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SBAS‑InSAR based validated 
landslide susceptibility mapping 
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Geological settings of the Karakoram Highway (KKH) increase the risk of natural disasters, threatening 
its regular operations. Predicting landslides along the KKH is challenging due to limitations in 
techniques, a challenging environment, and data availability issues. This study uses machine learning 
(ML) models and a landslide inventory to evaluate the relationship between landslide events and 
their causative factors. For this, Extreme Gradient Boosting (XGBoost), Random Forest (RF), Artificial 
Neural Network (ANN), Naive Bayes (NB), and K Nearest Neighbor (KNN) models were used. A total 
of 303 landslide points were used to create an inventory, with 70% for training and 30% for testing. 
Susceptibility mapping used Fourteen landslide causative factors. The area under the curve (AUC) 
of a receiver operating characteristic (ROC) is employed to compare the accuracy of the models. The 
deformation of generated models in susceptible regions was evaluated using SBAS-InSAR (Small-
Baseline subset-Interferometric Synthetic Aperture Radar) technique. The sensitive regions of the 
models showed elevated line-of-sight (LOS) deformation velocity. The XGBoost technique produces 
a superior Landslide Susceptibility map (LSM) for the region with the integration of SBAS-InSAR 
findings. This improved LSM offers predictive modeling for disaster mitigation and gives a theoretical 
direction for the regular management of KKH.

Landslides are major geological hazards in terms of human and property loss. They occur when gravitational 
forces cause rock, debris, or earth shear resistance to fail1,2. The mountainous terrains of Pakistan’s Gilgit Bal-
tistan (GB) province are prone to landslides due to earthquakes, snowmelt, heavy rains, land usage changes, 
and other human activities. These mountains have a reputation for geological instability, with reports of rock 
falls, rockslides, avalanches, rotating slips, slumps, debris flow, and creep3. The Karakoram Highway (KKH) in 
Pakistan’s GB province is a high-elevation, paved highway that connects Pakistan and China’s Xinjiang region. 
It is the only trade route between the two countries and has become increasingly important to their economies 
due to the China-Pakistan Economic Corridor (CPEC) initiative. KKH is often called the "Eighth Wonder of the 
World" (UNESCO 2010) due to its construction in challenging circumstances4. Hundreds of rockfalls, rockslides, 
and debris flow along the KKH have damaged its reputation since it was finished in 19795,6. In 2010, Attaabad 
Lake was formed when a landslide blocked the Hunza River, burying 19 km of KKH and causing the deaths of 
20 people and the destruction of 350 homes5,6. Since 2011, researchers have investigated 150 glacier debris flows 
that have caused damage to road bridges and blocked transportation on KKH7–9. This study investigated and 
compiled a landslide inventory of over 332 km of roadway in the Gilgit, Nagar, and Hunza districts Fig. 1. The 
KKH has brittle rocks, varied climates, topography, shifting stratigraphy, and varying tectonic activity. Given 
these factors, the area has been classified as a geohazard natural laboratory for scientific study, and the Landslide 
Susceptibility map (LSM) is crucial in assessing hazards and developing plans for high-risk areas10,11.

Remote sensing (RS) and Geographic Information Systems (GIS) in LSM have been recommended by 
researchers2,12,13 as effective methods for generating a landslide inventory by evaluating and assessing the 
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possibility of landslide occurrences in landslide-prone regions. Landslide Causative Factors (LCFs) are a data-
base of geospatial attributes that may affect slope stability in landslide regions, including elevation, slope angle, 
precipitation, TWI, and lithology. This database is constructed using GIS data sources. The LCFs data can be 
employed to model the response of additional slopes and predict future landslides in study region2. This work 
created an LSM along the KKH using a database of fourteen LCFs.

Due to the intricate nature of landslide hazards, numerous physical and statistical models have been developed 
for LSM14,15. It has been shown that each method has its benefits and limitations16,17. For example, Physical models 
provide reliable forecast accuracy and are useful for localized mapping and sub-catchment analysis but require 
detailed site characterization. Surface data and subsurface monitoring methods are necessary for predicting 
slope failures15,18. However, Physical models require huge amounts of accurate data for reliable outcomes, which 
can be costly for large-scale studies. Consequently, physical-based models cannot be used for large-scale hazard 
zonation. However, statistical models, aided by GIS advancements, have numerous quantitative approaches and 
techniques for modeling landslides that improve the interpretation of patterns and generating processes15,19. 
Many landslide susceptibility models have been developed using various statistical methods in Machine Learn-
ing over the past two decades for accurate results. Machine learning models are useful for addressing nonlinear 
geospatial issues due to geological, geotechnical, and climatic variables.

