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A B S T R A C T   

This study proposes a novel approach to predict missing shear sonic log responses more precisely and accurately 
using similarity patterns of various wells with similar geophysical properties, which is important in decision 
making and planning of hydrocarbon exploration. Deep Neural Network (DNN) along with the similarity metrics 
such as Jaccard and Overlap similarities are employed to examine the relationship between the wells. Further, 
dimensionality reduction techniques including Multi-Dimensional Scaling (MDS) and well-ranking process are 
applied to extract common geophysical responses of the wells. A higher response indicates the existence of a 
strong similarity. This can also be verified by the superimposed of well log data. The potential benefits of our 
novel method are following; (a) it does not follow the zone-by-zone prediction of the missing logs such as rock 
physics methods, (b) it outputs the uncertainties facilitated that is by the least-squares method. Having the 
potential of demonstrating shear sonic log prediction in hydrocarbon-bearing zones, which cannot be precisely 
predicted by the Greenberg-Castagna method that only works in brine-saturated rocks, this approach will provide 
improved accuracy, where shear sonic logs are missing and need to be predicted for geomechanics, rock physics, 
and other applications.   

1. Introduction 

Contemporary computational techniques have proven quite benefi-
cial in estimating unknown parameters such as facies (Ashraf et al., 
2019; Bestagini et al., 2017), faults and fractures (Ashraf et al., 2020a; 
Wu et al., 2019), and petrophysical logs using rock physics models (Ali 
et al., 2020; Li et al., 2020; Ali et al., 2019). Amongst them, deep ma-
chine learning has attained substantial popularity for its capability to 
accurately estimate the shear wave velocity using the petrophysical logs 
(Anemangely et al., 2019; Weijun et al., 2017). It is of supreme impor-
tance to precisely measure the shear wave velocity because it plays an 
essential role in predicting the geology of an area through various ways 
(Chen et al., 2018; Tong et al., 2013; Tonni and Simonini, 2013). It is 
prevalent in the oil and gas industry during the logs recording procedure 
that different kinds of logs could be missing in some wells, this could be 
due to many reasons such as tool failure during drillings and wellbore 
instability (Geng and Wang, 2020). It could be costly to run logging tools 

in those wells to get these missing log responses again, such as density, 
shear sonic, and sonic logs. In such cases, the correlate similarity 
approach plays the most crucial role in predicting missing logs accu-
rately because it follows the patterns of the reference log from the sur-
rounding well logs to account for stratigraphic variations to predict the 
log of interest and geology of an area. 

Different empirical methods have been employed to estimate the 
missing well logs: Gardner et al. (1974) provided a reasonable empirical 
data drive equation related to density and sonic for brine-saturated rock 
types. Smith (2007) and Faust (1953) methods provided an interval 
empirical base about the relations between sonic and resistivity logs. 
Greenberg and Castagna (1992) and Castagna et al. (1985) proposed 
empirical relationships for different minerals to estimate the sonic shear 
curve from the compressional sonic curve. 

Likewise, the idea of Machine Learning (ML) to deal with these 
problems by predicting missing well log data was also employed by 
some researchers. Verma et al. (2014) proposed a Visibility Graph 
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Similarity (VGS) and Synchronization Likelihood (SL) methods taking 
porosity and gamma-ray (GR) log responses as a reference to measure 
the correlation similarity among the diverse wells. Akkurt et al. (2018) 
designed an unsupervised outlier detection algorithm that could identify 
the outliers in density and sonic logs and determine the footmark of a 
well from an arbitrary number of logs. Similarity metrics can be used to 
compare wells geometry based on their geophysical footmark, and 
rebuilt density and sonic logs with uncertainty estimates. Bader et al. 
(2018) proposed a technique to predict missing logs by correlating a 
similar petrophysical log response from surrounding wells. Freire et al. 
(2002) established a semiautomatic algorithm for the correlation of 
statistical stratigraphic of well logs. It comprises of a combined esti-
mation of the correlation between shrink or stretch and shift, located in 
the selected window, and cannot compare a set of logs at the same time. 
Al-Anazi and Gates (2010) predicted permeability distributions and 
classified electrofacies in highly heterogeneous sandstone reservoirs 
using the nonlinear Support Vector Machine (SVM) technique. There are 
plenty of other rock physics-based models according to the unconven-
tional and conventional settings of the reservoir to produce a suitable 
prediction of logs, nevertheless, they are all interval to interval-based, 
dependent on the lithological unit, and require human time and exper-
tise in their calibration. 

