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Abstract 

Multi-hazard susceptibility prediction is an important component of disasters risk 

management plan. An effective multi-hazard risk mitigation strategy includes assessing 

individual hazards as well as their interactions. However, with the rapid development of 

artificial intelligence technology, multi-hazard susceptibility prediction techniques based on 

machine learning has encountered a huge bottleneck. In order to effectively solve this problem, 

this study proposes a multi-hazard susceptibility mapping framework using the classical deep 

learning algorithm of Convolutional Neural Networks (CNN). First, we use historical flash 

flood, debris flow and landslide locations based on Google Earth images, extensive field 

surveys, topography, hydrology, and environmental data sets to train and validate the proposed 

CNN method. Next, the proposed CNN method is assessed in comparison to conventional 

logistic regression and k-nearest neighbor methods using several objective criteria, i.e., 

coefficient of determination, overall accuracy, mean absolute error and the root mean square 

error. Experimental results show that the CNN method outperforms the conventional machine 

learning algorithms in predicting probability of flash floods, debris flows and landslides. 

Finally, the susceptibility maps of the three hazards based on CNN are combined to create a 

multi-hazard susceptibility map. It can be observed from the map that 62.43% of the study area 

are prone to hazards, while 37.57% of the study area are harmless. In hazard-prone areas, 

16.14%, 4.94% and 30.66% of the study area are susceptible to flash floods, debris flows and 

landslides, respectively. In terms of concurrent hazards, 0.28%, 7.11% and 3.13% of the study 

area are susceptible to the joint occurrence of flash floods and debris flow, debris flow and 
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landslides, and flash floods and landslides, respectively, whereas, 0.18% of the study area is 

subject to all the three hazards. The results of this study can benefit engineers, disaster 

managers and local government officials involved in sustainable land management and disaster 

risk mitigation.

Keywords: Multi-hazard; Convolutional Neural Network; Machine learning; Eastern 

Hindukush; Pakistan.  

Handling Editor:  B. Pradhan

1. Introduction 

Environmental hazards are usually studied separately. Many researchers around the world 

focus on single hazards, such as landslides (Wang et al., 2020a; Habumugisha et al.,2022; 

Youssef et al.,2022a), floods (Hosseini et al., 2021; Rafiei Sardooi et al., 2021), debris flows 

(Marra et al., 2017; Abuzied and Pradhan, 2021), forest fires (Abedi Gheshlaghi et al., 2021; 

Feizizadeh et al., 2022), and glacier avalanches (Choubin et al., 2019; Yariyan et al.,2022). 

However, many locations are susceptible to multiple hazards, which may occur simultaneously 

or as cascading events. Mitigating one hazard may exacerbate the frequency, duration, 

distribution, or intensity of another hazard, especially in the mountainous regions (Kappes et 

al., 2012; Pourghasemi et al., 2020; Pouyan et al., 2021).

Pakistan is a disaster-prone country in South Asia, having suffered about $18 billion in 

damage and losses over the past few decades (Ullah et al., 2020; Ali et al., 2021). Flash floods, 

debris flows, and landslides are the most prevalent natural disasters in mountainous Karakoram 

Hindukush in Pakistan (Wasson, 1978; Shaw, 2015; Ali et al., 2021; Hussain et al., 2021). As 
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a disaster-prone country with high exposure to hydrometeorological and geological disasters 

damages caused by floods, landslides, and debris flows are increasing due to climate change 

and uncontrolled development (Ullah and Zhang, 2020). Between 1970 and 2010, more than 

90,000 people have died due to disasters (Ullah et al., 2020; Ullah and Zhang, 2020). Disaster-

related losses have calculated more than $20 billion, including $10 billion in losses from the 

2010 flood and $5 billion from the 2005 earthquake and earthquake-induced landslides 

(Bronkhorst, 2012; Khan et al., 2021). During the monsoon season (July–September), heavy 

rainfall triggered flash floods, landslides, and debris flows in the Karakorum Hindukush region 

of Pakistan, resulting in casualties and property losses. Together, these risks cause serious 

damage to the road network and unfavorable environmental conditions, and endanger human 

health and well-being (Pourghasemi et al., 2019; Yousefi et al., 2020). Although it is 

challenging to prevent debris flows, flash floods and landslides, the distribution map of their 

occurrence can be drawn to identify probabilities and potential risks (Skilodimou et al., 2019; 

Yousefi et al., 2020; Azareh et al., 2021; Li et al., 2021). In this regard, multi-hazard probability 

mapping is a key step to determine the likelihood of potential hazards. Multi-hazard probability 

mapping is the first step of comprehensive risk assessment and quantification (Pourghasemi et 

al., 2019; Rahmati et al., 2019). In addition, probability mapping can help disaster managers 

and other authorities better prepare for and mitigate losses (Corominas et al., 2014; 

Pourghasemi et al., 2019).

The United Nations (UN) has adopted the term of multi-hazard in the framework of 

sustainable development goals and agenda 21 to reduce disaster risk (UNEP, 1992; 

Pourghasemi et al., 2020). Multi-hazard risk assessment is inseparable from the long-term 

sustainable development of society (Uitto and Shaw, 2016). Globally, the scale and frequency 

of multi-hazard damage are increasing (Lombardo et al., 2020). Policymakers and engineers 
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require knowledge on multi-hazard risk zones for site selection to support socio-economic 

development and sustainable management of natural resources (Bathrellos et al., 2017).

Although multi-hazard research has become more and more common in recent decades 

(Pourghasemi and Kerle, 2016; Skilodimou et al., 2019; Sanam et al., 2020), there are still 

challenges facing scientists in the 21st century (UN, 2002). Various methods have been used 

to assess the probability of multi-hazards using GIS and RS technologies (Ali et al., 2021; 

Rahman et al., 2021; Segoni et al., 2021). In addition, multi-criteria decision-making (MCDM), 

machine learning (ML), and hybrid machine learning approaches are also used to draw multi-

hazard maps in various parts of the world (Furlan et al., 2018; Mafi-Gholami et al., 2019; 

Skilodimou et al., 2019; Aksha et al., 2020; Cao et al., 2020; Lombardo et al., 2020; Nachappa 

et al., 2020; Pourghasemi et al., 2020; Yanar et al., 2020; Pouyan et al., 2021; Rahman et al., 

2021). ML methods are more suitable for finding data relationships between hazard and 

causative factors than traditional statistical methods and MCDM (Huang et al., 2020). However, 

with rapid advancement in research, it was found that traditional ML models directly classify 

the natural hazard data and fail to recognize hidden relationship that exists in the data, 

ultimately failing to further improve classification accuracy (Wang et al., 2019). 