LSM has improved recently due to improvements in ML and geospatial technology15,20,21. Nowadays, LSM with 
high precision can be evaluated by identifying the relationship between LCFs and slope instability with advanced 
ML methods22. Many researchers have used various ML models, including logistic regression (LR)23,24, boosted 
regression tree25, support vector machine (SVM)26–28, artificial neural network (ANN)26,27, naïve bayes (NB)29, 
maximum entropy (maxENT)30, extreme gradient boosting (XGBoost)3, to predict landslides. Merghadi et al.15,  
comprehensively analyze the structure and working mechanism of the most popular ML algorithms. Numer-
ous attempts have been undertaken to execute, explore, and assess these ML approaches in various geographic 
settings20,31–33. For instance, Merghadi et al.15,  examined the performance and prediction capability of random 
forest (RF), SVM, gradient boost machine (GBM), LR and ANN in the Mila basin, Algeria. According to their 
findings, GBM and RF outperformed the other ML algorithms with AUCs of 0.897 and 0.895, respectively. Wang 
et al.34,  did a similar evaluation in the terrains of Shexian County, China, for LSM using various ML models 
coupled with GIS tools. The results of this investigation showed that the SVM and RF models achieved the best 
outcomes with AUCs of 0.821 and 0.803, respectively. Several ML models, such as SVM, generalized linear models 
(GLM), NB, and other tree-based models, were recently deployed by Qing et al.35,  to investigate the vulnerability 
regarding a debris flow along the China-Pakistan Karakoram Highway. The authors tested many distinct model-
ling approaches according to watershed and catchment limits around the highway’s periphery and discovered 
that the SVM performed best using an AUC of 0.96. Pham et al.29,  assessed the LSM of Uttarkhand, India, using 
five ML models, and performance was assessed by the ROC curve and statistical Index based method. According 
to the results, all models performed well; however SVM model outperforms the other landslide models with an 
AUC of 0.922. As a conclusion to existing research, we may conclude that the accuracy of ML models in LSM 
relies on training data that includes geological settings, topography, climate and dataset of historical landslides 
in the area. There is "no rule of thumb" regarding which ML method is appropriate for LSM due to the high-
level degree of uncertainty and diverse topographical and environmental factors of locations36. Examining the 
dynamics of landslides and susceptibility for appropriate risk management and planning is crucial to testing 
these algorithms under different geographic settings.

Remote sensing (RS) methods can map regions with recurring large landslides. RS techniques can reduce the 
misclassification of LSM and provide a solution in the form of enhanced detection and surveys37. Interferometric 
synthetic aperture radar (InSAR) techniques for radar images are a powerful tool for huge landslide mapping and 
identification, which might support the appraising and building landslide inventory maps. InSAR techniques are 
ideal for slow linear and nonlinear deformation of prolonged sequences, as mentioned in38,39.

Previous studies5,40–42 in the area have emphasized analyzing the quantitative and deterministic links and 
regression analysis between landslides with causative factors. These traditional statistical methods cannot cor-
rectly map and predict landslide hazards. Also, researchers have employed ML and RS methods separately for 
providing an LSM. Therefore, there is an unknown gap in understanding the suitable techniques for LSM. In 
this regard, this study employed XGBoost, RF, ANN, NB, and KNN with the SBAS-InSAR technique as evident 
methods for evaluating LSM. The model with the best accuracy is validated by the SBAS-InSAR technique and 
survey data, making it a more effective, novel method for identifying surface deformations. In high-risk areas, 
SBAS-InSAR can locate and characterise individual landslides. Multiple time series of synthetic aperture radar 
(SAR) imageries may be evaluated to determine the velocity of a landslide using spatial statistical techniques.

This research aimed to use ML models such as XGBoost, RF, ANN, KNN, and NB to build a susceptibility 
map and compile a comprehensive, visually interpreted inventory of landslides. These cutting-edge ML models 
can quantify regional environmental problems and risks. The second objective was to employ SBAS-InSAR to 
assess high-risk areas for future landslide risk reduction by estimating slow-moving landslides’ deformation 
rates. The final objective was to use SBAS-InSAR findings and field survey data to develop a new LSM for the 
region, with the best susceptibility model determined based on accuracy and AUC value. These projections will 
also guide regional and global scale for land use development and may reduce human and economic costs along 
this crucial highway.

Materials and methods
Study area.  The study was directed along the KKH, which passes through the districts of Gilgit, Hunza, and 
Nagar of Gilgit Baltistan, Pakistan. This research focuses on a significant section of the KKH, which has a total 
length of 332 km and includes a 10 km buffer zone (Fig. 1). The study region covers an area of 3320 km2. The 
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research region consists of a chain of villages through which the KKH passes, beginning with Juglot, and ending 
with Khunjarab top, the China–Pakistan border checkpoint. The region’s terrains are rough, ranging from 1211 
to 7831 metres above mean sea level. Structurally, the region is complex because it lies in the subduction zone 
(Main Karakoram Thrust).

