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Abstract: The use of solar energy has shown the fastest global growth of all renewable energy sources.
Efforts towards careful evaluation are required to select optimal locations for the installation of
photovoltaics (PV) because their effectiveness is strongly reliant on exposure to solar irradiation.
Assessing the shadows cast by nearby buildings and vegetation is essential, especially at the city scale.
Due to urban complexity, conventional methods using Digital Surface Models (DSM) overestimate
solar irradiation in dense urban environments. To provide further insights into this dilemma, a new
modeling technique was developed for integrated 3D city modeling and solar potential assessment
on building roofs using light detection and ranging (LiDAR) data. The methodology used hotspot
analysis to validate the workflow in both site and without-site contexts (e.g., trees that shield small
buildings). Field testing was conducted, covering a total area of 4975 square miles and 10,489 existing
buildings. The results demonstrate a considerable impact of large, dense trees on the solar irradiation
received by smaller buildings. Considering the site’s context, a mean annual solar estimate of
99.97 kWh/m2/year was determined. Without considering the site context, this value increased by
9.3% (as a percentage of total rooftops) to 109.17 kWh/m2/year, with a peak in July and troughs
in December and January. The study suggests that both factors have a substantial impact on solar
potential estimations, emphasizing the importance of carefully considering the shadowing effect
during PV panel installation. The research findings reveal that 1517 buildings in the downtown area
of Austin have high estimated radiation ranging from 4.7 to 6.9 kWh/m2/day, providing valuable
insights for the identification of optimal locations highly suitable for PV installation. Additionally,
this methodology can be generalized to other cities, addressing the broader demand for renewable
energy solutions.

Keywords: LiDAR point cloud; 3D city modeling; urban environment; smart cities

1. Introduction

The European Union (EU) has prioritized the integration of renewable energy sources,
with solar energy being a particularly promising option due to recent remarkable devel-
opments [1,2]. Addressing climate change requires a transition from conventional energy
sources to sustainable renewables, particularly solar PV. As a result of increased awareness
and competition, rooftop solar PV, which is currently underutilized, is essential to this tran-
sition [3]. Urban rooftop PV installations have gained considerable attention, especially for
their potential to replace fossil fuels, offering a sustainable solution to meet the electricity
need [4]. The burning of larger quantities of fossil fuels for electricity generation leads to
a rise in carbon emissions, which in turn contributes to the warming of the atmosphere
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and ultimately leads to climate change [5]. Utilizing solar power from rooftops can help to
decrease our dependence on fossil fuels. Urban rooftops offer significant potential for PV
installation, despite the complexities of urban environments [6]. As more consumers select
rooftops for PV installation, companies require data and tools to predict solar irradiation [7].
However, accurately predicting solar irradiation becomes crucial with the growing use
of rooftop PV installations [8]. By 2030, building-integrated PV in EU member states is
projected to surpass 22% of Europe’s annual power consumption [1,9].

Renewable energy is essential for the development of smart cities [10], with solar
irradiation being an easily accessible and efficient source for electricity, water heating,
and more [11]. Urban areas face higher energy consumption rates than rural areas due
to their larger populations [12]. Many cities worldwide have established their own solar
maps for PV installations [13–15]. The United States (US) shows significant interest in
solar energy investment for future energy requirements [16]. While selecting appropri-
ate rooftops for PV installations is important, the lack of reliable site context data poses
challenges [6]. Urban areas feature diverse building structures, heights, and surrounding
vegetation, including tall trees that cast significant shadows on rooftops. Therefore, a
comprehensive understanding of the aforementioned points is essential for the precise
estimation of the solar irradiation potential and informed decisions about solar PV installa-
tion [17,18]. In urban environments, direct incoming solar irradiation on small buildings
is notably decreased due to the obstruction caused by larger buildings. Additionally, 3D
solar irradiation modeling assessments have various limitations, leading to insufficient
constraints and inaccurate estimations of solar irradiation for buildings. Consequently, this
can result in misinterpretations of their energy demands [19].

To date, only a few studies have been conducted on 3D solar irradiation estimation (SIE)
using a raster Digital Surface Model (DSM) at the city scale [19–22]. These studies [23,24]
found yearly solar irradiation losses due to vegetation, but this is a time-consuming method
for large areas. Moreover, these studies did not consider the effects of the site context and
large vegetation on SIE, a key gap that this study aims to elucidate. In a previous research
study, photogrammetry data were used to determine the influence of the site context on
the total solar irradiation in the architectural environment on a small scale [25]. Another
study illustrated how the site context affected solar irradiation [26]. The study by [27]
focused on the city of Lethbridge, utilizing a multi-criteria approach that incorporated
GIS and LiDAR to assess the potential for rooftop photovoltaic electricity. The study
highlighted the importance of making informed policy decisions regarding investments in
renewable energy within the local context. Our findings have a broader scope than merely
one city (Austin is used as an example), seeking to demonstrate how the methodology
can be applied to other cities. This highlights its potential to meet the global demand for
renewable energy solutions. Some methods ignore the influence of shadowing from urban
factors in the 3D contextual environment, such as surrounding buildings and trees, and
there is a lack of difference across roof segment orientations and slopes [28].

However, due to spatial limitations in the architectural environment (e.g., geodetic co-
ordinate systems, 3D geodata in GIS web) [29,30], the data cannot be seamlessly transferred
to a 3D online application, hindering city and community engagement in solar planning,
a key aspect examined in this study. The approach taken in this study involves adopt-
ing a per-building strategy to present the data, which differs from previous techniques
that often rely on generating raster maps covering the entire study region, a prerequisite
for 3D city asset information modeling. The utilization of a LiDAR dataset is widely
regarded as the optimal choice for the purpose of 3D city modeling [31,32]. Thanks to
digital technology, particularly 3D technology, solar potential has experienced remarkable
improvements [33,34].