This paper introduces a novel approach to help predict missing shear 
sonic log by using Machine Learning (ML) based similarity algorithms 
and Deep Neural Network (DNN). The novel approach uses similarity 
patterns of various wells with similar geophysical properties to predict 
missing log responses precisely and accurately. This approach analyzes 
the prediction of missing logs and will produce shear sonic logs pre-
diction accurately from essential logs. We provide an example from the 
benchmark dataset where a complete shear sonic log is predicted and 
compared with both the original shear sonic log and the outcome of a 
conventional method for estimating missing shear sonic logs. 

This study uses data of five wells of Lower Goru Formation in the 
Middle Indus Basin, Pakistan: an area composed of a continuous 

formation of thin shale and sand layer intercalations (Ashraf et al., 
2019). The identification of the mineralogy is quite challenging due to 
the heterogeneous nature of the geological formations in the Lower Goru 
Formation (Ashraf et al., 2020a; Ehsan and Gu, 2020). Several authors 
have addressed the issue of reservoir heterogeneity by utilizing modified 
approaches within the Lower Goru Formation (Ashraf et al., 2020b; 
Ehsan et al, 2018, 2019). All logging data obeys the depositional envi-
ronment similarity which is acquired from seismic and well logs data. 
The recording of well logs data at equivalent intervals of depth can also 
be deemed as time samples, because of minimal heterogeneities in the 
relationship of age-depth. 

2. Methods 

2.1. Well similarity analysis 

The concept of characterization of petrophysical response for each 
well by their similarity to match the pairs of wells recognizes that which 
wells have similar log responses. This kind of procedure is called wells 
similarity analysis. It is completely automatic and fundamental for data 
Quality Control (QC) and selecting wells to be included in the Machine 
Learning training dataset. We describe an ML automatic procedure for 
analyzing wells similarity of different wells where the visual examina-
tion is not effective and possible for us. We adopt that idea from a video 
of Fred Jason, a product manager, and senior petrophysicist at CCG 
company (Jason, 2019), and Rıdvan Akkurt, a petrophysics advisor in 
the innovation team at Schlumberger (Akkurt et al., 2018). We utilized 
the idea of similarity metrics e.g., Jaccard similarity and Overlap simi-
larity to measure the correlation among well footmarks, reduction 
techniques including a Multi-Dimensional Scaling (MDS), and novel 
well-ranking process to extract information based on wells having 
common petrophysical responses. 

Fig. 1. Example of the similarity among the pairs of the wells. The reference well footmark displayed in orange has verified the footmark against the series of wells in 
blue. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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2.2. Similarity metrics 

Fig. 1 demonstrates a sequence of schematic patterns to exemplify 
the broad spectrum of scenarios that can arise between two wells by 
comparing their footmarks as shown in Fig. 1 (a)–(d). The similarity of a 
reference well (shaded color background in orange) is compared against 
the similarity of other wells of the dataset (shaded color background in 
blue) that reveals gradual mismatch against the reference well. The 
similarity metrics described in this section are just two from a toolkit of 
several that we use to quantify the type and strength of the footmark 
relationships in cases like those illustrated. 

2.3. Jaccard similarity 

Jaccard similarity proposed by Jaccard (1912) is utilized to compare 
the footmark geometry from a pair of wells i and j. The size of the 
intersection to the size of the union of the footmarks is the Jaccard 
similarity ratio. To avoid computing these quantities by numerical 
integration, we utilized the combined set of data from the well i and j 

based on the computation as follows: 

Jaccard(i,j) =

(
Nij

Ni − Nj + Nij

)

(1)  

whereas i presents even numbers of wells, j refers to odd numbers of 
wells, Ni denotes the number of samples fall inside the well i footmark, 
Nj are the samples fall inside the well j footmark, and Nij infers the 
numbers samples fall inside both wells’ footmarks. 