To address this problem, another branch of ML known as Deep Learning (DL) has emerged 

as one of the best methods because it can solve the targeted problems more effectively than 

traditional ML methods (Wang et al., 2019). Precisely, DL approaches have advanced 

dramatically in recent years, particularly in image interpretation (Wang et al., 2020a; Azarafza 

et all., 2021). Besides, these may be useful in understanding the performance of multi-hazards 

susceptibility models because of their more sophisticated algorithmic structure (Dikshit et al., 

2021). However, there is a divergence of opinion regarding the selection of a suitable method 

for mapping multi-hazard prone areas, particularly in data-poor countries like Pakistan. 

Convolutional Neural Network (CNN) is a popular DL technique which has demonstrated 
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superior performance in many image processing tasks (Wang et al., 2019,2020a). Compared to 

traditional ML algorithms, the CNN framework contains convolutional and subsampling 

layers. As a result, CNN requires fewer parameters and allows more efficient mining of latent 

relationships in data (Yi et al., 2020). Specifically, CNN has achieved outstanding results in 

image classification due to convolutional and subsampling layers, which can effectively extract 

hidden information from an image (Wang et al., 2020a; Yi et al., 2020). In recent years, CNN 

has been used for single environmental hazard susceptibility mapping, i.e., floods, landslides, 

debris flows and forest fire susceptibility mapping, and has demonstrated higher predictive 

capabilities than conventional machine learning algorithms (Wang et al., 2019, 2020a; Zhang 

et al., 2019; Chen et al., 2020; Fang et al., 2020b; Youssef et al.,2022a,b). However, DL 

methods have not been used to explore the potential of improvements on multi-hazard 

susceptibility mapping.

This study aims to provide a regional multi-hazard (flash floods, debris flows, and landslides) 

susceptibility prediction framework based on CNN for the mountainous region district Shangla, 

eastern Hindukush, Pakistan. To the best of our knowledge, this is the first attempt to 

investigate the feasibility of CNNs with powerful prediction performance for multi-hazard 

susceptibility prediction in the study area of eastern Hindukush, Pakistan. To date, only a 

limited number of studies has been conducted to investigate multi-hazards, which is extremely 

evident in developing countries. The aim of this study is to address the gap in the literature. 

Therefore, it is considered beneficial for multi-hazard susceptibility modeling to implement the 

proposed method. Moreover, to evaluate the effectiveness of our CNN-based framework, we 

compare it with conventional LR and KNN models using several statistical measures. Notably, 

the proposed method can be used for any environmental hazard, not only the aforementioned 

three hazards. Thus, this study introduces a tool for the sustainable management of emergencies 

in pre-and-post-multi-hazards scenarios.
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2. Study area and available data 

2.1.  Study area 

As shown in Fig. 1, the study area is located in Shangla District, eastern Hindu Kush region of 

Pakistan, with an area of about 1586 km2, and in the tropical sub-humid zone (Hussain et al., 

2021). The study area's altitude ranges from 391 m in the south to more than 4000 m in the 

north; the highest peaks are Bera Charai and Chapere Sar, at 2850 m and 3590 m, respectively. 

During the summer monsoons, there is heavy rainfall and snowfall at high altitudes, and the 

average annual precipitation is between 1200 mm and 1600 mm (Atta-ur-Rahman and Shaw, 

2015; Hussain et al., 2021). Geologically, the area consists of rocks of various ages. The 

topography is the result of the collision of the Indian and Eurasian plates. The Hindu Kush 

Mountains and the Pamirs form most seismically active intermediate-depth seismic zone in the 

world. In addition, the area is composed of rocks of different ages, including Cretaceous rocks 

composed of granite and gneiss, Mesozoic rocks composed of mélange and marble green, Phyl 

rocks, Precambrian quartzite phyllite and schist, and Paleozoic rocks composed of schist and 

marble facies.

For decades, the study area has suffered from earthquakes, landslides, debris flows, flash floods, 

and many other environmental disasters, causing severe casualties and land degradation. Fig. 

2 illustrates field photos of landslide, flash flood, and debris flow in the study area.

2.2.  Multi-hazard inventories and causative factors

Hazard inventories are important in susceptibility mapping ( Ullah and Zhang, 2020; Rahman 

et al., 2021), and in establishing relationships between a hazard and variables that cause it 
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(Song et al., 2020). Based on the disaster reports of various government organizations and 

forest departments and non-governmental organizations, three types of hazards were 

considered in this study: landslides, flash floods, and debris flow. Flood and debris flow 

susceptibility assessment is very similar to the landslide susceptibility mapping (LSM) method. 

In terms of sampling, two sampling strategies have been widely used. The first method is to 

draw polygons from prominent steep slopes, and the second method is point sampling, where 

the sampling points are recorded at the site of the landslide occurrence (Dou et al., 2020). 

Although each sampling strategy has advantages and disadvantages, the main principle is that 

the sampling strategy applied should fit to the study area.

This study established a multi-hazard inventory of three hazards based on NDMA data, 

interpretation of multi-temporal high-resolution images from 2000 to 2020 using Google Earth, 

and field observations. In the Multi-hazard inventory map, sampling points typically represent 

areas affected by historical Multi-hazard (Pourghasemi et al., 2020). It should be noted that the 

debris flow and flood-affected areas were identified as sampling points for FSM in several 

previous studies (Pourghasemi et al., 2020; Ullah and Zhang, 2020; Wang et al., 2020a,b). 

According to the literature, the inventory was randomly divided into training and testing 

datasets. Among them, 70% of the data were used to train the model, and the remaining 30% 

data were used to verify the results.