An effective approach to determining how much solar radiation hits a building is to
use a 3D model of the building and its surroundings that is created in CityGML format
and at different levels of detail (LOD) according to the OGC CityGML standard, ranging
from LOD1 to LOD4 [35]. The urban city model has the flexibility to be stored in various
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compatible 3D GIS formats, such as CityGML, KML, or CityJSON [36]. In the city of
Karlsruhe, Germany, the CityGML model is employed to calculate solar irradiation for
13,000 buildings [37].

The presence of tall urban trees and buildings casts shadows on small buildings,
leading to a reduction in their direct light exposure [33]. A research study revealed a
significant influence of the tree canopy on the estimation of street-level solar irradiation,
in which the method could not fully capture the complex interactions of shadows cast
by various urban elements such as trees and buildings [38–40]. Recently, studies [41–43]
have suggested a method for the estimation of the potential annual energy production
of PV systems on selected roofs in the regions of Skopje, the capital of North Macedonia,
and Georgetown, the capital of Penang, respectively. The cited studies omitted the site-
specific impact on solar estimations and lacked a validation process to assess the accuracy
of their results.

Accurate 3D city and roof shapes are needed to inform solar energy options and aid
non-technical users and the public in understanding the practicality of solar maps. While
past research has predominantly concentrated on 2D solar maps or solar estimation in a
static architectural environment (e.g., images, PDF, Excel) [44,45], often presenting data in
the form of infographic photos, screenshots, Excel tables, graphs, etc., the interoperability
of 3D GIS data becomes essential [35].

This research aimed to (i) evaluate how the site context influences global solar irradi-
ation (GSI) in a 3D contextual environment, both with and without the site context in an
urban environment, and validate the workflow using hotpot analysis to assess how the site
context affects GSI through the integration of 3D volumetric trees (a workflow that has not
been validated in the existing literature); (ii) generate 3D multipatch features and integrate
solar irradiation data with 3D buildings into 3D GIS web-based applications. This approach
involves combining semantic cadastral data with a 3D city model for web visualization,
creating a dynamic 3D web app linked to ArcGIS Online, and exploring future possibilities
in 3D web applications for Industry 4.0.

Cities globally stand to gain valuable insights from this study, which explores the
impact of site surroundings, including urban vegetation and sun radiation. The data
produced through this research hold significance for city planners engaged in solar project
planning, conducting feasibility studies, and developing 3D web-based applications.

2. Methodology
2.1. Case Study

Texas, in the United States of America, has relied heavily on fossil fuels such as natural
gas and coal to meet its energy demands [46]. When fossil fuels are burned, a large quantity
of carbon dioxide is released [47]. Carbon emissions, which trap heat in the atmosphere,
induce micro to macro climate change [48]. SIE is a more sustainable approach to reducing
the use of fossil fuels [49]. More efficient solar energy utilization reduces the dependence
on fossil fuels for energy generation in urban environments. The suggested method is used
in the study area, which is situated in the downtown capital city of Austin, Texas. The area
has high-rise buildings ranging in height from 10 to 690 feet. The location map of Austin,
Texas, is shown in Figure 1.

For 3D SIE to provide the best results, accurate modeling of the site context at the
city scale is necessary. However, 3D city models are often challenging to obtain due to
variations between the images, tools, and software used to extract the models, a difficulty
described in this study. The study used LiDAR point cloud (PC) data to create a surface
model and generate 3D buildings and trees. The results provided rooftop solar irradiation
potential estimations. In city-scale solar project planning, the data, which include both
geometric and semantic information, play a vital role.

Figure 2 shows the proposed methodology for this study.
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2.2. LiDAR Dataset

The Texas Natural Resources Information System (TNRIS) is a Texas government
agency that provides a costly data library, including free LiDAR data, that can be down-
loaded by quadrangles after searching for an area of interest (see link in Table 1). The
files were downloaded as a zip file, containing 12 tiles of the LiDAR point cloud. Along
with the LiDAR point cloud, the other files were downloaded, which contained LiDAR
acquisition specification reports and valuable information (Table 1). The city of Austin
Open Data Portal (AODP) hosts various geospatial and non-spatial data, which can be
easily downloaded via the link (Table 1).

Table 1. Details of actual LiDAR acquisition.

Attribute Value

Source https://data.tnris.org/?pg=1&amp;inc=24#5.5/31.33/-99.341 (accessed on 23 November 2021)

Dataset Name LiDAR Austin East/West/SW-2017 50 cm-central-Texas

Derived Maps Aerial imaging, cadastral, and land parcel

Collection Timeframe 28 January 2017 through 22 March 2017

Spatial Reference Transverse Mercator (UTM) Zone 14N

https://data.tnris.org/?pg=1&amp;inc=24#5.5/31.33/-99.341
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Table 1. Cont.

Attribute Value

Classified pointcloud with
Class Codes

1 = unclassified, 2 = bare earth ground, 3 = low vegetation, 4 = medium vegetation, 5 = high
vegetation, 6 = buildings, 7 = low point/noise, 9 = water, 10 = ignored ground ((1 × NPS) near
BL), 13 = bridges, 14 = culverts

Collection Area 5804 sq mi

Linear Unit meter

Flight Lines 457 (434 flight lines, 16 cross-ties, and 7 filler lines)

Vertical Spatial Reference North American Vertical Datum 1988 (NAVD88), Geoid 12b

Sensor Type Riegl R680i

Camera Serial Numbers Unit 165, 863, 216

Vertical Accuracy
(NVA Checkpoints) RMSE 5.35, 95% Percentile 11.248 cm

Vegetated Vertical Accuracy
(VVA) RMSE 5.496, 95% Percentile 10.700 cm

Nominal Post Spacing (NPS) 0.50 m

Scan Angle 60 degrees

Average Ground Speed 127 Knts (flight speed)

