0.990 1
6 GT 146 584 0.995 0.998 0.997 0.998 0.998
7 GPM 6 22 1 1 0.818 1 1
8 HW 96 382 1 1 0.995 1 1
9 Oats 4 16 1 0.938 0.875 1 0.75
10 SN 194 778 1 0.990 0.982 0.996 0.999
11 SM 491 1964 0.998 0.998 0.996 0.998 0.997
12 SC 118 475 0.975 0.979 0.96 0.989 0.968
13 Wheat 41 164 1 1 1 1 1
14 Woods 253 1012 0.999 1 0.999 1 1
15 BGTD 77 309 1 1 0.974 1 0.997
16 SST 19 74 0.932 0.973 0.865 0.973 0.878

Kappa accuracy (%) 98.971 99.332 98.358 99.319 99.165
Overall accuracy (%) 99.098 99.415 98.561 99.402 99.268
Average accuracy (%) 98.874 99.088 96.109 99.487 97.294
Training time (S) 130.140 142.919 129.882 142.923 143.139
Testing time (S) 2.347 3.327 3.362 2.311 2.223
Table 5
The compare results of the five dimensionality reduction methods for the second dataset (Pavia-university).
# Classes Training

samples
Tasting
samples

ICA FA mRMR PCA CRV

1 Asphalt 1326 5305 1 0.999 0.999 1 1
2 Meadows 3730 14919 1 1 1 1 1
3 Gravel 420 1679 0.996 1 1 1 0.998
4 Trees 613 2451 0.994 0.999 1 0.997 1
5 BMS 269 1076 1 1 1 1 1
6 BS 1006 4023 1 1 1 1 1
7 Bitumen 266 1064 1 1 1 1 1
8 SBB 736 2946 0.998 1 0.999 0.999 0.997
9 Shadows 189 758 0.993 0.992 1 0.996 1

Kappa accuracy (%) 99.868 99.945 99.969 99.950 99.954
Overall accuracy (%) 99.901 99.962 99.977 99.962 99.965
Average accuracy (%) 99.786 99.888 99.977 99.913 99.946
Training time (S) 263.102 263.37 264.303 264.739 203.782
Testing time (S) 4.798 4.742 3.936 5.248 4.001
Table 6
The compare results of the five dimensionality reduction methods for the KS_Center dataset.
# Classes Training

samples
Tasting
samples

ICA FA mRMR PCA CRV

1 Scrub 152 609 0 1 1 0.998 1
2 WS 49 194 0 1 0.948 0.923 0.974
3 CPH 51 205 0 1 1 0.956 0.941
4 CPOH 50 202 0 0.995 0.881 0.703 0.955
5 SP 32 129 0 0.977 0.876 0.891 1
6 OBH 46 183 0 1 1 0.973 0.995
7 HS 21 84 0 1 1 0.893 1
8 GM 86 345 1 1 1 0.977 1
9 SM 104 416 0 1 1 1 1
10 CM 81 323 0 1 0.910 0.926 1
11 SM 84 335 0 1 1 1 1
12 MF 101 402 0 1 0.990 0.930 1
13 Water 185 742 0 1 1 1 1

Kappa accuracy (%) 0.0 99.893 97.782 95.376 99.279
Overall accuracy (%) 8.275 99.904 98.009 95.850 99.352
Average accuracy (%) 7.692 99.783 96.968 93.615 98.967
Training time (S) 83.351 80.030 69.913 85.660 33.075
Testing time (S) 0.6 0.597 0.560 0.629 0.593
the three datasets. Evidently, the PCA had the quickest time, but
the CRV provided the best time performance with good accuracy
across all datasets. Fig. 10 further shows that, in contrast to
the others, the CRV delivered an exceptional smooth training
operation.
9

As known, preprocessing and deep learning classification mod-
els play a considerable role in enhancing spectral–spatial feature
extraction accuracy of HSI. Most studies used PCA to reduce
dimensionality, nonetheless, it does not classify patterns by itself.
As a result, it merely chooses features with the most extensive
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Fig. 10. The time of the five preprocessing and reducing dimensionality methods.
Fig. 11. The accuracy values of each epoch during the training time. (a) is for the first dataset, (b) represents the second dataset, and (c) represents the accuracy of
he third dataset.
ariability that does not guarantee to perform well in classifica-
ions. Furthermore, the FSAs are expensive due to computational
omplexity and the time of execution, especially with a complex
ata distribution dataset. Also, the differences in the number of
amples of classes in each dataset are computational complexity
o simultaneously enhance the detection of the small and large
umber of samples. In general, notwithstanding the difficulties it
10
encounters, the CRV enhanced the data distribution, choosing the
most effective features and performance time simultaneously.

