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ABSTRACT 22 

In the indoor environment, toilet is one of the primary sources of bioaerosol because 23 

flushing events can disturb stool materials. Bioaerosol exposure has a significant impact 24 

on human health. Therefore, this research focused on systematical investigation of 25 

Staphylococcus aureus bioaerosol emission characteristics in an indoor toilet after 26 

flushing with time. Then, annual probability of infection and disease burden with time 27 

under various ventilation scenarios were determined using a Monte Carlo simulation-28 

based quantitative microbial risk assessment. The results showed that at the initial phase, 29 

the highest and lowest bioaerosol concentrations were found in poor and combined 30 

ventilation scenarios, respectively. The bioaerosol concentration in natural ventilation 31 

scenario was 1.1 times higher than that in mechanical ventilation scenario. However, a 32 

decreasing trend was observed after flushing. The adult male’s health risks were 33 

consistently higher than those of all other exposed persons. However, the maximum and 34 

minimum health risks were observed in the poor and combined ventilation scenario, 35 

respectively. The health risks in the mechanical ventilation scenario were lower than 36 

those in the natural ventilation scenario. However, the health infection risk varied with 37 

time: it was unbearable to the U.S. Environmental Protection Agency benchmark at 0 min 38 

to 15 min after flushing, but it was tolerable after flushing 35 min. Moreover, the disease 39 

health burdens were below the World Health Organization benchmark after flushing 20 40 

min to 35 min. This research delivered novel data and provide a guideline for controlling 41 

the essential health threats from bioaerosol emissions in various toilet usage scenarios. 42 

 43 
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1. Introduction  48 

In the indoor environment, toilet is one of the primary sources of bioaerosol due to 49 

flushing events [1, 2]. The flow of toilet water can aerosolize stool materials (e.g., 50 

bubbling, swirling, and splashing) [3, 4]. Given the turbulence and fluctuation of toilet 51 

water, toilet flushing releases a significant amount of bioaerosols [5] that can contaminate 52 

the indoor air and affect human health [6, 7]. In the 1950s, Jessen reported for the first 53 

time the bioaerosol emission during toilet flushing when he detected bacteria seeded 54 

around the toilet after flushing [3]. The emission characteristics of bioaerosol in hospital 55 

toilets were measured by Knowlton et al. [8] under three different scenarios. In addition, 56 

Aithinne et al. [9] examined the survival of Clostridioides difficile spores, which 57 

originated from the bioaerosol that settled down, in contaminated indoor environments 58 

nearby and distant from the toilet seat. However, the research about bioaerosols emission 59 

characteristics and its exposure health risk assessment with the time passage is 60 

comparatively limited. 61 

Bioaerosols are particles of a pathogenic biological nature dispersed in the air [10]. 62 

Thus, bioaerosol exposure has a significant impact on human health. Inhalation is the 63 

main pathway of bioaerosol exposure [11, 12]. Bioaerosols with an aerodynamic 64 

diameter of 5 µm to 10 µm are often trapped in the upper respiratory system and can 65 

cause allergic symptoms. Meanwhile, bioaerosols with a diameter of less than 5 μm are 66 

also known as respirable particles. They can penetrate deep into the alveoli and cause 67 

allergic alveolitis [13]. After toilet flushing, the bioaerosol concentration increases; the 68 

bioaerosol particles are 3 µm in diameter or less [14, 15]. Staphylococcus aureus 69 

bioaerosol is one of the most prevalent airborne pathogenic bacteria in the indoor toilet 70 

environment, and it exhibits a hygiene-related biological activity as strong as E. coli [16]. 71 

The E. coli and Staphylococcus aureus bioaerosol are both frequently identified and 72 
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utilized as indicator bioaerosol [17, 18], even though a minor influence of human skin 73 

normal flora of Staphylococcus aureus exists [19, 20]. This bioaerosol can enter the 74 

human body in various ways, including the digestive system through respiration [21, 22], 75 

which can cause lower respiratory tract infection, pneumonia, and bacteremia [23]. 76 

Understanding how bioaerosol emission characteristics fluctuate quantitatively over time 77 

can be used to better describe the bioaerosol exposure assessment and risk 78 

characterization [24].  79 

Specific methods have been developed for the investigation of bioaerosol emission 80 

characteristics and their health risks on humans. Quantitative microbial risk assessment 81 

(QMRA) is broadly used to identify the health risks (annual probability of infection 82 

(P(a)inf) and disease burden (DB)) associated with exposure to a bioaerosol environment 83 

[25, 26]. World Health Organization (WHO) recommends using QMRA with Monte 84 

Carlo simulation to assess the range and likelihood of health risk quantitatively [27, 28]. 85 

The two most widely used health risks benchmarks for risk characterization are U.S. 86 

Environmental Protection Agency (EPA) (≤E-4 pppy) for P(a)inf and WHO (≤E-6 87 

disability-adjusted life year (DALYs) pppy) for DB [29, 30].  88 

The emission of bioaerosol concentration due to toilet flushing is one of the reasons for 89 

disease transmission by a medium [31]. As a result, daily toilet users may inhale 90 

bioaerosol. According to Widdowson et al. [32] that, several passengers become infected 91 

with norovirus in flights from London to the Philippines after using the plane toilet [33]. 92 