The interpretation of Jaccard similarity is uncomplicated as the 
probability from the combined set of data is within the footmark of well i 
and j, hence, it is a valuable measurement of similarity between two 
footmarks, and it ranges as follows: 

0≤ Jaccard(i,j) ≤ 1 (2) 

According to the above equation, if Jaccard similarity is close to one, 
it means the footmarks of the wells i and j strongly match with each 
other and both wells are similar. However, if the footmarks do not 
match, it means the Jaccard similarity is equal to zero. Jaccard similarity 

Fig. 2. Matrix plots of similarity metrics for the set of data. (a) Jaccard similarity, (b) Overlap similarity, and (c) intersection/union.  
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does not depend on the order of the wells because it is symmetric: 

Jaccard(i,j) = Jaccard(j,i) (3)  

2.4. Overlap similarity 

Jaccard similarity in some cases is not sensitive, where the footmark 
of the well is a subgroup of the reference well. In this case, Jaccard 
similarity will decrease, even though the footmark of the subgroup well 
is completely falling inside the footmark of the reference well. It is 
important to classify these conditions because the subgroup well is a 
strong factor to construct a predictive model to predict missing logs in 
the reference well. Such observation can be identified by Overlap sim-
ilarity (Vijaymeena and Kavitha, 2016) and can be calculated by 
employing the following equation: 

Overlap(i,j) =
Nij

min
(
Ni,Nj

) (4) 

Both similarity indices do not rely on the order of the well such as 
Overlap(i,j) = Overlap(i,j), and has a range between 0 and 1. On the other 
hand, Jaccard and Overlap similarities are always equivalent to 1 when 

the footmark of the reference well is completely a subgroup of footmark 
well or vice versa. Overlap similarity is unable to show which well is the 
subgroup, i or j but it is unimportant to acquire this information as the 
subgroup well is the one that is set to a minimum denominator of the 
function of overlap. 

The result of similarities is calculated from both similarity index for 
every pair of wells in the set of data in Fig. 2, which shows similarity in 
matrix form where every pixel’s similarities are colored with strength 
among the pair of wells marked on the column and row organized 
through unsupervised hierarchical clustering. Note that each matrix is 
symmetric and has ones on the leading diagonal where a well is 
compared to itself. Well-03 is distinctive in its mismatch with well-01, 
well-02, well-04, and well-05. 

2.5. Jaccard distance and multidimensional scaling 

This method is used to visualize the matrix similarity or dissimilarity 
structure displayed in the above portion. It utilizes the Jaccard distance 
(inter-well distance) matrix that is complementary to the Jaccard simi-
larity (Jaccard index) and can be computed as: 

Fig. 3. MDS map of the Jaccard similarity matrix of the well dataset. (a) Jaccard distance, (b) eigenvalues of the MDS coordinates, and (c) 2D rebuilding of the 
Jaccard distances. 
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d(i,j) = 1 −

(
Nij

Ni − Nj + Nij

)

(5) 

The (MDS) method places every well in its low dimensional space so 
that Jaccard distance “d” could be extracted as a result of plausible 
approximation (Akkurt et al., 2018). The implementation of (MDS) to 
the set of data is displayed in Fig. 3. We transformed the Jaccard simi-
larity matrix (Fig. 2a) into a Jaccard distance as displayed in Fig. 3 (a). 
Eigen-decomposition of the Jaccard distance matrix produces a set of 
coordinates for each well in a reduced number of dimensions. The ei-
genvalues are shown in Fig. 3 (b) is a diagnostic indicating that the 
Jaccard distance can be reduced to just three important coordinates that 
have higher than 1 eigenvalue. 

In Fig. 3 (c) the two essential coordinates of MDS are utilized to 
generate a 2D view of the wells, where the plotted Jaccard distances are 
an approximate rebuilding of the Jaccard distance matrix in Fig. 3 (a). 
Because Jaccard distance is the complement to the footmark similarity. 
In Fig. 3 (c), the nearer wells have more similar footmarks than the wells 
away from other wells. The main wells of the dataset, well-01, well-02, 
well-04, and well-05, plot furthest apart at the vertices of the square 
indicating that these four wells have the most similar footmarks, 
whereas well-03 have the least similar footmark. 

2.6. Well similarity ranking 

PageRank (Brin and Page, 1998) is a famous link-based ranking al-
gorithm. The primary concept of the PageRank algorithm is that the 
significance score of a document equals the sum of those propagated 
from its in-link neighbors. We employed the PageRank algorithm (Brin 
and Page, 1998) to arrange the wells according to their significance in 
the similarity matrix. It measures the strength of footmarks similarity 
and compares it with all other wells. It ranks the wells based on the 
strength of footmarks similarity showing the petrophysical responses of 
the whole set of data. 

PR(Pi) =
1 − d

N
+ d

∑

Pj∈M(Pi)

PRPj

L(Pj)
(6)  

where P1,P2………PN are the Jaccard similarities of wells in the dataset, 
N is the total number of wells, M(Pi) is the set of wells that link to Pi , Pj is 
the rank of well ‘j’ and L(Pj) is a number of outgoing edges of well j, and 
d is a damping factor (usually, the favorable value for “d” is 0.85). 