According to the existing literature and the environmental characteristics of the study region, 

we selected 15 causative factors for analysis shown in Fig. 3 and Table 1, of which 12 were 

used to assess flash floods, 14 were used for debris flows and 13 were used for landslides. All 

topographic factors, namely elevation, slope, distance to rivers, aspect, plan and profile 

curvature, topographic wetness index (TWI), stream power index (SPI), and sediment 
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transportation index (STI), were derived from ALOS digital elevation model (DEM) data and 

a brief description of all causative factors is given below.

2.2.1 Elevation

Elevation is one of the most essential factors in assessing natural hazards (Aksha et al,.2020; 

Bui et al., 2020; Chen et al., 2020). Flood, landslide, and debris flow frequency can all be 

influenced by elevation. Flood water often inundates at low elevation, although debris flow and 

landslide risk are minimal at low elevation due to the gentle slope; nevertheless, susceptibility 

to debris flow and landslide is significant at medium and high elevation due to the gentle slope 

(Fig. 3a).

2.2.2 Slope

The slope angle significantly impacts on debris flow, flash flooding, and landslides  (Wang 

et al,.2020a,b; Li et al.,2021). Flooding is common in flat areas due to water inundation, and 

steep slope areas are more prone to slope destabilization, resulting in debris flow and 

landslides (Fig. 3b).

2.2.3 Profile and plan curvatures

Curvature is used to convey information about the topographical shape of a region (Oh and 

Pradhan., 2011; Das, 2019). The profile curvature specified the highest slope, and the plan 

curvature defined the contour curvature of a region (Fang et al., 2021) (Fig. 3c, d).  

2.2.4 Distance to streams

Distance to streams is another critical factor in estimating debris flow, flood and landslide 

(Khosravi et al., 2016; Chen et al., 2020; Mandal et al,.2021). Heavy rainfall areas adjacent to 

rivers exacerbate flooding due to water accumulation (Das., 2019). Stream erosion can 
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destabilize the slope and can alter landslide and debris flow by wetting low low-lying slopes 

(Chen et al., 2020) (Fig. 3e). 

2.2.5 Lithology and distance to faults

Lithological units and distance to faults are essential to define the debris flows and landslides 

in each location (Pourghasemi., 2016; Chen et al., 2020; Fang et al., 2021). The lithological 

map and fault lines were digitized from the 1:100,000 scale geological map of Khyber 

Pakhtunkhwa Province obtained from the Geological Survey of Pakistan, as shown in (Table 

2 and Fig. 3f, o).

2.2.6 The normalized difference vegetation index (NDVI) 

NDVI has been extensively used to assess the degree of vegetation development on slopes 

and its impact on runoff, infiltration, and weathering. Hence, NDVI is always a significant 

feature to reflect vegetation characteristics in a landslide, flash flood, and debris flow 

susceptibility mapping (Chen et al., 2017; Wang et al., 2020a; Fang et al., 2021). NDVI was 

derived from a sentinel-2 satellite image using the Eq. (1) in ArcGIS v.10.6,

                                                                 (1)NDVI =  
B8 ― B4
B8 + B4

Where, B4 is for the red band of the electromagnetic spectrum and B8 stands for the 

infrared band (Fig. 3g).

2.2.7 Rainfall

Rainfall is an essential trigger for all three hazards in the study area, and the summer 

monsoon has caused landslides, debris flows and flash floods in the past few decades. A rainfall 

map was created based on the average monthly rainfall of 3-gauge stations located in the study 
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region from 1981 to 2016 using the inverse distance weighted interpolation in ArcGIS 10.6 

(Ullah and Zhang., 2020) (Fig. 3h).

2.2.8 Distance to roads

The distance to roads significantly impacts natural hazards in mountainous areas 

(Pourghasemi et al., 2019). Road construction alters the slope conditions in mountainous 

regions, which may affect debris flow and landslide susceptibility (Pourghasemi and Kerle, 

2016; Pouyan et al., 2021). Distance to road was calculated from road network shapefile using 

Euclidean distance tool ArcGIS v.10.6 (Fig. 3j).

2.2.9 Stream power index (SPI)

SPI calculates the erosive power of groundwater based on an anticipated discharge, which 

causes toe erosion and river cutting (Wang et el., 2020a). SPI was calculated using Eq. (2)

                                                                             (2)SPI = 𝐴𝑠 × tan𝛽

where  denotes the specific catchment area in meters and  denotes the slope in degrees 𝐴𝑠 𝛽

(Fig. 3j).  

2.2.10 The Sediment Transport Index (STI)

STI is a method for calculating erosion and sedimentation rates (Rahman et al., 2021). This 

is one important factor in assessing flash floods, debris flow and landslide in areas where 

erosion and depositional processes are happening (Pham et al., 2020; Mandal et al., 2021; 

Rahman et al., 2021). In our study STI has no impacts on landslide so this factor was not used 

in landslide in our study, and is calculated by Eq. (3) (Fig. 3k).

                                                                 (3)STI =  ( 𝑎
22.13)0.6( sin𝛽

0.0896)1.3
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2.2. 11 Aspect 

In the case of landslides and floods, the aspect has proven to be a critical element (Chen et 

al., 2020; Pham et al., 2020; Fang et al., 2021). Aspects influence hydrological processes 

(evaporation, weather, plant, and root development), as well as meteorological events such as 

rainfall, sunshine, and dry winds, that influence landslide, debris flow and flood events (Ullah 

and Zhang 2020; Wang et al., 2020a) (Fig. 3l).

2.2.12 Topographic wetness index (TWI)

The TWI indicates the locations and sizes of water-saturated zones. This index is crucial for 

debris flow, landslides and floods since it can provide details about the humidity of various soil 

types (Khosravi et al., 2016b, Ullah and Zhang, 2020). Consequently, the concentration of 

moisture in the soil affects both infiltration and runoff. The TWI was calculated using Eq. (4),

                                                        (4)TWI = In (
𝛼

tan 𝛽)

Where α denotes the accumulation of flow around a point and β denotes the associated 

slope (Fig. 3m).