Laser Pulse Rate 330 kHz

Scan Rate 130 Hz

Average Flying Altitude 2869 ft above mean terrain (AMT)

Aggregated Nominal Point
Spacing (ANPS) 0.48 m

Aggregated Nominal Point
Density (ANPD) 4.39 pts/m2Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 26 
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2.2.1. 3D City Model

A 3D city model is a three-dimensional digital representation of a city. A 3D city
model serves as the foundation for the estimation of 3D solar irradiation. The model can
be reconstructed from GIS data such as aerial photographs, point clouds, 2D building
footprints, and other supplementary data, such as CAD data and remote sensing methods.
Unlike 2D building footprint data, which can be found in any GIS or CAD format, 3D
building footprint data store building height information along with other semantic details
in their attributes. Using building footprints as LOD0, CityGML 2.0 employs the LOD
concept to identify multi-scale representations of semantic 3D city models [50]. One of the
most important characteristics of a 3D city model is its LOD, which relates to the model’s
resemblance to its real-world equivalent and has implications for usability. According to
CityGML 2.0, it has been divided into five categories based on thematic appearance and
geometric/semantic complexity [51]. LOD0 can be used to create LOD1 levels of buildings
by extruding the building shape based on height information [52]. LOD1 represents a 3D
volumetric representation of the building but does not represent any roof shapes, such as
flat, gable, or hip, which are important for SIE. To represent the real 3D building shape up
to LOD2, 3D point cloud data are widely used to extract the highest LOD. For the scope of
this research study, the LOD was kept up to LOD2.

2.2.2. LOD2 Building Extraction

LiDAR data are increasingly being used for such purposes since they offer topological
and geographic information. Laser light is sent from the sensor on the drone towards the
Earth’s surface, which reflects back from the objects, and the sensor receives the reflected
light and records it. LiDAR can measure distance, which can be converted into height, and
it can differentiate trees from other objects. In the LAS format version 1.4, the point cloud
data were categorized based on the American Society for Photogrammetry and Remote
Sensing (ASPRS) classification rules. The classified point cloud was used to extract 3D
surfaces, including the digital terrain model and digital surface model (DTM and DSM),
and the difference between the DTM and DSM normalized digital surface model (NDSM),
to compute the absolute height information of any feature on the ground. The DTM
represents the ground features, such as terrain, while the DSM represents any feature above
the ground (for details, see Tu Delft GEO1015.2021) [53].

The accuracy of 3D building extraction in such studies often relies on the resolution of
DSMs. To achieve this, LiDAR data with a fixed cell size of 1.5 feet were employed. How-
ever, a notable challenge emerged during the building object detection process, wherein
variations in building roof height and shape led to instances where one building encom-
passed multiple roofs of different heights, as illustrated in Figure 3a. A single image was
taken to provide a clearer understanding. Figure 3b illustrates that the general process of
3D building extraction, when using the built-in 3D BaseMap solution package in ArcGIS
Pro 3.2, does not consider this information. This limitation was addressed by leveraging the
deep learning (DL) model Mask R-CNN. Transfer learning was used in order to enhance the
results without the need for huge quantities of training data and intensive hyperparameter
tuning [54]. The approach employed in this study involved the utilization of a pre-trained
Mask-RCNN, which had been previously trained on a dataset relevant to the research topic
(referred to as the source dataset) [55]. The image processing steps were performed, such
as image transforms, enhancement, and data augmentation, which improved the image
quality considerably, making them more suited for analysis [56]. To enhance the effective-
ness of feature extraction in building footprint identification through image segmentation,
careful efforts were made to accurately extract and categorize the buildings from the 2D
raster [57]. We applied random transformations like scaling images by up to twenty percent
and occasionally flipping them horizontally. Along with the original images, this process
led to improved images [58]. Subsequently, the model was partly retrained using our
specific target dataset. The pre-trained Mask R-CNN model was employed, and fine-tuning
was performed on images. This process aimed to enhance the accuracy of feature extraction
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through instance segmentation and the detection of objects. The primary focus was on
identifying accurate building footprints within 2D images [58]. As shown in Figure 3b,
building footprint extraction represents the general process where a single building struc-
ture is delineated and identified. While the segmented footprint contains three new feature
classes using Mask R-CNN (Figure 3c), the resulting 3D structure provides an accurate
representation of the buildings (Figure 3d). The segmented building footprints were ulti-
mately saved in a geodatabase file within the package directory. Figure 3d illustrates the
final 3D buildings, which were created by assigning heights based on the derived DTM.
This process resulted in a 3D BaseMap solution specifically representing buildings at LOD2.
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Figure 3. (a) Raster DSM having three different building segments. (b) General 3D building extraction
process in ArcGIS Pro 3.2 (As indicated by the yellow shading building footprint have one segment).
(c) Building footprint segmentation using Mask R-CNN (As indicated by the yellow shading building
footprints have three segments). (d) Final 3D building representation in LOD2.