Fig. 4 illustrates the similarity score of the wells derived from the 
Jaccard similarity matrix displayed in Fig. 2 (a). The similarity score is 
shown in descending order of significance and is consistent with the 
components they were constructed. The most important wells are well- 
01 to well-05 which contains high similarity scores. The next well, well- 
03, of the dataset has the lowest scores but it is acceptable. 

In practice, we utilized both techniques, multidimensional scaling 
and well scoring (ranking), to generate understandable summaries about 
the well that is the most demonstrative of the petrophysical responses of 
a dataset and the wells having a small part of those responses. The wells 
that have the highest similarity scores in a project make good factors for 
existing well logs in order to generate new (synthetic) well logs for wells 
that are missing the shear sonic log. 

A critical part of our missing log prediction approach is to optimize 
the selection of the wells providing the training data. The motivation for 
our approach is that any predictive model tends to perform poorly in 
situations where the values of the predictors are outside the range seen 
in the training data. The petrophysical footmark described in the pre-
vious section helps to avoid these situations by identifying wells that 
have similar petrophysical footmarks as the target well, with the result 
that the predictive model training is specialized for and adapted to the 
predictive features seen in the target well. The Deep Neural Network is 
the most commonly used technique to generate models for missing logs 
prediction that extracts the required information and learns from 

Fig. 4. Well similarity scores derived by the implementation of the PageRank 
algorithm to the well set of data. 

Fig. 5. (a) Weight feature importance scores and (b) heatmap of correlation features for the shear sonic log.  
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existing well logs dataset to generate new (synthetic) logs for wells with 
missing logs. 

2.7. Optimizing the importance of rank feature 

Before building a deep neural network model for the prediction of 
the shear sonic curve. It is important to study the existing log data about 
which log curve is the most suitable or highly correlated with shear sonic 
curve prediction. Therefore, the feature selection process is used to 
identify the logs with relatively higher relevancy with shear sonic. Being 
a key preprocessing step in ML and data mining, feature selection is the 
process of selecting effective features from the original feature curves to 
reduce the dimension of the dataset (Anifowose et al., 2014; Tao et al., 
2019). In the case of high-dimensional datasets, the use of the feature 
curve owing to the low correlation with the target curve will result in a 
low-quality model. There are several conventional log curves, it is 
necessary to select the feature curve possessing a higher correlation with 
the shear sonic curve before training the model. I Incorporating the 
XGBoost algorithm (Chen and Guestrin, 2016), the importance was 
ranked according to its gain value in all boosting decision trees. The 
importance of predicting the shear velocity is increasing with the growth 
of the importance score. As shown in Fig. 5(a), the order of importance is 
DT < DEPTH < NPHI < GR < LLD < RHOB < CALI. Similarly, Fig. 5(b) 
also presents the significance of the correlation between logs using 
Pearson correlation heat map. Most of the logs found to have a signifi-
cant positive correlation with DTS, such as the density log (RHOB), 
gamma-ray (GR), and sonic log (DT), being the highly correlated log, 
had a significant positive relation with shear sonic (DTS). However, 
caliper (CALI), resistivity (LLD), and NPHI were negatively correlated 
with the shear sonic log (DTS). Therefore, the top 5 feature curves had 

been selected according to their importance scores presented in Fig. 5 
(a). 

2.8. Deep Neural Network (DNN) 

Neural Network (NN) is a very robust tool of supervised machine 
learning, which is characterized by its neurons (processing units of NN) 
and activation functions (determine an output of a neuron in the result 
of constraining the summation to finite value), biases (shift/process the 
input of activation function that is determined by its range), and 
equivalent weights (an input signal to a neuron) (Guresen and Kaya-
kutlu, 2011; Haykin, 2011). When a NN has multiply fully connected 
layers, it is called a deep learning mechanism or deep neural network 
(DNN). DNN can be applied to perform either regression or classification 
tasks. This study uses a regression task performed by the DNN, as the 
regression technique can compute the predictive value of the target well 
logs. The activations function enforces non-linearity and discriminates 
DNN from linear regression techniques (Guresen and Kayakutlu, 2011; 
Haykin, 2011). The structure of the neural network is designed as dis-
played in Fig. 6. Since the purpose is to predict missing logs from the 
existing well-logs dataset to generate new (synthetic) logs, the regres-
sion task is carried out by the network. A DNN has been constructed with 
5 nodes in the input layer (this layer inputs the initial data) whose labels 
are identical with the selected feature curves (Fig. 5a) and 3 hidden 
layers train the input data. The number of neurons in each hidden layer 
are 32, the output layer has 1 node (this layer produces the results based 
on input data), and all layers are fully connected. The activation func-
tion of each layer is rectified linear unit (ReLU). A ReLU is a non-linear 
function of supervised machine learning that allows error back-
propagation throughout the multiple layers. In order to compare the 