2.2.13 Landcover  

Land cover directly or indirectly affects evapotranspiration, infiltration, runoff generation, 

and sediment dynamics, and significantly impacts the functions of hydrological and 

geomorphological dynamics (Chen et al., 2020; Ullah and Zhang., 2020Azarafza., 2021). A 

landcover map of 2020 with 30-m resolution was downloaded from www.globallandcover.com 

(Fig. 3n).

http://www.globallandcover.com
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It should be noted that avoiding the uncertainties associated with different spatial resolutions 

is very challenging (Fang et al., 2020b). Therefore, to be consistent with other causative factor 

maps and improve processing and storage efficiency, all the factors have been resampled with 

a spatial resolution of 12.5 m (Mandal et al., 2021).

3. Methodology 

3.1.  Factor screening

3.1.1. Multicollinearity analysis

To check the correlations between the causative factors, the Pearson correlation coefficient 

(PCC) was used. PCC is a statistical linear correlation coefficient that is commonly used to 

determine the linear relationship between variables (Kalantar et al., 2019). The PCC between 

two sets of samples Ai ( i = 1, 2, 3,..., n) and Bj (j = 1, 2, 3,..., n) can be represented as Eq. (5): 

                                                                (5)             PCC =  
∑𝑛

𝑖 = 1(𝑎𝑖 ― 𝑎)∑𝑛
𝑖 = 1(𝑏𝑗 ― 𝑏)

∑𝑛
𝑖 = 1(𝑎𝑖 ― 𝑏)2∑𝑛

𝑖 = 1(𝑏𝑗 ― 𝑏)2
   

where ai and bj are variable values for Ai and Bj, and  are the average of Ai and Bj, 𝑎 𝑏

respectively. In general, the higher the absolute value of the PCC, the greater the risk of 

multicollinearity between variables (Jiang and Chen, 2016). The PCC value above 0.70 

indicates multicollinearity, meaning that the input variables have a common contribution. In 

this case, the variable should be removed from the training procedure (Kalantar et al., 2020). 

3.1.2. Mean decrease Gini 

We used a random forest algorithm using the mean decrease Gini (MDG) to determine the 

importance of causative variables in the incidence of environmental hazards in the study area. 
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This index is very reliable in assessing the significance of influential factors, particularly when 

environmental factors are associated (Nicodemus, 2011). The MDG is computed as the Gini 

impurities decreasing from a particular factor standardized by trees (Calle and Urrea, 2011; 

Pouyan et al., 2021).

3.2.  Multi-hazard spatial prediction

The selection of the terrain mapping unit (TMU) for studies of hazard susceptibility is 

critical (Wang et al., 2019a). Four different terrain mapping units are widely used in the 

literature, namely slope terrain unit (STU), geo-hydrological terrain unit (GHTU), census 

terrain unit (CTU), and grid cell terrain unit (GCTU) (Zêzere et al., 2017). Grid cells are often 

used to model natural hazards susceptibility mapping, and GCTUs divide the study area into 

squared areas and assigns a value to each causative factor. In this study, we used GCTU as a 

mapping unit, after defining TMU, all the causative factors were resampled to the same grid 

size of 12.5 m ×12.5 m.

Fig. 4 depicts the entire workflow of the proposed framework, including the following main 

steps: (i) Preparation of multi-hazard inventories and causative factors; (ii) standardization and 

multicollinearity assessment of multi-hazard causative factors; (iii) CNN model construction 

and development of multi-hazard susceptibility prediction maps; (iv) validation and 

comparison and (v) multi-hazard susceptibility map 

3.2.1. Convolutional Neural Network (CNN)

CNN is a well-known DL algorithm that can perform image processing (Wang et al., 2020b). 

It is basically a multi-layer feed-forward neural network capable of extracting useful 

information from relevant data (Wang et al., 2020a). The CNN architecture comprises of 

convolutional layers, pooling layers, and fully connected layers (Yamashita et al., 2018). The 
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convolutional layer is made up of multiple convolution kernels that extract complex and 

relevant features from the input data (Canziani et al., 2016; Mallat, 2016). A nonlinear 

activation function usually follows each feature map. To embed nonlinearity into the system, 

the activation function of rectified linear unit (ReLU) is considered in the convolutional layer. 

The convolution process extracts a lot of information from the input layer and enables weight 

sharing (Wang et al., 2019).

The pooling layer is generally used after the convolutional layer, and the dimension of the 

feature map is reduced by the down-sampling algorithm, thereby avoiding over-fitting and 

reducing the computational costs. The fully connected layer functions as a classifier and has 

the same structure as the traditional fully connected network. They are usually used to generate 

the final combination of nonlinear features to predict the end of the network architecture. Based 

on these basic layers, various extended CNN architectures have been proposed and applied in 

many fields, such as VGG (Simonyan and Zisserman, 2014), Google Net (Szegedy et al., 2015), 

etc. Moreover, the CNN algorithm has been successfully used in several environmental hazard 

studies (Wang et al., 2019, 2020a;  Zhang et al., 2019; Mandal et al., 2021). 

To build a suitable CNN algorithm, one should be pay close attention to hyperparameter 

tuning (LeCun et al., 2015). In particular, hyperparameters such as the size of the convolution 

and pooling layers, activation and loss functions, optimizers and learning rates require special 

attention (Fang et al., 2020a). The convolution and pooling functions are defined by the size of 

the convolution and pooling layers (Choi et al., 2017). The activation procedure fully controls 

the estimation of nonlinear operations (Audebert et al., 2019). The loss function in the model 

mainly serves to evaluate the degree of dispersion between the actual and predicted results 

(Chen et al., 2014; Ranjbar et al., 2018). The optimizer continuously updates the input variables 

(Wang et al., 2019). This study develops a one-dimensional CNN (1D-CNN) to predict multi-
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hazards (flash floods, landslides, and debris flow) and the architecture of the proposed 1D-

CNN model was shown in Fig. 5.