2.2.3. 3D Tree Extraction

Furthermore, unlike 3D buildings, extracting trees from LiDAR data is challenging
due to the absence of an accurate predefined boundary. The existing 3D BaseMaps solution
provided several tree extraction options based on the input data. However, in our study,
the 3D tree points were extracted using density-based spatial clustering algorithms [59].
Clustering is a method of simplifying the symbology of a complex layer of points. A
cluster is used to represent two or more point features. Feature clustering is the process
of grouping individual point features together into clusters. The algorithm used in this
process utilizes data from the vegetation class of LIDAR data. Using these parameters, the
algorithm is able to extract 3D tree points and establish minimum bounding geometry. The
result of this procedure is a collection of 3D tree points that contain important data, such as
tree height and width. This information is then used in the creation of 3D procedural tree
models. Figure 4a–c show the overall overview of 3D procedural tree modeling.
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2.3. Solar Irradiation Model

Urban buildings have a high solar irradiation capacity, making the installation of solar
panels for different purposes cost-effective and ecologically friendly. Urban environments
include complex topologies, diverse building designs and heights, and vegetation, which
can impact solar irradiation. Estimating solar irradiation for multiple buildings at the city
scale demands high-performance software and hardware [60]. Built-in GIS tools assess solar
irradiation in seconds, making them useful for the estimation of the solar PV potential in
urban areas. Various solar irradiation models, predominantly dependent on geographical
and atmospheric parameters, consider the specific geographical location of the area [61,62].
However, many of these models assume uniform solar irradiation for every point on a
building’s surface, leading to inaccuracies in the results. They often overlook factors like
the surface slope or the impact of shadows, such as those cast by trees, which can have a
significant influence on the results.

The ESRI-based Solar Analyst tool developed by Fu et al. [63] uses a viewshed algo-
rithm. This tool does not inherently model clouds, as clouds are very complex to predict or
model. This modeling tool was tested and validated by comparing estimated temporal and
spatial insolation (solar irradiation) patterns in the region of the Rocky Mountain Biological
Laboratory (RMBL) with detailed weather, vegetation, and monitoring of insolation (solar
irradiation). Recently, several studies at the urban scale have also used and validated this
modeling tool [25,64,65]. Generally, the implementation of this approach is a challenging
task. While it does not inherently model clouds due to their complexity, it considers shad-
ows from surrounding buildings and trees, allowing for modeling over inclined surfaces,
which is particularly useful in urban landscapes. The tool can integrate attributes that
vary spatially over large regions, making its implementation a challenging yet powerful
process. The basic principle behind this modeling tool is a four-step process: (i) viewshed
calculation; (ii) sunmap calculation; (iii) skymap calculation; and (iv) overlay of viewsheds
with sunmaps and skymaps.

The viewshed is a raster representation of the entire sky that is visible or obstructed
when viewed from a particular location on the Earth. This is similar to the view provided
by the upward-looking hemispherical fisheye photograph [66]. The skymap and sunmap
were overlaid on the viewshed, as shown in Figure 5. The gap fraction is the proportion of
unobstructed sky area in each skymap or sunmap sector, which is calculated by dividing
the number of unobstructed cells by the total number of cells in that sector. The total global
irradiation is the sum of direct and diffuse solar irradiation, where Globaltot = Dirtot + Diftot,
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where Dirtot represents the direct solar irradiation. It is determined on the surface from
the sunmap with a solar constant of 1367 W/m2 (the value recommended by the World
Metrological Organization (WMO)) and the calculation of the zenith angle. Meanwhile, for
Diftot, diffusive radiation was calculated using either the uniform sky or standard overcast
models [67].
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Within this study, we utilized an established ArcGIS Pro 3.2 solar irradiation model
employing the viewshed algorithm to compute the total global radiation on a monthly
and yearly basis. The model requires a 2.5-dimensional surface that serves as input,
alongside a 3D site information model containing buildings and trees. Preceding the 3D
city model process, 3D multipatch building objects were generated, providing essential
inputs for subsequent analyses. Two solar irradiation models were developed in line with
the study scope:

I. without site context (A);
II. with site context (B).

Figure 6a, demonstrates the site context model using only the DSM (without built sur-
rounds) as an input file. In contrast, Figure 6b includes the built environment, incorporating
trees and buildings.

In areas with dense vegetation and tall trees, solar panel points on rooftops were
spaced at 1.5 ft × 1.5 ft intervals. The resulting annual average SIE map was divided into
zones, as shown in Figure 6c, with dark red buildings receiving more solar irradiation,
followed by light orange to dark orange buildings.

2.4. Evaluating Solar Irradiation with 3D City Model

The present study employed a four-step methodology to analyze solar irradiation.
This methodology encompassed the calculation of viewsheds, sunmaps, skymaps, and the
subsequent overlay of viewsheds with sunmaps and skymaps. The methodology utilized
LOD2 buildings and high vegetation, in conjunction with the DSM, for the purpose of
analysis. The solar data obtained from NASA’s 1-Degree Global Dataset were employed,
and the analysis was conducted using the standard overcast sky model; see power.larc.nasa.
gov [68] for more details. The solar irradiation task utilized default parameters, including
a sky size of 200, a zenith division of 8, and an azimuth division of 8. The sky dome was
divided into 8 parts each for both vertical and horizontal angles, facilitating a thorough
depiction of the sun’s motion and location throughout the day and year. By employing
8 divisions in both the vertical and horizontal orientations, the solar irradiation analysis
generated comprehensive sun position data at consistent intervals. The level of resolution
employed in this study enabled a better representation of solar shadows, direct sunlight,
and the distribution of solar energy over the study area. The calculation of solar irradiation
raster maps requires significant computational resources and memory capacity. To optimize
the efficiency, the cell size was maintained at 1.5 ft × 1.5 ft for the resultant solar irradiation

power.larc.nasa.gov
power.larc.nasa.gov
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raster. Analysis with 1.5 ft × 1.5 ft was deemed suitable for the scope of this research. For PV
installation planning, a larger cell size is advised to better measure radiation differentials.
The approach performed well because the overall results remained unaffected by the cell
size for the larger area. The output solar raster maps were categorized on a monthly and
yearly basis, with quantification measured in kWh/m2-year.
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The approach employed in this study utilized the OGC CityGML standard as a means
to construct a 3D city model, thereby facilitating a thorough digital representation of the
urban area in three spatial dimensions. The LOD2 level encompassed the representation of
buildings and trees, providing comprehensive data regarding their structure and height.
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By draping all vertical characteristics over the DTM, we achieved seamless integration and
a realistic 3D city model.