Fig. 6. (a) Shallow network diagram. (b) Deep network diagram. (c) Training error (blue curve) and test error (red curve) of the shallow network. (d) Training error 
(blue curve) and test error (red curve) of deep network. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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result, a shallow network has been constructed in the same way, with 
only one hidden layer, 10 neurons in this layer, and the output layer has 
1 node. Comparing the training and test error curves of these two net-
works, the training and testing errors of the deep network are smaller 
than those of the shallow network, and the error curves are more stable 
(Fig. 6c and d). 

The study uses the mean square error (MSE) loss function because 
loss function is used to estimate the error between the predicted value 
(ŷt) and the real value (yi). It is a non-negative real-valued function, 
which is usually expressed by L (Y, f(x)). The small value of the loss 
function indicates more robustness of the model. The loss functions used 
for regression are mainly mean absolute error (MAE) and MSE. The 
relationship between MAE loss and the absolute error is linear while the 
relation between MSE loss and error is square. So, when the error is 

Fig. 7. The dataset is divided into two sets.- Set 1 is the training dataset and set 
2 is the testing dataset. 

Fig. 8. (a) Similarity map shows the similarity scores between the wells. (b) Comparison between measured log and predicted log by the DNN and empirical 
estimation for DTS in the testing well: in track-1 GR and sonic log, in track-2 original DTS vs predicted DTS by DNN, and in the last track original DTS vs predicted 
DTS using the empirical estimation. (c) The cross-plots show the correlation between original DTS vs predicted DTS (empirical) and original DTS vs predicted 
DTS (DNN). 
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large, MAE loss will be far greater than MSE loss and when an abnormal 
value with a large error appears in the data, MAE will produce a very 
large loss, which will have an adverse influence on the model training 
(Al-Farisi et al., 2002; Theys et al., 2014). Therefore, the MSE loss 
function is adopted in this study. 

JMAE =
1
N

∑N

i=1
|yi − ŷi | (7) 

Further, to control the quality of DNN performance, a powerful cross- 
validation approach was applied consisting of two datasets as shown in 
Fig. 7. Set 1 (well-01, well-02, and well-4 have 70% of the data selected 
as the training set according to well similarity score) will have all kinds 
of the well logs data and will be utilized as a training dataset to detect 
the minimization performance during the training process and avoid 
overfitting. The remaining 30% computes set 2 is used as the testing set 
according to well similarity score that will have few numbers of wells 
with missing logs and will be utilized afterward training procedure ends 

Fig. 9. (a) Similarity map shows the similarity scores between the wells. (b) Comparison between measured log and predicted log by the DNN and empirical 
estimation for DTS in the testing well: in track-1 GR and sonic log, in track-2 original DTS vs predicted DTS by DNN, and in the last track original DTS vs predicted 
DTS using the empirical estimation. (c) Enlarged image that visualizes the result of clear prediction for both methods in the hydrocarbon bearing zone. (d) The cross- 
plots show the correlation between original DTS vs predicted DTS (empirical) and original DTS vs predicted DTS (DNN). 
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to predict the missing logs. 

3. Results and discussion 

Once the similarity score of the wells is acquired from the novel 
approach, we can start with the final phase of the research which is to 
combine the similarity approaches with DNN to predict the missing 
shear sonic log precisely and accurately, where well similarity score is 
higher or reasonable. Then, its results are compared with both the 
measured shear sonic log and the outcomes of an empirical estimation 
from Greenberg and Castagna (1992) technique. 

A well having a higher similarity score and complete well logs 
dataset is employed as a reference well for the prediction of missing 
shear sonic log. For instance, Fig. 8 (a) shows the highest similarity score 
between well-01 (shaded color background in orange) and well-02 
(contour line), which makes a good factor for the prediction of 
missing shear sonic log. As we can see in Fig. 8 (b) that there was a 
precise accuracy of prediction of shear sonic log on the basis of similarity 
results using DNN technique: as compared to the conventional method 
of using Greenberg and Castagna (1992)’s technique. Another way of 
comparing these results is to cross-plot the original versus predicting 
shear sonic log data. In Fig. 8 (c), it is easy to visualize the improvement 
of the proposed approach over the conventional method for predicting a 
missing shear sonic log. Numerically, between 1500m and 2200m depth, 
the Greenberg and Castagna (1992)’s estimation compared to the orig-
inal sonic log results in a correlation coefficient of 75%; the proposed 
approach achieves a correlation coefficient of 98% when compared 
against the original sonic log. Judging from these results, we conclude 
that the proposed method generates a reasonable approximation to the 
original shear sonic log. 