Moreover, the mountains have steep slopes that are prone to landslides43. The research region’s most com-
mon landslides are debris, and rock falls induced by precipitation and seismic activity6. Most of the rocks are 
Mesozoic and Paleozoic in age. The majority of the region’s exposed rocks are volcanic, volcano-sedimentary, 
metamorphic, sedimentary, and igneous. These rocks are divided into siliciclastic, basalt, carbonates, andesite, 
gabbro, granite, greenschist and so on.

Gilgit Baltistan has around 154 mm of rain each year. Water irrigation for land cultivation is supplied by rivers 
and streams overflowing with snowmelt and glacial water from mountainous regions. Summer is more prolonged, 
drier, and hotter. Strong sunlight occasionally elevates temperatures beyond 40 °C (104 °F), although the winter’s 
average temperature remains below 10 °C. There are numerous landslides and avalanches in the region due to 
the harsh weather conditions44. The region’s geological traits and soils, which also play a crucial role, are fragile.

Landslide data and inventory.  The data for this study consisted of a 30m SRTM DEM, a geology map of 
the Pakistan geological survey scale (1:50,000), sentinel-2 images 10m, and meteorological data 30m. The fac-
tors evaluated for LSM along the KKH were slope, elevation, curvature, aspect, profile curvature, plan curvature, 
Roughness, Topographic Wetness Index (TWI), and proximity to stream derived from the DEM. Landcover 
derived from sentinel-2 images, annual precipitation derived from metrological data, proximity to road derived 
from google earth and surface lithology, and proximity to fault data derived from the geological map in the Arc-
GIS environment. Twenty-four ascending and twenty-three descending Sentinel-1A images were obtained for 
SBAS-InSAR processing to evaluate the displacement velocity. Fig. 2 illustrates the overall procedure.

There were found a total of 303 landslide points along the KKH using remote sensing image analysis, geologi-
cal maps, survey data, meteorological data, and historical data collection45. These were obtained from various 
sources for the research. The inventory of landslides was developed by visually interpreting Sentinel 2 images, 
which were then cross-checked by Google Earth imagery, field data, and the SBAS-InSAR technique. The sig-
nificant effect of each observed landslide during fieldwork was shown on a proper scale; topographic maps were 
then digitized as a polygon layer46,47. For the inventory, 303 landslide points were mapped in the research region. 
It provides information about each landslide’s location, magnitude, and direction in the inventory, bedrock, and 
surface material. The inventory was split into training (70%) and testing (30%) sets for constructing Landslides 
Susceptibility Mapping. Table 1 lists the datasets that were used.

Figure 1.   A map showing the study region; (a) Pakistan’s geographic map representing district boundaries; (b) 
a map of Pakistan showing its geographical boundaries; and (c) a Digital Elevation Model of Gilgit Baltistan 
where points show Landslides of the study region, and the black line shows the KKH.
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Landslide causative factors.  GIS tools are extensively employed to extract crucial susceptibility evaluation 
elements from digital elevation models (DEM), including slope, aspect, elevation, and roughness. Lithology, pre-
cipitation, land cover, plan curvature, aspect, Topographic Wetness Index (TWI), slope, elevation, proximity to 
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Figure 2.   The research framework of the study.

Table 1.   The components, extraction, and categorization of input parameters.

Variables Description/Extraction Category

Slope DEM Geomorphology

Aspect DEM Topography

Elevation DEM Topography

Curvature DEM Geomorphology

Plain curvature DEM Geomorphology

Profile curvature DEM Geomorphology

Roughness DEM Geomorphology

Proximity to stream DEM Hydrology

TWI DEM Geomorphology

Proximity to fault Geology Geology

Lithology Surface Lithology Geology

Landcover Landcover classes Land use

Proximity to road Google Earth Topography

precipitation Annual rainfall Climate factor
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road, proximity to fault, profile curvature, roughness, proximity to a stream, and curvature are used to determine 
the probability of landslide fatalities across the section of KKH (Table 1). The 14 LCFs are displayed in Figs. 3 and 4.

The modeling method includes identifying ML models, model development and model fitting. The grid unit 
served as the study’s model unit. The spatial resolution of remote sensing data and DEM was 30 m, and all assess-
ment factors were resampled at this level. A condition attribute generated a two-dimensional table including 14 
assessment criteria and a landslide decision characterizes (0 indicates no landslide, 1 indicates landslide), with 
every line indicating an object. Each column signifies an attribute of the object and is updated to train (70%) and 
test the two-dimensional table (30%). Training data was employed to develop the model, while test data were 

Figure 3.   Landslide components. (a) elevation, (b) slope, (c) TWI, (d) aspect, (e) curvature, (f) plan curvature, 
(g) profile curvature, (h) roughness.
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employed to obtain predictions. Model units in the research region were computed using the five ML models 
mentioned above. The Landslide susceptibility Index (LSI) maps were generated using model prediction values. 
The five ML model results were imported into the GIS, and LSM was generated. LSM was then separated into 
five classes using the Janks natural breakpoint48 named very low, low, moderate, high, and very high. The five 
ML models were carefully examined utilizing the area under the ROC curve.