3. Analysis and Results
3.1. Annual Solar Irradiation Potential Estimation

The research area was analyzed to determine the average annual GSI in 2022.
Figures 7 and 8 show the scenarios with site and without site context. The results revealed
that the highest average solar irradiation for the entire year, reaching 7.00 kWh/m2, was
observed using a 1.5 ft × 1.5 ft grid size on building roofs. During July, the peak solar
irradiation on the roof was recorded as 5.6 kWh/m2 with site context and 6.9 kWh/m2

without site context. In contrast, the lowest values were observed in December, with
solar irradiation reaching 2.8 kWh/m2 with site context and up to 3.0 kWh/m2 without
site context. These findings are in line with the outcomes of previous research studies
conducted by Zhang, et al. [21] and Teyabeen, et al. [69], corroborating the accuracy
and reliability of our analysis. Moreover, the site context model played a crucial role in
revealing the impact of the high tree density on the southeast side of the study area. It
indicated that solar irradiation was significantly reduced due to the presence of dense
vegetation in that particular region. The site context model was proven to understand
the spatial distribution of solar irradiation across the research area and provide insights
into how various environmental factors, such as tree density, can influence solar energy
availability. A more detailed analysis of the spatial distribution of solar irradiation across
the research area can be found in the site impact analysis.

Figure 9 illustrates the comparison of the number of buildings (y-axis) with solar
irradiation values (x-axis), emphasizing the significant differences between the ‘with context’
and ‘without context’ scenarios. As an example, in the scenario where context is not
considered, there are 1517 buildings with solar irradiation values ranging from 4.7 to
4.9 kWh/m2. However, when the context is taken into account, this corresponds to a
reduction of approximately 45%, to 825 buildings. The decrease in building count can be
attributed to the presence of trees, as the site context considers their impact on the estimates.
Conversely, when the site context is not considered, the number of buildings automatically
increases. Figure 9 effectively demonstrates that the site context significantly influences
the estimates of total solar irradiation (i.e., certain numbers of buildings). It highlights that
when the site context is considered, the number of buildings decreases, indicating a notable
impact on SIE. The phenomenon is further illustrated by showcasing a large number of
small buildings that are most affected in the study area.

Furthermore, Figures 7 and 8 illustrate the results of the whole year SIE with site and
without site context. The analysis considered a total of 10,490 buildings, calculating the
total amount of solar irradiation that each roof received in kWwh/m2/year. The results
reveal that the SIE values are 99.97 kWh/m2 with context and 109.17 kWh/m2 without site
context (as a percentage of the total roofs). This represents a decrease of approximately
9.3% when the context is considered.

Moreover, Figures 7 and 8 reveal that the randomly selected value (with a context
of 3.01 kWh/m2/day, highlighted in red) is lower than the estimated value (without a
site context of 4.44 kWh/m2/day). For detailed information, refer to the link provided
in the Conclusions section. The findings of our study highlight the significant impact of
vegetation on incoming solar energy.
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Figure 9. Annual solar irradiation estimation with site and without site context.

3.2. Validation

To assess the influence of the site on the GSI results from the previous step, the ArcGIS
Pro 3.2 statistical tool hotspot analysis (Getis-Ord Gi*) from the Spatial Statistics toolset was
used to find spatial autocorrelation patterns for each feature in the dataset. This was done
by identifying the differences between features that were clustered (hotspots) and features
that were spread out (coldsopts). This statistical method facilitated the identification of
areas with statistically significant high or low values in comparison to their neighboring
features. According to Kowe et al. [70], hotspot analysis is considered the best method
for the analysis of large geospatial data, and it is used for the first time in this study.
The extracted 3D tree point feature class was employed to locate the hotspots, containing
valuable information such as tree height, width, and other auxiliary details retrieved from
LiDAR data. The hotspot analysis tool in ArcGIS Pro 3.2 identifies spatial clusters with
statistically significant high or low attribute values [71]. Given a set of weighted data
points, such as the number of trees where the height is spatially weighted by the width of
each tree, it operates under the assumption that data values are spread randomly across
the study area. This tool identifies “hotspots”, which are clusters of data points with
higher tree densities than expected. The hotspot analysis also delineates spatial clusters of
lower-than-expected tree density [71]. The mathematical model of Getis-Ord Gi*, or the
Getis-Ord local statistic, is given as follows:

G∗
i =

∑n
j=1 wi,jxj − X ∑n

j=1 wi,j

S

√ [
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(
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(1)
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n
−
(
X
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Equation (1) represents the relationship between the attribute value xj for feature j,
the spatial weight wi,j between features i and j, and the total number of features n. As the
Gi* statistic is a z-score, no additional calculations were required. Equation (2) determines
the overall spatial autocorrelation of the attribute values for all features. The calculation
involves finding the average of the Gi* statistics for all features. Equation (3) computes the
p-value for the overall spatial autocorrelation statistic. The p-value represents the likelihood
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of obtaining a value of G or more extreme than the observed value assuming that there is
no spatial autocorrelation. The input data should be a point or a magnified point for any
geographic zone. However, the most significant factor that affects the output result before
conducting hotspot analysis is the conceptualization of spatial relationships. There is a
broad theory and best practice for the modeling of spatial relationships between features
available on the ESRI website. For the sake of this study’s feasibility, we opted for the
fixed-distance band option to conceptualize spatial relationships. The steps in determining
how a site affects solar irradiation are as follows: (i) finding hotspots and coldspots for tree
points based on height and width as a weighted field; (ii) visually depicting a hotspot where
dense and tall trees appear; (iii) finding the difference in average solar irradiation with
and without context data; and (iv) finding the hotspot and coldspot where the difference
appears in the global solar result. The return of this tool is the Gi* statistic, which comprises
a z-score and p-value for each feature in the dataset. For statistically significant positive
z-scores, a larger z-score shows more intense clustering of high values (hotspot). For
statistically significant negative z-scores, the smaller the z-score is, the more intense the
clustering of low values (coldspot). The use of Gi* statistics involves examining the z and
p-values to interpret the hotspot analysis result. Gi* statistics return z- and p-values, while
the Gi* z-score is displayed at a 238-foot threshold distance band. A higher positive z-value
and lower p-value represent the clustering of high tree data points (hotspot), indicating
areas with high tree density. Conversely, a larger negative z-value and lower p-value
indicate the clustering of low tree height points, representing coldspots with fewer trees
and low tree density. The Gi-Bin score ranges from 0 to 3, with a positive higher value of 3
indicating a 99% confidence level of highly clustered points (hotspots with very high tree
density) and a −3 value indicating a coldspot of very low tree density, with 95% confidence.