3.2.2 Logistic regression

Logistic regression (LR) is a sophisticated statistical technique for assessing dependent and 

independent variables (Ghosh and Maiti., 2021). Using this model, the data does not necessarily 

be normal and the variables can be either categorical or continuous (Goyes-Peñafiel and 

Hernandez-Rojas., 2021).  In this technique, individual susceptibility maps were constructed 

considering a dependent variable (e.g., flash floods, landslides, and debris flows) with 1 

indicating hazard locations and 0 indicating non-hazard locations. Positive and negative 

coefficients of the LR indicate their influence on multi-hazards and their role in their formation 

(Ghosh and Maiti., 2021; Goyes-Peñafiel and Hernandez-Rojas., 2021). Precisely, a positive 

coefficient implies that the variable is present in the area and enhances the likelihood of 

standalone hazard, whereas a negative coefficient shows that hazard is adversely associated to 

that variable. In the model-building process, the sig (p) value of the causative factors is < 0.05, 

indicating they are statistically significant, whilst the value > 0.05 indicates statistically 

insignificant (Ghosh and Maiti., 2021). The LR approach is mathematically expressed as Eqs. 

(6)–(8)  (Ahmad et al., 2021).

(6)𝑝 = ln  (
𝑝

1 ― 𝑝)

(7)𝑝 =
1

1 + 𝑒 ―𝑍

             (8)𝑍 = 𝐼0 + 𝐼1 × 𝐶1 + 𝐼2 × 𝐶2 + 𝐼3 × 𝐶3 +… + 𝐼𝑛 × 𝐶𝑛

where  is the probability of the presence of the standalone hazard or non-hazard,  is the 𝑝 𝑍

linear combination,  represents the conditioning factors,  (i=0, 1, 2,…, n) are the 𝑛 𝐶𝑖
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conditioning factors,  is the intercept of LR model, and  (i=0,1,2,…, n) are the LR 𝐼0 𝐼𝑖

coefficients for the independent variables.

3.2.3 K-Nearest Neighbor 

K-nearest neighbor (KNN) has been widely used as a benchmark classifier in the field of 

artificial intelligence (AI) for quite some time now (Sun et al.,2021).  The KNN is a simple 

nonparametric method for classifying (Avand et al., 2019). KNN categorizes data by 

comparing a given test set with a set of training data that is similar to it (Avand et al., 2019). 

The simplicity of the nearest-neighbor classification system is one of its main advantages. 

Choosing the number of neighbors, k, and the distance metric to be used are the only two 

options available to the user. Further details on the KNN algorithm can be found in Abraham 

et al. (2021) and  Hou et al. (2021).

3.3  Evaluation of model performance

Model performance is evaluated to determine the multi-hazard model’s precision and 

predictive abilities. We compute the Area under the curve (AUC) based on receiver operating 

characteristic (ROC) curves that have been widely used in several classification tasks (Fang et 

al., 2020b). In addition, the models are further examined by other statistical metrics, i.e., OA, 

R2, MAE, and RMSE  by Eqs. (9)–(12) (Fang et al., 2020a; Rahman et al., 2021),

                                                                             (9)             OA =  
TP + TN

TP + FP + TN + FN

where TP, FP, TN and FN mean true positive, false positive, true negative and false negative, 

respectively.

                                                                                        (10)𝑅2 = 1 ―
∑𝑁

𝑖 = 1(𝑃 ― 𝐴)2

∑𝑁
𝑖 = 1(𝐴 ― 𝐴¯)2
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                                                                                  (11)MAE =
1
𝑁∑𝑁

𝑖 = 1|(𝑃 ― 𝐴)|

                                                                                       (12)RMSE =
∑𝑁

𝐼 = 1(𝑃 ― 𝐴)2

∑𝑁
𝑖 = 1(𝐴 ― 𝐴¯)2

where  represents the number of observations, P, A and A¯ represent the predicted value, the 𝑁

actual value and the mean of the actual value, respectively.

3.4  Multi-hazard probability mapping 

The CNN-based flash flood, landslide and debris flow hazard maps are combined to 

construct a multi-hazard map (MHM), which is grouped into four categories using the jeans 

natural break classification method: low, moderate, high and very high. According to a review 

of the literature, susceptibility classes of low and moderate were considered low hazard (0) 

conditions, while susceptibility classes of high and very high were considered high hazard (1) 

conditions (Pourghasemi et al,. 2020; Yousefi et al., 2020; Rahman et al., 2021). To make the 

integration easier, we reassign the four class maps created for each hazard to two classes: 0 and 

1. Class zero is low to moderate, and 1 represents high to very high susceptibility. Lastly, using 

ArcGIS (v. 10.6), all three hazards (flash flood (FF), landslide (LS) and debris flow (DF)) were 

combined using the Eq. (13),.

                                                                                (13)MHM = FF + LS + DF

Based on the likelihood of multi-hazard occurrence, the final multi-hazard susceptibility map 

is classified into eight categories: no hazard, flash floods, landslides, debris flows, flash floods 

and debris flows, flash floods and landslides, landslides and debris flows, and all hazards.
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4. Results 

4.1.  Contributions of causative factors

Fig. 6 shows the multicollinearity results of different causative factors in flash flood, 

landslide and debris flow hazards. According to the Pearson correlation coefficients (PCC) 

(<0.70), there was no multicollinearity in the selected causative factors for multi-hazard (flood, 

landslide and debris flow).

We used the random forest model to assess the significance of causative factors of multi-

hazards (flash flood, debris flow and landslide). The results demonstrate that the factors of the 

slope, elevation, rainfall, distance to road, distance to stream, and TWI were the most important 

factors for predicting debris flow, as shown in Fig. 7a. For landslide hazard, MDG shows that 

slope, TWI, rainfall, elevation, distance to fault, and plan curvature were the most influential 

factors in predicting landslides, as shown in Fig. 7b. Finally, the most critical causative factors 

in flash flood hazard were slope, distance to stream, TWI, distance to roads, SPI, and elevation, 

as shown in Fig. 7c.