Landslide susceptibility models.  The Landslide Susceptibility map for ANN, XGBoost, RF, NB, and 
KNN was prepared using the R programming language.

Artificial neural network (ANN).  An artificial neural network (ANN) is a compilation of linked connections 
used to represent issues with the complex relationship between several assessment variables49. Because of its 
dynamic and nonlinear nature, ANN is considered suitable for landslide susceptibility studies. ANN algorithms 
improve the extraction of extensive relationships between the different independent landslide factors50. A neural 
network comprises several artificial neural connections that may be used to estimate or approximate functions. 

Figure 4.   Landslide components. (a) proximity to fault, (b) proximity to road, (c) proximity to stream, (d) 
precipitation, (e) landcover, (f) geology.
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ANN is typically composed of two layers of input (conditioning factor) and a set of secondary layers (hidden 
layer); that execute output layers, with the predicted results performed by utilizing hidden layers.

The aim of an ANN is to develop a model of the data-generation process so that the network can comprehend 
and predict outcomes from inputs that have never been seen before51. The "NNET" program was utilized in this study 
to carry out an ANN model with a 14-2-1 network. Table 2 lists the primary parameters which are used in ANN.

Extreme Gradient Boosting (XGBoost).  The XGBoost supervised classification model is created on the Gradi-
ent tree boosting algorithm52,53, an effective ML method developed by Chen and Guestrin (2016). XGBoost is 
designed to train with multiple Processing cores, and it can identify and learn upon nonlinear data patterns; 
regularized boosting is employed to reduce overfitting and increase model precision, making it more efficient 
than over-boosting techniques54,55. XGBoost provides scalability for many use cases with low computational 
resource requirements, good performance (i.e., speed), handling of sparse data, and ease of implementation56. 
Training in XGBoost is done using an additive technique, which was also awarded as the winner of numerous 
data science contests. Model XGBoost involves numerous model preview settings to be selected. Three primary 
hyperparameter settings are necessary for model training: nrounds (maximum number of boosting iterations), 
subsamples (the training instance subsample ratio) and colsample bytree (columns ratios sub-sample when each 
tree is formed) (Table 2).

Random Forest (RF).  In classification and regression, random forest is employed. It employs the majority vote 
for categorization and the average for regression from numerous samples57. RF can handle both continuous 
and categorical variables in regression and classification. It outperforms other categorization algorithms58. The 
primary problem with this approach is that the results of each tree differ from each other59. A random forest 
strategy is offered to reduce these variances and change approximation60. It incorporates several decision trees 
that employ several data-driven base classifiers, and several parameters are selected randomly to develop an 
individual tree61. Table 2 lists the three most important hyperparameters: the number of features that are suit-
able for division (mtry), The minimal amount of samples that are randomly selected for each random subset to 
achieve tree balance using recursive portioning., and the number of bootstrap samples to employ (ntree).

Naïve Bias (NB).  The NB model is a method for supervised learning that employs the Bayes theorem to over-
come classification problems62. The NB Classifier is a basic and efficient classification technique that promotes 
the development of robust ML models by generating immediate forecasts63. It is a predictive model that makes 
predictions based on the likelihood of an object. It is assumed that the significance of a particular attribute is 
independent of  the occurrence of other characteristics64. For example, if the landslide is identified based on 
causative variables, the landslide is recognized as a catastrophe. As a result, each feature contributes to evaluate 
if it is a hazard without depending on the others. Many studies have used the NB approach to map landslide 
susceptibility29,65. Table 2 displays the parameters used in NB for this study.

K‑Nearest Neighbor (KNN).  KNN is among the most prominent and efficient algorithms for detecting patterns 
in classification and regression applications66. It is an unsupervised method that is also known as the lazy learn-
ing algorithm67. It operates by determining the distance between a single test observation and all of the training 
dataset’s observations and then locating its K nearest neighbors. This occurs with each test observation, in which 
common variables in the dataset are discovered68. KNN calculates distances by selecting a distance metric from 
several available metrics (e.g., Euclidean, Manhattan, etc.)69.

Table 2.   Hyperparameters of XGBoost, RF, NB, and ANN.