At +2 Gi-bin, points are moderately clustered with hotspots in areas of medium–high
tree density, while −2 Gi-bin represents a coldspot in an area of low tree density. At a 90%
confidence level, ±1 Gi-bin indicates low clustering with low hotspots and lower high tree
density at +1 Gi-bin and low coldspots with low high tree density at −1 Gi-bin.

Site Impact Analysis

The site impact analysis aimed to assess the vegetation effects on GSI. In Figures 10 and 11,
the dark red hotspots in the southeast of the study area represent dense and tall tree areas,
whereas dark blue represents areas with less dense and smaller trees. Results were calculated
based on point pattern analysis, representing tree positions in the real world. Table 2 presents
the results of the Getis-Ord Gi* statistics at various confidence levels. It identifies areas with
extremely high and low tree density at +3 Gi-Bin and −3 Gi-Bin for a 99% confidence level, as
well as areas with moderately high and moderately low tree density at +2 Gi-Bin and −2 Gi-Bin
for a 96% confidence level.

Table 2. Hotspot analysis with Getis-Ord Gi* statistics summary for trees.

Confidence Level (%) Gi_Bin Pattern Tree Spots Tree Density

99

3
VH

hotspot
VH

clustered Tall Trees

−3
VH

coldspot
VL

clustered Tall Trees

95
2 M clustered hotspot

MH

Tall Trees

−2 M clustered coldspot
ML

Tall Trees
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Table 2. Cont.

Confidence Level (%) Gi_Bin Pattern Tree Spots Tree Density

90
1 Clustered hotspot

H

Tall Trees

−1 Clustered coldspot
L

Tall Trees
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Figure 10. Tree hotspots and coldspots for the study area.

At a 90% confidence level, an increase of +1 Gi-Bin suggests areas with a higher density
of tall trees, while a decrease of −1 Gi-Bin suggests areas with a lower density of tall trees.

The map shown in Figure 10 was created using tree heights weighted by tree width.
The figure shows the areas with tall trees and a higher width as very high hotspots, while
areas with small trees and a lower width are represented as very low coldspots.

The hotspot maps (Figures 10 and 11) were created by analyzing the difference in
average solar irradiation in kWh/m2/day with and without site context. The extremely
high hotspot represents an area with tall trees and a greater width, indicating a significant
tree influence on solar irradiation. In contrast, the very low coldspot signifies areas with
small trees and a smaller width, showing a minimal tree impact on solar irradiation.
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The magnitude of the difference between solar irradiation values with and without
site context determines the size of the hotspot on the map. A larger difference leads to a
more extensive hotspot, while a smaller difference results in a greater coldspot. As seen
in the dark blue coldspot in Figure 10, areas with little difference in solar irradiation are
evident. Interestingly, the findings reveal that trees have little to no effect on areas with
high-rise buildings, which is understandable given that trees are not taller than buildings
and thus cannot significantly shade them. Instead, the study area experiences the most
significant tree shade impact in the southeast, with a small area in the northwest also
affected due to a high concentration of small residential buildings. The solar irradiation
analysis highlights the critical role of selecting the most suitable location for solar panel
installation (Figure 12). Areas with little variation in solar irradiation, classified as suitable
(red shaded) and highly suitable (aqua shaded), emerge as prime sites for efficient energy
generation. While certain areas may not be suitable (yellow shaded), exploring alternative
approaches is essential. By strategically placing solar panels in suitable and highly suitable
zones, along with advancements in solar technology, we can pave the way for a greener
and more sustainable energy future. Embracing solar energy in these optimal locations can
significantly reduce our carbon footprint and foster energy independence.
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4. Discussion

To estimate the solar potential in three dimensions, the study employed LiDAR data to
extract 3D geometric information in accordance with OGC CityGML standards. The devel-
oped methodology was implemented in a 3184-acre study area, equivalent to 4.975 square
miles, located in a section of Austin, Texas, with the aim of investigating the impact of the
site context on city-scale global solar irradiation estimation.

Moreover, this research investigated the impact of the site context on city-scale global
SIE. To validate the established methodology, models were utilized, both with and without
site context, to identify areas with tall and dense trees. The impact of tree shadowing was
mainly observed in the southeast, with a dark red hotspot, and a smaller region in the
northwest, which consisted of several small residential buildings. The solar irradiation
estimates, considering cases both with and without site context, revealed the highest and
lowest values as 5.6 kWh/m2 and 6.90 kWh/m2 in July, and 2.8 kWh/m2 and 3.0 kWh/m2

in December, respectively, validating the accuracy of our methodology for city-scale studies.
The research conducted by Teyabeen, et al. [69] supports and corroborates these findings. It
is worth noting that no validated method currently exists to assess how a site’s location
influences GSI estimates at a city scale. This research makes a significant contribution
to addressing this knowledge gap and enhancing our understanding of solar potential
in urban environments. As an example, Han et al. [26] introduced a highly appropriate
method for the 3D simulation of solar potential estimation in the area surrounding a small
number of buildings with overestimated results. Their approach is notably more intricate
than the one outlined in our study. There have been several studies on the shadow caste
of urban solar potential estimation using generic models of urban layouts with a limited
number of buildings, as demonstrated in the works of Brito et al. [72] and Liang et al. [60].
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Moreover, some studies have investigated the effects of trees in the urban form on the
solar radiation potential for new buildings in their early design phases [73]. Meanwhile,
in our study, the 3D city model extraction (building’s rooftop and trees) from the LiDAR
point cloud based on CityGML standards (model with exchange format for representation,
storage, and virtual 3D city model exchange) and solar potential estimation at a city scale
was demonstrated.