The compression and reinforced variation (CRV) method with
multi-hybrid deep learning (MHDL) model were tested with dif-
ferent ranges of split for dataset to see their ability. In the first
test, the output of CRV for the three datasets was split into 10%
as a training set and 90% as a testing set before feeding them into
the MHDL classification model. The second experiment was run
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Table 7
Test the compression and reinforced variation (CRV) method with the multi-hybrid deep learning (MHDL) model on different split
rates of the three used HSI.
/Dataset IPs Pavia-university KS_Center

Training set rate 10% 20% 30% 10% 20% 30% 10% 20% 30%

Kappa accuracy (%) 95.33 99.17 99.76 99.31 99.95 99.96 96.74 99.28 99.48
Overall accuracy (%) 95.91 99.27 99.79 99.08 99.97 99.97 97.08 99.35 99.53
Average accuracy (%) 91.29 97.29 98.83 99.31 99.95 99.97 95.22 98.97 99.23
Training time (S) 83.32 143.14 203.47 100.24 203.78 323.37 22.40 33.08 45.13
Testing time (S) 2.70 2.22 2.12 4.54 4 3.81 0.68 0.59 0.58
with 20% as a training set and 80% as testing set for all datasets.
The final experiment was to test the output of CRV+ MHDL by
splitting 30% of the data as a training set and 70% as a testing set.
As seen in Table 7, the accuracy smoothly increased by increasing
the size of the training set.

4.2.3. MHDL results and comparisons
The output of CRV was fed into three sequence layers of 3D-

NN to extract the special–spectral feature maps. Then into one
ayer of 2D-CNN to enhance the localization of the extraction
eatures. Because the sample numbers and dimension values of
he classes in each dataset are not the same, different kernel sizes
ere used in each layer of the MHDL model. These differences

n kernel size help to cover and extract more features. Further-
ore, using BN helps to normalize, stable the training, and void
verfitting during the training operation [65], Fig. 11.
This study trained and tested the MHDL model with CRV in

hree different datasets. These three datasets are characterized by
aving different numbers of classes and bands and data distribu-
ion, so this study tested the ability of the MHDL framework with
RV on different challenges of HSI. From the results of the three
atasets in Tables 8–10, it can be noted that the MHDL model
uccessfully classified the input data of CRV operation for all
atasets. Therefore, this study successfully compressed, extracted,
nd classified the different HSI.
Also, to quantitatively evaluate the proposed MHDL frame-

ork with CRV, this study was compared with seven existing
ethods: multilayer perceptron (MLP), CNN1d, CNN2d, CNN3d,
GG-16 [66], HybridCNN [60], HybridSN [67].
MLP is one layer of FC with RAF, and CNN1d is one 1D-

NN layer with RAF, 24 KS, two FC layers, Max-Pooling layer
MP) (2, 2), and BN. MLP and CNN1d are used to train spectral
nformation [68]. CNN2d includes two layers of 2D-CNN, (5,5) KS,
ne MP (2, 2), and one FC with 100 units. CNN2d model focuses
n spatial information. CNN3D is two layers of 3D-CNN ((5, 5, 24,
2), (5, 5, 7, 64)) and one layer of FC (300 units) with BN and RAF
o extract and train spectral–spatial information. In MLP, CNN1d,
NN2d, and CNN3d, each dataset was minimized to 30 bands by
CA and split into 20% as training and 80% as testing sets [23].
The VGG-16 model has 14 2D-CNN layers with the same kernel

ize (KS) (3 × 3), two FC layers, both use RAF, and four layers of
P layer (2, 2); it is a deep model. The input dataset is minimized

o 30 bands for the IPs dataset and 15 bands for Pavia-University
nd KS_Center datasets. The rates of training and testing set are
0% and 80%. The HybridCNN framework trains three parallel
etworks of 3D-CNN with different window sizes (15, 13, 9). The
nput data is diminished to 15 bands for all datasets and divided
nto 20%, 10%, and 70% for training, validation, and testing sets.
ybridSN model is a multi-size kernel for hybrid layers of 3D-
NN and 2D-CNN with two dropout layers to avoid overfitting.
n HybridSN, the number of bands is 30 for the IPs and 15 for
he others. In all these compared models, the input data was
ecreased by PCA.
As can be seen from Tables 8–10, MLP, CNN1d, and CNN2d