Models Parameters Values

XGBoost

Max_depth 6

nrounds 200

eta 0.05

colsample_bytree 0.75

subsample 1

ANN

Hidden layers 2

Loss function Cross entropy

stepmax 1e = 08

R.F

Seed 1234

nodesize 14

ntree 500

mtry 5

NB

Nround 210

fL 0

usekernel T

adjust 1.0
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SBAS InSAR technique.  The InSAR technique has been extensively employed for the early detection of land-
slides because of its advantage of being weather independent and possessing a broad monitoring scope and high 
accuracy monitoring. The SBAS is a multi-temporal InSAR technique that uses a stack of SAR interferograms to 
spot slow-moving deformations with millimetre-level accuracy70,71. InSAR is a time series-centred technique gen-
erally categorized into two classes: the PS-InSAR approach, which works on the positions of persistent scatterers 
(PS), and the small baseline (SBAS) technique, which focuses on spatial connection and dispersed scattering72,73.

This study processed forty-seven sentinel-1A images from the year 2021 in the SARScape module. The sensor 
has several acquisition ways, involving wave (Wave), interferometric wide (IW), extra-wide swath (EW) and 
strip map (SM)). This research collected imagery from the Sentinel-1A IW sensor and used ENVI software to 
evaluate them (12 days of temporal resolution). As indicated in Table 3, For SBAS-InSAR processing, the line 
of sight (LOS) displacement velocity (VLOS) was estimated using a coherence threshold of 0.35 to prevent the 
consequences of unwrapping errors74.

This section uses the SBAS-InSAR technique to validate the LSM along the KKH. Figure 5 shows the funda-
mental data processing chart, which includes data (SAR and DEM) preprocessing, interferometric generation, 
phase unwrapping, refinement and reflattening estimation, and deformation calculations.

Data preprocessing.  Data preprocessing includes the calculation of time and space baselines between all Sen-
tinel-1A image pairs. After registration and clipping, the DEM data is used to complete image registration, and 
the relative combination that satisfies a given threshold is selected to produce a differential interferogram set75. 
This study uses a 30 m resolution SRTM DEM to generate interferograms. The super main image used is taken 
from the images of 23rd Dec 2021, and a total of 253 interferometric image pairs were generated. The data pair-
ing is shown in Fig. 6.

Table 3.   Details of SBAS InSAR processing.

Specifications Ascending Descending

Temporal range Jan, 2021–dec, 2021 Jan, 2021–dec, 2021

No. of images 24 23

Orbit direction Ascending Descending

No. of cells 500,000 500,000

Minimum VLOS (mm/year) − 120 − 114

Maximum VLOS (mm/year) 101 88

SAR SLC image stack

Connection graph 
generation

Interferograms 
generation

Phase unwrapping

Refinement and 
Refla�ening

Inversion (first step)
Estimation of the average displacement rate

Inversion (Second Step)
Application of  the atmospheric filter

Estimation of the final velocity displacement

Geocoding
Geocoding of the final displacement to the 

projection of the study area

Reference DEM

Ground 
Control points

Figure 5.   Flowchart of SBAS-InSAR.
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Deformation calculation.  Inversion is the main step of SBAS-InSAR processing, and the deformation calcula-
tion is majorly based on the analysis of inversion results. The first inversion estimates the displacement rate and 
residual topography, and a second unwrapping is performed to optimize the input interferogram76. The second 
inversion is based on the first inversion, using low-pass and high-pass filtering to estimate and remove the 
atmospheric phase, to obtain the final displacement results more accurately and finally get the deformation rate 
distribution in the study region through geocoding.

Results
Significance of landslide causative factors.  The importance of causative factors in the occurrence of 
any landslide is highly significant. For this purpose, R software is used to measure the significance of each land-
slide element in this study. Fig. 7 demonstrates the influence of each causative factor on the landslides.

XGBoost model is employed to determine the contribution of fourteen LCFs. The outcomes (Fig. 7) show 
that proximity to the road, followed by slope angle, has the highest influence in initiating landslide hazards in 
the region because these factors directly influence the stability of slopes. A slope close to a road may be more 
prone to landslides due to the increased weight and vibration from vehicle traffic. Additionally, road maintenance 
activities, such as grading and paving, can also impact the stability of slope77. Other factors, i.e., roughness, prox-
imity to the fault, precipitation and elevation, almost contribute equally to landslide occurrence. In contrast, the 
remaining eight factors showed the lowest contribution to landslide occurrence.

Also, The barren land is directly exposed to climatological factors such as sunlight and precipitation, which 
accelerates the weathering of rocks and increases the likelihood of landslides78. Most debris flows, rockfalls, 
and rock slides in region51 are triggered by heavy rainfall79. In this study, average yearly precipitation data were 
employed. Because yearly precipitation data can provide an overview of an area’s overall wetness or dryness over a 
longer period, which may be useful for identifying areas that are consistently prone to landslides. High-elevation 

Figure 6.   Temporal and Spatial baseline graph, The yellow dots represent the image of the super master, while 
the green dots represent the image of the slaves. The blue lines depict interferometric pairs. (a) The Time-
Baseline plot; (b) the Time-position plot.