In addition, the 3D building extraction process was found to be very accurate based on
the visual identification of LiDAR points and the extracted 3D buildings (Figure 3: Final 3D
buildings). The overall results were very promising when using the site context model. The
extracted 3D building and tree results were presented as a 3D volumetric representation
with semantic information. The process successfully modeled a range of roof shapes, with
flat roofs being the most common, followed by gable and hip roofs. However, some of the
buildings were wrongly classified during the extraction process due to their roof shapes,
which had to be manually corrected. Another issue encountered was selecting data from
several sources, which were acquired on various dates, resulting in the absence of some
buildings, which were shown using only building LiDAR points, corrected manually.

The accuracy of a solar irradiation study is closely tied to the quality of the 3D
building model used. In this study, a LiDAR dataset was employed to construct a detailed
geographical and geometric model; see also Iñaki et al. [74]. The study by Li et al. [15] found
that there is high uncertainty in the building extraction process. The basic assumption is
made that all the areas in a single building footprint have a consistent height. However,
this assumption often proves inaccurate due to the presence of varied roof shapes and
heights within a single building footprint. To accurately represent the building model, this
study has addressed a major challenge in building footprint height estimation based on
pre-modifications of the DSM.

However, the majority of SIE studies rely on surface derivatives from classified LiDAR
data, using a 2.5D urban scene as the input file; see Sredenšek et al. [75].

Our findings suggest that the northwest (central) region offers a large usable area
along with sufficient solar irradiation, making it a suitable location for PV installation
(Figure 12). The analysis reveals that the southwest and a small section of the southeast in
downtown Austin are less suitable locations for PV installation due to their lower levels
of solar irradiation. Conversely, the southeast region experiences a more pronounced tree
shade impact, making it less suitable for PV installation due to reduced solar irradiation
availability. However, even in these shaded areas, careful design and advanced solar
technologies, such as bifacial solar panels and sun-tracking systems, offer promising
options for effective solar energy harnessing. The small area in the northwest, characterized
by numerous small residential buildings, necessitates careful planning to maximize solar
exposure while minimizing shading from neighboring buildings.

In addition, it is important to note that existing building roofs often feature various
installation elements, such as AC vents, antennas, chimneys, and overhangs, as shown in
Figure 13. These elements can impact the optimal placement and efficiency of solar panels
on the rooftops. They can occupy significant portions of the roof, making them unsuitable
for solar panel installation, a factor that was not considered in the 3D city modeling process
of this study.

Future research should prioritize the development of an optimized algorithm capable
of modeling existing buildings up to LOD4. This advancement would allow for more
accurate estimations of individual building potential, considering detailed façades and roof
features.

The prevalence of high vegetation in residential areas was a significant focus of
this study. Our findings indicate that tall trees can cast substantial shadows on smaller
structures, as depicted in Figures 10 and 11. These observations suggest that regions with
tall and densely packed trees have a more significant impact on GSI compared to residential
zones with smaller buildings, as they create substantial shading and reduce incoming solar
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irradiation. The influence of these factors on solar energy production, space conditioning,
and air temperature reduction requires further exploration; see Allen et al. [76].
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In addition, the exportation process of 3D GIS data is substantially more challenging as
compared to 2D GIS data. The 3D GIS data are more complicated in terms of 3D geometry
and topology. Special care is taken when projecting data into the 3D web. As for the scope
of this research work, ArcGIS Online was used to publish 3D data. ArcGIS Online and a
3D web application based on ArcGIS Pro 3.2 published data were used to show the final
model. Furthermore, the visualization process can provide building-level information to
users using web GIS technology. The data can be shared with different stakeholders and the
public for community engagement. The final implementation and result of the research can be
accessed via a 3D web application using the following link: https://arcg.is/1fG9jjX (accessed
on 18 October 2023). The 3D web application was developed to be more user-friendly; it
contains details of the monthly and yearly solar irradiation received by each building.

The 3D web application marks a significant forward step in the development of
successful web-based public participation. It can make complicated information easy to
understand and make it easier for stakeholders and city planners to get involved.

However, this research had some limitations. Specifically, the study primarily focused
on rooftops and façade features were not considered. The DSM was not utilized as it
disregards the accurate shape of the entire building [77]. Moreover, the use of the DSM
often leads to an overestimation of solar irradiation, especially in densely populated areas.
Furthermore, the absence of information on vertical surface features in the LiDAR input
data prevented the inclusion of factors such as windows, doors, and other façade elements
in the analysis. While façade features may contribute to solar activity, incorporating them
into solar irradiation calculations may result in an overestimation due to their potential
overestimation of the solar active area [78,79]. The primary focus of this study was on
rooftops using LiDAR and photogrammetry, and conducting similar façade solar studies in
urban contexts may present practical challenges. Additionally, there are geographical and
temporal limitations in the use of atmospheric data, such as the turbidity factor and clear
sky index. Factors like turbidity, sky clouds (which are difficult to predict), and reflected
radiation have temporal and spatial limitations. It is essential to exercise caution while
interpreting the results obtained from the Solar Analyst tool, as they provide approximate
estimates of future PV potential.

https://arcg.is/1fG9jjX
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5. Conclusions and Future Work

Our study demonstrates the importance of integrating 3D city modeling and solar
potential estimation for sustainable urban planning. It enables informed decisions on
PV installation, enhances renewable energy integration, fosters public engagement, and
showcases geospatial technology’s potential for the advancement of renewable energy
solutions through interdisciplinary collaboration.