From a detailed examination, we noticed that the quality of shear 
sonic log prediction depends significantly on the data availability. 
Nevertheless, crucially not all data input curves are of equal importance 
for the prediction of missing shear sonic log. Fig. 5 demonstrates the 
prediction importance rank for each standard input curve for shear sonic 
log prediction, as reported by the XGboost python library. It can be seen 
that by far the most important log is the compressional sonic log input 
curve. An interesting observation of Fig. 5 is that depth is the second 
important feature. This is very interesting because the petrophysicists 
use depth for providing context to the other curves. However, depth is 
just a symptom of the fact that they are actually concerned with the 
underlying geological formation. This makes a lot of sense because 
different geology will result in different input curve values that can 
mean the same thing. 

Similarly, we also applied the proposed approach to another well 
with two different scenarios to check the consistent accuracy of the 
prediction of our model in the low similarity between the wells. For 
example, the first scenario is regarding the hydrocarbon-bearing zone, 
where the Greenberg-Castagna method is limited and only works in 
brine saturated rocks. Whereas there is a low well similarity score but 
acceptable for prediction in the second scenario. Jaccard similarity is not 
sensitive to the case shown in Fig. 9 (b) where the footmark of the well- 
03 (contour lines) is a subset of the reference well. In such cases, Jaccard 
similarity will be reduced, even if the footmark of the well-03 (contour 
lines) is completely contained within the footmark of the reference well. 
It is important that we are able to identify these situations since the well- 
03 is a strong candidate to build a predictive model to predict the 
missing shear sonic log in the well-03. 

It is worth noting that Fig. 9 (a) showed the overall improvement in 
the accuracy of the prediction of shear sonic log on the basis of similarity 
results using DNN technique over the Greenberg and Castagna’s 
method-accuracy was achieved in the hydrocarbon bearing zone 
whereas Greenberg and Castagna’s method showed poor performance, 
as it is shown in Fig. 9 (c) that pictures enlarged and clear visuals of the 
reservoir of Fig. 9 (c). Thus, Fig. 9 (d) presents the rates of prediction 
accuracy of the shear sonic log using both conventional and DNN 

techniques with 80% and 95% correlation coefficient, respectively. It is 
easy to visualize the improvement of the proposed approach over the 
conventional method for predicting a missing shear sonic log. 

Numerically, between 1700m and 2350m depth, the Greenberg and 
Castagna (1992)’s estimation compared to the original sonic log out-
comes in a correlation coefficient of 84 %; the proposed approach ach-
ieves a correlation coefficient of 95 % when compared to the original 
sonic log. Judging from these results, we conclude that the proposed 
approach generates a reasonable approximation to the original shear 
sonic log in the hydrocarbon bearing zone. 

4. Conclusions 

This research proposed a novel approach to predict missing shear 
sonic log responses more precisely and accurately using similarity pat-
terns of various wells with similar geophysical properties. These out-
comes are confirmed in results by comparing the predicted logs with the 
original shear sonic logs. The prediction accuracy is shown in hydro-
carbon bearing zones where Greenberg and Castagna’s method is 
limited and only works in brine saturated rocks. The novel approach is 
very useful to identify the common geophysical log responses between 
wells, helpful to predict shear sonic log precisely and accurately, and 
allows the prediction of shear sonic log in the hydrocarbon bearing zone 
without having performed Gassmann fluid substitution. It does not 
follow the zone-by-zone prediction of the missing logs like rock physics 
methods do and it outputs the uncertainties facilitated by the least 
squares method. Having the potential of demonstrating shear sonic log 
prediction in hydrocarbon bearing zones, which cannot be precisely 
predicted by the Greenberg-Castagna method that only works in brine 
saturated rocks, this approach will provide improved accuracy where 
shear sonic logs are missing and need to be predicted for geomechanics, 
rock physics, and other applications. In this research, we only focus on 
the prediction of missing shear sonic log, nevertheless, this approach can 
also be extended to predict missing density and sonic logs in all well 
locations. 
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