4.2.  Single Hazard maps 

In this subsection, Convolutional Neural Network (CNN) was used to produce flash flood, 

landslide, and debris flow hazard susceptibility maps individually, as shown in Fig. 8. To 

construct the CNNs, all the hyperparameters were optimized using the trial-and-error process 

for flash floods, landslides, and debris flow, as demonstrated in Table 3. For the spatial pattern 

of risk estimation, it is important to classify the risk indices of landslides, flash floods, and 

debris flows into different categories (Tehrany et al., 2015). In this study, the Jenk’s natural 

break method (Ullah and Zhang, 2020; Wang et al., 2020a,b) was used to classify the risk levels 
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into low, moderate, high, and very high. In the case of landslide hazard, it can be easily 

observed from Figs. 8a and 9a that approximately 5.32%, 13.16%, 14.56%, and 36.97% of the 

study area had low, moderate, high, and very high susceptibility, respectively. Flash flood 

hazard map shows that about 35.32%, 13.16%, 14.56%, and 36.97% of the study area had low, 

moderate, high, and very high susceptibility, respectively (Figs. 8b and 9a). In debris flow 

hazard, approximately 46.77%, 18.11%, 13.97%, and 21.15% of the study area had low, 

moderate, high, and very high susceptibility, respectively (Figs. 8c and 9a).

4.3.  Multi-hazard susceptibility mapping

To generate a multi-hazard susceptibility map, all three susceptibility maps of selected 

hazards generated by CNN were combined using Eq. (13), as shown in Fig. 10. We can observe 

from Fig. 9b that 37.64% of the study area was safe and had not suffered any hazard. In contrast, 

16.18 % of the total area was vulnerable to flash flood hazards, 4.88% of the area was 

vulnerable to debris flow hazards and 30.68% of the total area was vulnerable to landslide 

hazards in the study area, as shown in Fig. 9b. Meanwhile, 0.27%, 7.05%, and 3.13% of the 

study area were susceptible to at least two types of hazards: flash floods and debris flows, 

debris flows and landslides, and flash floods and landslides, respectively Figs. 9b and 10. 

Finally, a total of 0.17% of the study area were determined to be prone to all hazards, i.e., 

landslides, flash floods, and debris flows (Figs. 9b and 10).

4.4.  Validation and comparison

To check the accuracy of our CNN models, we used several statistical indices and compared 

CNN models with conventional models LR and KNN, as shown in Table 4. The CNN model 

outperformed the conventional LR and KNN in predicting all three hazards. The CNN model 
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used for predicting flash floods has the highest overall accuracy of 96%, followed by LR and 

KNN with 94% and 84%, respectively. Also, the CNN model used for predicting debris flows 

has the highest overall accuracy of 94%, followed by LR and KNN with 90% and 87%, 

respectively. The CNN and LR models used for predicting landslides have the same overall 

accuracy of 90%, which is 10% higher than that of KNN. 

Similarly, we notice that similar trends in all other evaluation indices and the CNN model 

can demonstrate the best performance in susceptibility prediction, followed by LR and KNN. 

Fig.11 depicts the ROC curves of the three models. In all three hazards, CNN is superior to the 

conventional machine learning models of LR and KNN. Specifically, CNN achieved the 

highest AUC value for flash floods (0.98) (Fig, 11a), landslides (0.94) (Fig. 11b), and debris 

flows (0.98) (Fig. 11c).

5. Discussion

Over the past few years, multi-hazard assessments of environmental hazards have become 

increasingly important, underscoring the need for a more comprehensive framework 

(Pourghasemi and Kerle, 2016; Sanam et al., 2020). Despite the increased interest in multi-

hazard susceptibility modeling, independent assessments are still conducted by communities 

concerned with the topic. To achieve this, various methods have been used to analyze multi-

hazards globally (Javidan et al.,2021). Specifically, we propose a method that makes it easier 

to identify areas that are simultaneously threatened by multiple hazards (e.g., flash floods, 
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landslides, and debris flows) in the context of this study. We achieve this goal by combining 

deep learning with GIS.

Initially, the multi-collinearity of multi-hazard causative factors was assessed through PCC. 

In addition, a random forest algorithm was used considering the MDG method to determine 

the importance of the hazard-related causative factors. As shown in Fig. 6, there is no 

multicollinearity in the causative factors of flash floods, landslides, and debris flow. Meanwhile, 

the MDG results demonstrate that slope angle, distance to stream, and TWI were the most 

important factors in predicting flash floods, as shown in Fig. 7. Previous studies (Pourghasemi 

et al., 2020; Wang et al., 2020a) can support these observations because flooding is more likely 

to occur in flat areas, with greater accumulation of discharge and less runoff (Ullah and Zhang, 

2020; Rahman et al., 2021). The heavy downpours significantly increased the flow and 

sediment deposition in the areas near the river basin and increased the possibility of flooding 

in these areas (Pourghasemi et al., 2019; Yousefi et al., 2020). In addition, TWI measures flow 

accumulation and a higher TWI value means a higher risk of flooding (Khosravi et al., 2016; 

Das, 2019; Costache et al., 2020). The areas most prone to flooding are close to rivers, with 

lower elevations and less slopes, and are usually used for agricultural or residential purposes 

(Khosravi et al., 2019). As for landslides, the most important factors were slope, elevation, 

rainfall, and distance to roads. The occurrence of landslides increases as the elevation and the 

slope are increased (Pourghasemi et al., 2019). Rainfall is also the main landslide triggering 

factor and sudden and intense rainfall or snowmelt can cause movement (Wang et al., 2019). 

TWI measures the dryness and wetting of soil moisture, which is a main cause of landslides 

(Fang et al., 2020b). The most important factors affecting debris flow risk were slope, elevation, 

rainfall, and distance to roads. Kritikos and Davies (Kritikos et al., 2015) pointed out in 2015 

that on steep slopes, the downslope factor of gravity is greater, resulting in an increase in the 

shear stress of the slope and makes the surface material of the slope more susceptible to damage, 
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and provides a favorable environment for the occurrence of debris flow. Rainfall is also an 

important trigger of debris flow. Debris flows are usually associated with heavy precipitation 

or snowmelt periods and will exacerbate the flooding effects that often accompany such events 

(Marra et al., 2017; Wu et al., 2019). More precisely, according to Chousianitis et al. (2016), 

the effects of earthquakes and rainfall on slope stability vary by season. Precipitation may 

increase the risk of landslides in summer season as soils become saturated, thereby reducing 

slope stability. Also, flooding is more likely when natural or man-made drainage systems are 

overwhelmed by prolonged or heavy rainfall.