Figure 7.   Variable’s importance in the study area.
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zones are frequently defined by sedimentary rock, and medium-height slopes are commonly coated with thin 
colluvium, thereby increasing their vulnerability to landslides80. The class of buffer closest to the fault is the most 
vulnerable. Since the area’s active fault and shear zones significantly affect landslide activity (Fig. 7)4. The most 
vulnerable formations are the Yasin group and Quaternary alluvium81. in the research region; however, the 
lithological units have little impact on LSM.

Landslide susceptibility mapping.  Fig. 8 shows the results of five machine learning models for LSM, 
identified using LSI. The higher the LSI, the higher the chance of a landslide occurring6. The results of ML mod-
els show that the research region is highly susceptible to landslide hazards, especially in the vicinity of Hunza, 
Chalt and Juglote valley. These areas are characterized by complex geological features, developed faults, and 
frequent earthquakes. Under the impact of sudden heavy precipitation and snow and ice meltwater, numerous 
landslides, rock falls, surficial instability occurrences, and complex and difficult slips, including creep, occur, 
badly blocking the KKH and hindering its normal operation.

The likelihood of landslide occurrence was divided into five categories using Using the natural breaks 
approach: very low, low, moderate, high, and very high (Fig. 9). Qualitative analysis of landslide susceptibility 
maps employed landslide susceptibility regions, indicating the frequency from each susceptibility level to the 
whole research region.

In the training phase, a confusion matrix illustrates the capabilities of the five-machine learning models. 
Table 4 displays the confusion matrix results for each of the five models. In the area of research, the XGBoost 
model has high accuracy (0.972) and AUC (0.997). Validation has been performed using the valid receiver oper-
ating characteristic (ROC) technique82. This method produces the ROC curve by graphing sensitivity against 

Figure 8.   Susceptibility Index map of landslides (a) XGBoost, (b) RF, (c) NB, (d) ANN, and (e) KNN.
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specificity using cutoff values; however, this does not adequately describe the model’s accuracy. Consequently, The 
AUC of a ROC curve is utilized to evaluate the overall computational efficiency of model83. Based on the findings, 
the AUC is 99.74% for XGBoost, 99.36% for RF, 98.82% for NB, 98.46% for ANN, and 92.43% for KNN (Fig. 10).

Figure 9.   Susceptibility classes (a) XGBoost, (b) RF, (c) NB, (d) ANN, and (e) KNN.

Table 4.   Confusion matrix XGBoost, RF, NB, ANN, and KNN.

Models Label

Predicted 
Label

AccuracyNo Yes

XGboost
No 86 1

0.972
Yes 4 89

RF
No 85 2

0.961
Yes 5 88

NB
No 41 1

0.890
Yes 49 89

ANN
No 81 9

0.884
Yes 2 88

KNN
No 73 8

0.861
Yes 17 82
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SBAS‑ InSAR validation.  SBAS-InSAR methods were employed to evaluate and validate the models by 
verifying the deformation in the region. Due to its comprehensive high spatial-temporal resolution, it has the 
ability to operate and provides spatial coverage  in all weather conditions. Over the past decade, the InSAR 
method for identifying and monitoring mass movement has become well-established84. To identify the ratio of 
slow-moving landslides, numerous SBAS-InSAR investigations have been carried out to evaluate the historical 
or spatial patterns of landslides distortion of slow-moving landslides85. In SBAS-InSAR processing, the line of 
sight (LOS) deformation velocity (VLos) was determined using 0.35 as the coherent threshold, as indicated in 
Table 3. Slope orientation velocity (Vslope) is determined using satellite line-of-sight (LOS) information. The 
Vslope shows the deformation only in a single direction. In landslide assertion, most landslides or the earth’s 
surface displacements occur over steep terrain; consequently, Vslope is the key component used to estimate 
landslide development (Fig. 11). The regions on the map where SBAS-InSAR results show high deformation is 
also validated by XGBoost LSM (Fig. 9). According to the SBAS-InSAR results, the majority of marked land-
slides were observed to be deforming regions. Because of the extended re-visiting time of the Sentinel 1A sensor, 
slow-moving landslides may predict more accurately.

Figure 12 depicts a region with a notable rise in landslide vulnerability. Now we are able to give a compre-
hensive analysis of the location. The location is a steep region in the upper Gojal district of Hunza, primarily 
composed of loose Quaternary sediments. Both the wind and the rain have an important impact on them. The 
majority of the slope’s steepness is less than 30°, making it inherently unstable. The soil’s mechanical and physical 
characteristics are diminished due to the bank slope’s gradual deterioration caused by long-term immersion in 
water. As the level of water fluctuates inversely and the water waves are eroded, the rocks and soil have grown 
less stable and steeper. At some stage, a certain level of local slip, destabilization and failure will occur. SBAS-
InSAR displacement reveals a higher distortion rate, and an assessment of the probability of the landslide after 
SBAS-InSAR improvement confirms the improvement (Fig. 12).