The study area in downtown Austin, Texas, heavily relies on fossil fuels like natural
gas and coal to meet its energy demands. However, the burning of these fuels releases a
significant amount of carbon dioxide, contributing to carbon emissions and climate change
at both local and global levels. To pursue a more sustainable energy approach, SIE emerges
as a viable solution.

The presence of high-rise buildings in the study area proves advantageous for PV
installation, as they remain largely unaffected by shading from nearby trees. This highlights
the potential for the integration of solar panels on the rooftops of these tall buildings,
allowing for efficient energy generation without interference from vegetation.

In conclusion, the strategic selection of optimal locations and the adoption of innova-
tive solar technologies can unlock the solar potential in the study area, contributing to a
sustainable and eco-friendly energy future. This approach will reduce the reliance on fossil
fuels, mitigate carbon emissions, and address the impacts of climate change at the local
and global scales.

At the highest level of detail (LOD 4), using advanced deep learning algorithms, there
is still some room for data-driven 3D city modeling, which has the potential to be highly
effective in future solar planning and other geodesign processes. Due to a shortage of
meteorological station data as well as other sociological and economic considerations, SIE
was performed in a clear-sky environment. These factors can be included in future studies
to help with the better planning of PV installation in the research area. An important
consideration will be the adaptation of the model to meteorological data. This adaptation
will involve the adjustment of parameters related to transmissivity and diffusive proportion.
It will be necessary to conduct several modelization series to identify the optimal increments
for these two parameters.

A future study may experiment with other artificial intelligence techniques and data
fusion with satellite remote sensing to increase the accuracy in recognizing walls and
windows in order to create a model that is more precise and accurate.

Author Contributions: Conceptualization, H.W. and I.M.; methodology, H.W.; software, H.W.;
validation, J.S., Y.J. and F.U.K.; formal analysis, H.W.; investigation, J.S.; resources, H.W.; data curation,
H.W.; writing—original draft preparation, H.W.; writing—review and editing, I.M.; visualization,
F.U.K.; supervision, J.S.; project administration, Y.J.; funding acquisition, Y.J. All authors have read
and agreed to the published version of the manuscript.

Funding: This study is supported by the National Key R&D Program of China (No. 2016YFB0502203).

Data Availability Statement: All data, models, and code generated or used during the study appear
in the submitted article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fogl, M.; Moudrý, V. Influence of vegetation canopies on solar potential in urban environments. Appl. Geogr. 2016, 66, 73–80.

[CrossRef]
2. Devabhaktuni, V.; Alam, M.; Depuru, S.S.S.R.; Green, R.C., II; Nims, D.; Near, C. Solar energy: Trends and enabling technologies.

Renew. Sustain. Energy Rev. 2013, 19, 555–564. [CrossRef]
3. Waqas, H.; Shang, J.; Munir, I.; Ullah, S.; Khan, R.; Tayyab, M.; Mousa, B.G.; Williams, S. Enhancement of the energy performance

of an existing building using a parametric approach. J. Energy Eng. 2023, 149, 04022057. [CrossRef]
4. Jaglin, S. Urban Electric Hybridization: Exploring the Politics of a Just Transition in the Western Cape (South Africa). J. Urban

Technol. 2022, 30, 11–33. [CrossRef]

https://doi.org/10.1016/j.apgeog.2015.11.011
https://doi.org/10.1016/j.rser.2012.11.024
https://doi.org/10.1061/JLEED9.EYENG-4546
https://doi.org/10.1080/10630732.2022.2111176


Remote Sens. 2023, 15, 5616 24 of 26

5. Akaev, A.; Davydova, O. Climate and Energy: Energy Transition Scenarios and Global Temperature Changes Based on Current
Technologies and Trends. In Reconsidering the Limits to Growth: A Report to the Russian Association of the Club of Rome; Springer:
Cham, Swizterland, 2023; pp. 53–70.

6. Jing, R.; Liu, J.; Zhang, H.; Zhong, F.; Liu, Y.; Lin, J. Unlock the hidden potential of urban rooftop agrivoltaics energy-food-nexus.
Energy 2022, 256, 124626. [CrossRef]

7. Javanroodi, K.; Nik, V.M.; Mahdavinejad, M. A novel design-based optimization framework for enhancing the energy efficiency
of high-rise office buildings in urban areas. Sustain. Cities Soc. 2019, 49, 101597. [CrossRef]

8. Dong, C.; Nemet, G.; Gao, X.; Barbose, G.; Sigrin, B.; O’shaughnessy, E. Machine learning reduces soft costs for residential solar
photovoltaics. Sci. Rep. 2023, 13, 7213. [CrossRef] [PubMed]

9. Defaix, P.R.; van Sark, W.G.J.H.M.; Worrell, E.; de Visser, E. Technical potential for photovoltaics on buildings in the EU-27. Sol.
Energy 2012, 86, 2644–2653. [CrossRef]

10. Eremia, M.; Toma, L.; Sanduleac, M. The smart city concept in the 21st century. Procedia Eng. 2017, 181, 12–19. [CrossRef]
11. Lu, Y.; Wu, Z.; Chang, R.; Li, Y. Building Information Modeling (BIM) for green buildings: A critical review and future directions.

Autom. Constr. 2017, 83, 134–148. [CrossRef]
12. Avtar, R.; Tripathi, S.; Aggarwal, A.K.; Kumar, P. Population–urbanization–energy nexus: A review. Resources 2019, 8, 136.

[CrossRef]
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