Understanding the interrelationships between different hazards is a significant challenge 

(Kappes et al., 2010). To the best of our knowledge, there is no research on using CNN, a deep 

learning model to carry out multi-hazard susceptibility mapping in the present test site. The 

practicality of CNN was validated in this study for multi-hazard susceptibility prediction 

compared to conventional LR and KNN models. Several accuracy indices were used to 

evaluate CNN multi-hazard models (flash floods, landslides, debris flow) effectiveness and 

predictive capacity. The experimental results demonstrate that CNN revealed the highest 

accuracy in mapping the susceptibility of flash floods, landslides, and debris flows at the test 

site (Table 4). CNN model was superior to the conventional machine learning LR and KNN 

models in predicting flash floods, debris flows, and landslides. The CNN model is considered 

an excellent natural hazard modeling tool around the world (Chen et al., 2014; Wang et al., 

2019, 2020a; Zhang et al., 2019; Bui et al., 2020) due to its excellent results and higher 

prediction accuracy for spatial prediction of natural hazards. Machine learning methods such 

as LR and KNN still cannot be ignored, though CNN provides an accurate spatial prediction 

of flash floods, landslides, and debris flows. It is known that CNN and machine learning 

methods have achieved high accuracy in remote sensing, geoscience, and natural hazards 

research on a global scale (Avand et al., 2019; Roy and Saha, 2019; Wang et al., 2019). 
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However, special consideration must be given to the interpretation of their results. The 

performance of a CNN model is governed by its architecture, including the structure of training 

data, the amount of the input data, activation function, and convolutional and pooling layers 

(Wang et al., 2019; Zhao et al., 2020). Using trial and error to optimize the parameters of CNN, 

it is possible to improve the accuracy of the algorithm. 

Recently, Wang et al. (2019, 2020a) used different CNN structures of 1D-CNN, 2D-CNN 

and 3D-CNN to perform landslide and flood susceptibility and compared the results with 

machine learning methods. The results confirmed that CNN is better than conventional 

machine learning models. They also proposed that integrating CNN with other conventional 

machine learning classifiers can improve prediction results than the CNN model alone. Mandal 

et al. (2021) conducted a study on landslide susceptibility in India and stated that performance 

of CNN is more effective than machine learning methods (such as ANN, RF and bagging). 

Pham et al., (2020) used CNN and RF Random subspace to generate a landslide susceptibility 

map in the mountainous region of Vietnam, and CNN demonstrated a prediction accuracy of 

0.88%. In this study, CNN has achieved a prediction accuracy of 0.98%, 0.97%, and 0.94% 

using the validation data sets of flash floods, landslides and debris flow, respectively (Table 4), 

indicating that the highly accurate multi-hazard susceptibility map of district Shangla, eastern 

Hindu Kush Pakistan can be obtained. Our results are consistent with previous studies that 

CNN performs better prediction in environmental hazard susceptibility prediction (Pham et al., 

2020; Mandal et al., 2021).

The CNN prediction maps for flash floods, landslides and debris flows were combined to 

produce a multi-hazard susceptibility map shown in Fig.9. The multi-hazard susceptibility map 

shows that about 37.57% of the study area is not vulnerable to any hazard. The remaining 62.43% 

of the study area is susceptible to one or more hazards of which 0.18% of the total area was 

exposed to all three hazards, as shown in Fig. 10b. 
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Most studies are inconsistent in spatial resolution of multi-hazard dependent variables 

(Catani et al., 2013; Costache et al., 2019; Rahman et al., 2021), which is the main limitation 

of the present study. To avoid the uncertainties associated with different spatial resolutions and 

to improve processing and storage efficiency, all factors have been resampled (Fang et al., 

2020b). DL with high-resolution environmental factors may extract more sophisticated 

information about the hazard and its surroundings (Ma et al., 2019), which could be very useful 

in understanding the multi-hazard situation. However, high spatial resolution factors like 

DEM and its derivatives may not improve the performance of natural hazard susceptibility 

mapping, and finding the optimal resolution needs a series of experiments (Merghadi et al., 

2020).  The second limitation of this study is that we only selected landslide, debris flow, and 

flash flood hazards in the study area based on data availability and disaster information. Other 

hazards like glacier avalanches and forest fires are also present in the study area. A 

comprehensive multi-hazard susceptibility should account for each hazard present in the study 

area, but a lack of data restricts us to the subset of hazards.

Furthermore, we only selected static causative factors for multi-hazard susceptibility 

prediction and they perform well in describing historical hazards in the region but unplanned 

urbanization and climate change significantly changing the environment in Hindu Kush 

Pakistan which may reshape the distribution of future hazards (Eckstein et al., 2021). 

Especially, Pakistan is one of the most affected countries affected by climate change (Eckstein 

et al., 2021) and it is expected to increase the appearance of multiple hazards in mountain areas 

of Hindukush Pakistan (Allan et al., 2021; Eckstein et al., 2021). As a result, future studies will 

focus on the potential impact of climate and land use/land cover change on multi-hazard  using 

different deep learning models like CNN 2D, CNN 3D, RNN and DNN etc.

Despite the limitations, our study presented a robust framework for multi-hazard 

susceptibility prediction in complex topographic and climatic regions of eastern Hindukush, 
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district Shangla, Pakistan. We believe our findings will help in multi-hazard risk management. 

Specifically, authorities can use our multi-hazard susceptibility map by the CNN model to 

identify and rank susceptible areas. 

Finally, the proposed method is also applicable to other environmental hazards, such as 

glacier avalanches, land subsidence, and forest fire susceptibility. Based on the observations, 

policymakers can develop effective interventions to mitigate the impact of multi-hazards on 

people, particularly those living in disasters. 