Finally, the accurate deformation map for the vicinity was created by combining the Vslope and XGBoost-
based LSM using the correction matrix (Fig.13). However, the newly developedsusceptibility map, created by 
the XGBoost model, was utilized to evaluate the amount of variation between each cell. The new map revealed 
that 10.67% of the research area is extremely prone to landslides, while values for high, moderate, low, and very 
low susceptibility classes were 11.34%, 22.81%, 28.64%, and 26.54%, respectively. However, the XGBoost model 
showed 5.54%, 6.52%, 13.28%, 13.24%, and 61.42%, respectively, for the regions with very high to very low 
susceptibility. Fig. 13 displays some regions where the probability of landslide susceptibility has significantly 
increased.

Figure 10.   AUC plots of XGBoost, RF, NB, ANN, and KNN.
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Figure 11.   SBAS‐InSAR deformation velocity for landslide (VLOS) map across LOS direction for both 
ascending and descending data.
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Figure 12.   Landslide susceptibility Outcomes Upper Gojal area. (a) Using the XGBoost model, LSM outcomes 
were obtained. (b) SBAS‐ InSAR‐based landslide deformation velocity (Vslope) map. (c) Enhanced landslide 
susceptibility map result.
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Discussion
LSM is an important topic that supports risk management and planning in many areas globally15. The intricacy 
of the landslide hazard makes it more difficult to create accurate regional-scale maps in the mountainous region. 
Therefore, in resolving landslide-related engineering challenges, ML algorithms outperform more conventional 
methods. It is demonstrated that ML algorithms perform differently at different scales in diverse environments, 
depending on variables such as geology, climate, topography, and others30. Thus, using a single model for both 
mapping and modeling susceptibility is therefore unreliable. Therefore, it is essential to explore, analyze and 
understand the difference between the results of different ML algorithms to choose and identify the accurate 
model.

The outcomes demonstrate that the accuracy of the XGBoost, RF, NB, ANN, and KNN machine learning 
approaches for LSM along the KKH yielded satisfactory results. However, XGBoost surpassed the results of 
RF, NB, ANN, and KNN for evaluating LSM in terms of accuracy and AUC values, as described in Fig. 10 and 
Table 4. Comparatively, the XGboost model performed better in evaluating the significance of each factor in 
initiating landslides because of the optimal combination of processing time and prediction performance. The 
ability of XGBoost to predict LSM was demonstrated in previous research6,86–90. The performance AUC for 

Figure 13.   Through Vslope, the correction matrix was implemented to improve the model of landslide 
susceptibility.
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XGBoost in this study is enhanced by selecting the most important LCFs and applying many trees leading to a 
good performance model.

Furthermore, the RF model achieved an AUC of 0.993 for evaluating LSM (Fig. 10). The findings of the 
RF reported in this research performed higher than those obtained in previous research to access susceptibil-
ity of landslides in Northern Vietnam and the Izu-Oshima in Japan,with reported AUC of 0.839 and 0.956, 
respectively91,92.

For the NB, the model yielded an AUC of 0.988, respectively. The outcomes revealed that the NB performed 
efficiently in evaluating LSM. The result revealed that the AUC and the accuracies of the NB are better than 
the results reported in previous investigations in China and Vietnam, which were 0.91 and 0.93, respectively93.

For ANN, The model’s AUC in the prediction was 0.984, respectively. Also, the KNN model achieved an AUC 
of 0.924 in the prediction of LSM in this study. These findings outperformed previous studies with reported AUCs 
of 0.879 and 0.875 in the evaluation LSM in Kota Kinabalu, Malaysia94. The increased quantity of hidden units in 
the network training enhanced the performance of ANN in this study, as selecting more than one hidden layer 
improved the accuracy of the ANN model95. The ANN can be trained with an optimum number of two hidden 
layers for the network’s training.

The statistical investigations demonstrate that the five ML models used in this study to predict the susceptibil-
ity of landslides achieved good results with high AUC values, indicating a high predictive power for LSM. The 
improved performance accuracies obtained in this research for the five models might be attributed to the relevant 
selection of LCFs. The findings indicated that among the five algorithms, the XGBoost had outperformed the 
other four ML models in predicting LSM for the research region (Table 4). The Variations in the different algo-
rithm’s predictive ability depend on the model’s structure and the optimization parameters. The good prediction 
observed in the XGBoost model is attributed to the fact that the model does not focus on a single independent 
variable, due to which it achieved excellent results. Also, XGBoost is designed to train with multiple Processing 
cores, and it can identify and learn upon nonlinear data patterns, and regularized boosting is employed. Therefore 
the model can avoid the overfitting problem and enhances the prediction accuracy15,96.