ot less accuracy because they do not train the spectral–spatial
ata. In the Pavia-University dataset, the CNN3D model is only
11
0.04% higher than the MHDL. In Table 10, although the VGG-16
model has many 2D-CNN layers, its accuracy is low since the data
distribution in the KS_Center dataset is the most complex, and
the spectral information of many classes is similar. Because the
HybridCNN and HybridSN deal with spectral–spatial data, they
were better than the previous models in all datasets evaluated.
On the other hand, this study framework received the highest
accuracy because it was the best to make the distribution normal-
like and enhanced the localization of spectral–spatial data feature
extraction. To sum up, the proposed CRV-MHDL model obtained
the best results for all data sets.

In addition, using CRV to reduce the input data and enhance
the variation, compared to the other models’ results, the MHDL
model obtained high accuracy for the small sample numbers in
all used datasets, as shown in Tables 8–10. The CRV operation
enhanced classes’ variation and chose the crucial bands. The win-
dow size is 25 for all datasets to consider more local similarity.
The big size of the window may lead to producing some noise
and may cause less classification capability. The CRV worked
previously to enhance the variance and to reduce the noise, so
that, the window size does not affect the accuracy, as shown in
the final results of CRV-MHDL in Tables 8–10 and Figs. 12–14.

Fig. 15 shows the situation of training accuracy for used mod-
els. As can be seen, the most smooth and stable model in the
training time is MHDL.

5. Conclusion

The HSI dataset has a large number of classes and bands;
therefore, these classes typically share the same values across
all classes. This study proposed a novel feature selection method
called compression and reinforced variation (CRV) to reduce the
dimension of HSI. Furthermore, the structure learning model of
this study, multi-hybrid deep learning (MHDL), enhanced the
extraction of spectral–spatial features by using hybrid layers of
CNN and kernel size, and it provided more stable results than
others. MHDL with CRV was the best to classify and extract the
best accuracy for the small samples. The experiments of the CRV
method with MHDL show the following: (1) The MHDL model
with CRV provided the most steady performance and the best
classification for the small sample number of classes. (2) The
CRV+MHDL succeeded in extracting multi-class HSI datasets. (3)
The CRV improved all HSI data distributions to have a normal
distribution. It also reduced the performance time and the data
dimensionality. (4) The CRV successfully compressed the input
data and chose only the crucial features that enhance the vari-
ation between the different classes. (5) The CRV introduced the
best running time with high accuracy compared to the other
preprocessing methods. (6) The MHDL successfully extracted the
spectral–spatial features for HSI and produced the optimum clas-
sification results for the three datasets. (7) The CRV operation
increased the accuracy of MHDL to be higher than other models
that used PCA to represent and compress data. The future work
will focus on reducing the execution time of feature selection

operations.
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Table 8
The comparison of the seven models and compression and reinforced variation (CRV) + multi-hybrid deep learning model (MHDL) for the first dataset.
# Classes Training

samples
Tasting
samples

MLP CNN1d CNN2d CNN3d VGG-16 Hybrid-
CNN

Hybrid
SN

CRV +
MHDL

1 Alfalfa 9 37 0.462 0.108 0.026 0.757 0 0.875 0.973 1
2 CN 285 1143 0.626 0.636 0.411 0.904 0.764 0.983 0.979 0.979
3 CM 166 664 0.177 0.291 0.359 0.928 0.937 1 0.985 1
4 Corn 47 190 0.179 0.126 0.313 0.916 0 0.952 0.995 1
5 GP 97 386 0.64 0.790 0.192 0.956 0.896 0.970 0.995 1
6 GT 146 584 0.820 0.937 0.931 0.973 0.954 0.984 0.997 0.998
7 GPM 6 22 0 0.739 0.292 0.913 0 0.85 1 1
8 HW 96 382 0.845 0.984 0.953 1 0.950 1 1 1
9 Oats 4 16 0.294 0 0.118 0.938 0 1 1 0.75
10 SN 194 778 0.308 0.569 0.173 0.969 0.221 0.975 0.991 0.999
11 SM 491 1964 0.620 0.851 0.774 0.980 0.951 0.997 0.990 0.997
12 SC 118 475 0.232 0.420 0.109 0.968 0.909 0.935 0.967 0.968
13 Wheat 41 164 0.730 0.866 0.477 0.994 0.994 1 1 1
14 Woods 253 1012 0.916 0.956 0.940 0.998 0.826 0.999 0.999 1
15 BGTD 77 309 0.220 0.453 0.527 0.867 0.142 1 0.994 0.997
16 SST 19 74 0.823 0.797 0 0.973 0 1 0.973 0.878