Even though individual hazard susceptibility maps are important, multi-hazard susceptibility 

maps allow for spatial and quantitative analysis of commodified information occurring within 

a site (Pourghasemi et al.,2019). Indeed, it offers authorities and policymakers estimates of 

where to focus and respond after disasters, allowing them to gain a more complete perspective 

of how multi-hazards are likely to occur (Marin et al.,2021). Besides, the obtained multi-hazard 

map can help emergency response agencies conduct their operations more efficiently in the 

pre-disaster and post- disaster phases. We should emphasize the relevance of hazard 

communication with stakeholders outside academia (Graham et al., 2022). Geoscientists, 

hydrologists, and related researchers may be able to conclude that multi-hazard maps are more 

complex. However, they can be challenging for policymakers, emergency personnel, and others 

who make decisions to comprehend information (Rahman et al., 2021).  To effectively convey 

multi-hazard information to non-experts, maps should be constructed as simply as possible to 

avoid misunderstanding and help individuals quickly identify the locations of different levels 

of potential hazards provided on the map (Javidan et al., 2021). This can be done by providing 

accompanying documents that provide a brief description of the processes that may lead to the 

appearance of things considered vulnerable, as well as pictures and videos of the damage 

caused by these things, so that people can get a general idea about what they can do (Graham 
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et al.,2022).  We therefore stress the importance of multi-hazard psychology (e.g., using 

photographs of past disasters), information presentation (e.g., accessible to non-technical and 

non-experts), and appropriate presentation schemes for multi-hazard countermeasures 

(Karpouza et al., 2021).

6. Conclusions 

Flash floods, debris flows, and landslides frequently occurred in the Hindukush area, which 

is vulnerable to multiple hazards. Therefore, a comprehensive method is needed to consider 

multiple hazards and their individual and combined causative factors. In this regard, this study 

aims to present a deep learning framework to predict the susceptibility of multi-hazard in the 

Shangla district, eastern Hindukush, Pakistan. The resultant multi-hazard map shows that 

approximately 37.57% of the study area can avoid the possibility of all the three hazards, while 

about 62.43% of the study area is prone to multi-hazards (one or more hazards). Nevertheless, 

the proposed algorithm is feasible and applicable in mapping multi-hazards. The CNN-based 

algorithm can improve the ability to predict the risk of multi-hazards and increase the 

awareness of multiple disasters. Local authorities can use the multi-hazard maps constructed 

in this study to establish multi-hazard mitigation and emergency evacuation management plans, 

and serve as insurance requirements for any property. In addition, it can be applied to similar 

geo-environments, especially in mountainous areas with sparse data. 
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Figure Captions

Fig. 1. Location of the study area.

Fig. 2. Field photos of different hazards. (a) Landslide, (b) flash flood, (c) debris flow.

Fig. 3. Multi-hazard causative factors considered in this study.

Fig. 4. Schematic flowchart of the study.

Fig.5. Landslide susceptibility mapping using the CNN architecture.

Fig. 6. Pearson correlation coefficients among multi-hazard causative factors: (a) flash flood, 

(b) landslide and (c) debris flow. ASP: aspect, DR: distance to road, DS: distance to stream, 

EL: elevation, GEO: geology, LULC: land cover, NDVI: normalized difference vegetation 

index, PFC: profile curvature, PC: plan curvature, RF: rainfall, SL: slope, SPI: stream power 

index, STI: sediment transport index, TWI: topographic wetness index, DF: distance to fault.

Fig.7. Multi-hazard variable importance by RF: (a) debris flow, (b) landslide and (c) flash 

flood. 

Fig. 8. Single hazard susceptibility maps. (a) LSM_CNN: landslide susceptibility map by 

CNN, (b) FFSM_CNN: flash flood susceptibility map by CNN and (c) DFSM_CNN: debris 

flow susceptibility map by CNN.
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Fig. 9. (a) Individual hazard distribution based on CNN and (b) proportion of the study area 

vulnerable to single and multi-hazard.

Fig. 10. Multi-hazard susceptibility map.

Fig. 11. ROC curve for (a) flash flood, (b) landslide and (c) debris flow by CNN, LR and KNN, 

respectively.

Table captions

Table 1. Multi-hazard causative factors for each hazard.

Table 2. Geological age and formation of the study area.

Table 3. Hypermeters settings of the CNN models.

Table 4. Validation of model results using different statistical measures.

Factors Flash flood Landslide Debris 
flow

Slope angle          
Elevation          
Plan curvature          
Profile curvature -       
Geology          
Distance to faults -    -
Distance to roads          
Distance to streams          
SPI    -    
STI    -    
TWI          
NDVI -       
LULU          
Mean annual rainfall          
Aspect          
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Abbreviation Age Unit name Lithological units

CG Cretaceous Swat and Mansehra Granite 
Complexes Undivided Granites and gneiss

ISM Mesozoic Indus Suture Melange Mélange and marble green
KK Cretaceous Kamila amphibolite Calc Alkaline metabasal

MM Mesozoic Kashala, Nikanai ghar and Saidu 
Formations Undivided Schist, Marble and phyl

PCB Precambrian Besham and Kotla Complexes 
Undivided Gneiss

PCQ Precambrian Tanawal Formation and Manglaur 
Formations Undivided Quartzite and schists

PCS Precambrian Korara Complex and Gandaf 
Formations Undivided phyllite,schist,barbl

Parameters
CNNs Convolutional 

kernel size
Max pooling 
kernel size

Number 
of epochs

Activation 
function

Loss 
function optimizer Learning 

rate

CNN

LSM
3 × 1 2 × 1 200 ReLu

Categorical   
cross 

entropy
AdaGrad 0.01

CNN

FFSM
3 × 1 2 × 1 150 ReLu

Categorical   
cross 

entropy
AdaGrad 0.05

CNN

DFSM
3 × 1 2 × 1 50 ReLu

Categorical   
cross 

entropy
AdaGrad 0.009

Validation using test data set
Disaster type Model

R2 MAE RMSE OA AUC

Flash CNN 0.85 0.05 0.19 0.96 0.98

Flood LR 0.83 0.1 0.21 0.94 0.97

 KNN 0.69 0.2 0.28 0.84 0.95

CNN 0.65 0.15 0.3 0.9 0.94

LR 0.6 0.23 0.32 0.9 0.94Landslide

KNN 0.38 0.32 0.39 0.8 0.86

Debris CNN 0.78 0.11 0.23 0.94 0.98
flow LR 0.63 0.19 0.3 0.9 0.93

 KNN 0.61 0.23 0.31 0.87 0.95
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Highlights 

 First-hand multi-hazard susceptibility mapping framework based on Convolutional 

Neural Network. 

 Evaluation of flash floods, landslides, and debris flows.

 62.57% of the study area is prone to multi-hazards, of which 0.18% are prone to three 

main hazards.
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