The lesser performance obtained for the RF model compared to the XGBoost can be associated with the RF 
model’s tendency to offer more preferences to hyperparameters in order to improve the model. Therefore a small 
change in the hyperparameter will influence the majority of trees in the RF, which can affect its prediction97. These 
issues can reduce the performance of the RF since XGBoost always prioritizes functional space while reducing 

Figure 14.   Investigation of various types of landslide during a field visit. (a) The Frontier Works Organization 
(FWO) clears the road after a rock fall in the Nagar District. (b) Debris flow in District Gilgit. (c) Using GPS to 
obtain actual landslide’s location. (d) Rockfall in District Hunza.
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the cost of a model, enhancing the model’s performance. Also, the NB has lower performance than XGBoost and 
RF, which is caused by the fact that the NB cannot classify unbalanced datasets as effectively as XGBoost and RF

The lower performance of the ANN model relative to the XGBoost model can be attributed to the inability 
of ANN models to evaluate the training data. Therefore, overfitting is a difficult problem with ANN training 
data which can cause a lower model performance98. The KNN model has demonstrated the lowest performance 
among the employed models in this study (Table 4) and (Fig. 10). This lower performance results from the 
fact that the KNN may perform lower in high-dimensional data, leading to overfitting and inaccurate model. 
Regardless of KNN’s lower performance in the current study, there are advantages to utilizing it to predict LSM 
in future research. The process of evaluating LSM is difficult to comprehend due to the existence of numerous 
environmental factors. However, the more adaptable the algorithm, the more efficient and accurate the model15. 
The performance of an algorithm depends on the algorithm data nature, structure, and selection of LCFs15,92.

InSAR techniques can generate highly precise results, generating susceptibility maps with high-accuracy99. 
For this study, the SBAS-InSAR approach is applied to determine landslide displacement velocity and frequency 
in 2021. The landslide susceptibility map generated by combining XGBoost and SBAS-InSAR is categorized into 
five classes (Fig. 13). The XGBoost-SBAS-InSAR-based LSM displays that 10.67% of the total study region is 
highly vulnerable, demonstrating the model’s accuracy. Using ML algorithms alone may lead to many constraints 
that can lead to misclassification when applied to conduct LSM. The first problem is related to the data quality 
of LCFs, whereas the second concern is past landslide history. Due to the hard conditions and environment of 
the research region, only 303 landslides over a 300-km length were mapped (Fig. 14), which may not accurately 
show the entire number of previous landslides. Thus, this can cause a significant inaccurate misclassification of 
the LSM, which can be reduced by employing the SBAS-InSAR technique. Thus, the outcomes of XGBoost and 
SBAS-InSAR were combined to create a new and improved landslide susceptibility map (Fig. 13) for the region, 
which minimized the misclassifications of slope-affected terrains. An issue with the LSM is that it predicts 
landslide occurrence in specific regions, not the continuous deformation movements with the passage of time. 
In contrast, variations in the occurrence of landslides over time are an important factor for decision-makers to 
consider100. The upgraded LSM, combined with the SBAS result in Fig. 13, provides landslide activity status for 
regional investigation and, at the provincial level, quantitative hazard assessment and mapping101.

Conclusions
This study examines the mapping of landslide hazards along 332 km of the Karakoram Highway in the rugged 
mountainous terrains of Gilgit Baltistan, Pakistan. Landslides, rockfalls and debris flows are common along the 
KKH, disrupting its normal operations. Due to these natural disasters, many people lost their lives and wealth. 
Due to the rugged topography,mapping landslides using traditional methods is thought to be a difficult task 
in mountainous terrains, so this work represents a new method of landslide mapping and forecasting in which 
modest remote sensing techniques, GIS tools and different ML models are used to generate the LSM along KKH 
which is validated by SBAS-InSAR technique. Various causative factors of landslide, i.e., slope, geology, precipita-
tion, TWI, proximity to the road, land cover, proximity to fault, proximity to a stream, roughness, aspect, profile 
curvature, curvature, plan curvature, and elevation, were used to train ML models, i.e., RF, XGBoost, RF, NB, 
ANN, and KNN to generate LSM. The findings showed that the primary source of landslides in the region is 
proximity to the road, slope, TWI and roughness. Outstanding forecasting outcomes were achieved using ML 
algorithms and SBAS-InSAR methods. The improved and final susceptibility map shows that 10.67% of the study 
region is extremely vulnerable to landslides.

The high, moderate, low, and very low susceptibility categories were 11.34%, 22.81%, 28.64%, and 26.5%, 
respectively. This work has significant implications for enhancing LSM, particularly in regions where the SBAS 
technique is appropriate and accessible. This improved LSM can help disaster management, mitigation, and 
prevention along the KKH. It also requires geotechnical and other slope stabilization techniques to reduce the 
possibility of future landslide disasters in a given area. We conclude that our method can provide significant 
information on highway precautionary measures.

Data availability
The study’s first and corresponding authors can provide the data upon request. Because a thesis is being prepared 
using these data, the data are not publicly available.
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