Kappa accuracy (%) 50.681 66.244 50.003 95.223 72.908 98.411 98.777 99.165
Overall accuracy (%) 57.089 70.899 56.813 95.817 76.524 98.606 98.927 99.268
Average accuracy (%) 49.316 59.518 41.219 93.956 53.403 97.003 98.973 97.294
Table 9
The comparison of the seven models and compression and reinforced variation (CRV) + multi-hybrid deep learning model (MHDL) for the second dataset.
# Classes Training

samples
Tasting
samples

MLP CNN1d CNN2d CNN3d VGG-16 Hybrid-
CNN

Hybrid
SN

CRV +
MHDL

1 Asphalt 1326 5305 0.906 0.954 0.988 1 1 1 1 1
2 Meadows 3730 14919 0.960 0.981 0.997 1 1 1 1 1
3 Gravel 420 1679 0.575 0.804 0.932 1 1 0.999 1 0.998
4 Trees 613 2451 0.900 0.936 0.992 1 0.986 0.999 0.991 1
5 BMS 269 1076 0.977 0.989 0.999 1 0.999 1 0.998 1
6 BS 1006 4023 0.819 0.909 0.996 1 1 1 1 1
7 Bitumen 266 1064 0.843 0.914 0.943 1 1 0.992 1 1
8 SBB 736 2946 0.883 0.891 0.950 1 0.997 0.983 0.996 0.997
9 Shadows 189 758 0.993 0.999 0.983 1 0.956 1 0.996 1

Kappa accuracy (%) 87.083 92.983 98.142 99.996 99.679 99.752 99.853 99.954
Overall accuracy (%) 90.286 94.719 98.597 99.997 99.757 99.81 99.889 99.965
Average accuracy (%) 87.286 93.078 97.547 99.995 99.312 99.697 99.788 99.946
Table 10
The comparison of the seven models and compression and reinforced variation (CRV)-multi-hybrid deep learning model (MHDL) for the KS_Center dataset.
# Classes Training

samples
Tasting
samples

MLP CNN1d CNN2d CNN3d VGG-16 Hybrid-
CNN

Hybrid
SN

CRV +
MHDL

1 Scrub 152 609 0.836 0.966 0.836 0 0 0.985 0.992 1
2 WS 49 194 0.251 0.108 0.256 0.572 0.562 0.9 0.933 0.974
3 CPH 51 205 0.312 0 0.028 0.098 0 0.888 0.941 0.941
4 CPOH 50 202 0 0 0.103 0.248 0.658 0.642 0.916 0.955
5 SP 32 129 0.504 0 0.555 0.512 0.977 0.805 0.946 1
6 OBH 46 183 0.256 0 0.108 0.191 0 0.525 0.973 0.995
7 HS 21 84 0 0 0.067 0 0 0.946 0.869 1
8 GM 86 345 0.380 0.528 0.385 0.974 0 0.858 0.962 1
9 SM 104 416 0.543 0.788 0.224 0.538 0 0.538 0.998 1
10 CM 81 323 0.163 0.130 0.318 0.963 1 0.912 0.966 1
11 SM 84 335 0.854 0.809 0.607 0.994 0.976 1 1 1
12 MF 101 402 0.532 0 0.642 0.811 0.980 0.966 0.970 1
13 Water 185 742 0.985 0.996 0.768 1 1 1 1 1

Kappa accuracy (%) 51.637 44.721 42.270 56.889 43.861 85.984 97.141 99.279
Overall accuracy (%) 56.943 52.063 48.973 61.252 51.667 87.445 97.433 99.352
Average accuracy (%) 43.198 33.267 37.658 53.079 47.333 84.348 95.889 98.967
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Fig. 12. The output of the different models and compression and reinforced variation (CRV) + multi-hybrid deep learning model (MHDL) for the IPs dataset.
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Fig. 13. The output of the different models and compression and reinforced variation (CRV) -multi-hybrid deep learning model (MHDL) for the Pavia-university
dataset.
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Fig. 14. The output of the different models and compression and reinforced variation (CRV)-multi-hybrid deep learning model (MHDL) for the third dataset.
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Fig. 15. The accuracy values of each epoch during the training time for the eight models. (a) represents the accuracy of the first dataset (IPs), (b) is the accuracy
alues of the second dataset, and (c) represents the training accuracy of the last dataset.
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