During the diarrhea of patients, bioaerosol may be efficient in spreading pathogenic 93 

microorganisms through the moving air [34]. Therefore, temperature, relative humidity, 94 

and ventilation systems significantly affect bioaerosol concentration and health risk 95 

assessment in the indoor air [35]. However, systematic research about emission 96 
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characteristics and quantitative health risk assessment of toilet flushing bioaerosols under 97 

various ventilation scenarios is insufficient. 98 

Therefore, in this research, the bioaerosol emission characteristics (size distribution 99 

and concentration) of Staphylococcus aureus were systematically investigated in an 100 

indoor toilet after flushing with time. An Andersen impactor was used for the field 101 

measurements. Then, this work focused on the quantitative health risk assessment 102 

regarding the P(a)inf and DB of the exposed persons with time under various ventilation 103 

scenarios by performing a Monte Carlo simulation-based QMRA modelling. The current 104 

research delivers novel data about the emission characteristics of bioaerosol and its health 105 

risks quantitatively over time and bridges the knowledge gap between the emission 106 

characteristics and the assessment of risk characterization for exposed persons after toilet 107 

flushing. The results can provide a guideline for controlling essential health threats from 108 

bioaerosol emissions in various toilet usage scenarios.  109 

 110 

2. Materials and Methods  111 

2.1. Indoor toilet description  112 

An indoor bidet toilet (4.9 L water volume per flush) was selected for this study. The 113 

toilet door is at the lower right corner (size: 210 × 75 cm2). The orientation of the toilet 114 

room is face north, situated in the corner of the apartment, having an indoor area of 264 × 115 

180 cm2 and a height of 300 cm as a typical floor plan (Fig. 1). A window, which can 116 

fully open up to 90°, was at the lower left corner; its height was above 150 cm from the 117 

ground surface, and its size was 55 × 55 cm2. A mechanical extraction ventilation system 118 

(ceiling exhaust fan is equipped without filters) was switched independently at the center 119 
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of the toilet ceiling. It has a default setting with a fixed air volume of 180 m3/h. A basin 120 

was located at the top corner of the indoor toilet. 121 

 122 

[Fig. 1 inserts here] 123 

  124 

2.2. Sampling procedure and bioaerosol analysis 125 

In order to avoid the contaminant influence, which may affect the concentration of 126 

bioaerosols, the toilet was closed for 6 hours and then conducted ventilation for 1 hour 127 

before sampling. A six-stage Andersen impactor (FA-1 Hongchangxinlnc, Beijing, 128 

China) was used to measure the concentrations of Staphylococcus aureus bioaerosol after 129 

toilet flushing. The size ranges of the impactor are shown in the Supplementary Materials. 130 

Following the standard operative procedures, the egg-yolk mannitol salt agar petri dish 131 

was placed in a sampler each stage for Staphylococcus aureus bioaerosol sampling [36]. 132 

The height of the sample rack was 0.8 m due to the sitting posture of the bidet toilet. The 133 

samples were collected for 5 min by the Andersen impactor at a flow rate of 28.3 min/L 134 

[37].  135 

Table 1 shows the 4 types of ventilation scenarios, exposure time, exposed position, 136 

exposure site, exposed persons and exposure frequency. We set these ventilation 137 

scenarios to open or closed window with turned on or off air exhaust before sampling. 138 

The impactor was cleaned with a 75% alcohol cotton slice before and after each sampling 139 

repetition. The sampler had been set on the exposure site while the subject was attending 140 

the toilet. After attending the toilet, the subject flushed the toilet one time with an open 141 

lid to remove the stool materials and immediately started taking samples. After one time 142 

flushing, the 8 different time sampling periods were set as follows: 0 min (the moment of 143 

Jo
urn

al 
Pre-

pro
of



9 
 

pressing the flushing button), 5, 10, 15, 20, 25, 30, and 35 min. Thus the sampling was 144 

conducted every 5 min after pressing the flushing button to get results with the passage of 145 

time and compared with each other. One time sampling with one time flushing was 146 

completed in a single day. At each ventilation scenario, 3 times sampling were conducted 147 

for the whole 8 different time sampling periods. Then, 96 samples were obtained. In 148 

addition, a background sampling was also conducted 5 min before attending the toilet. 149 

Temperature and relative humidity were recorded on each sampling day, and their mean 150 

value for each ventilation scenario in 3 sampling days was shown in the Table 2. The 151 

temperature and the relative humidity were measured on site in the middle of the toilet 152 

room using a Testo-610 meter. Their measuring range, accuracy and resolution are shown 153 

in the Supplementary Materials Table 1. After sampling, the Petri dish was transported to 154 

the laboratory for analysis. The positive hole method was used to correct the actual 155 

numbers of colonies at each petri dish stage. The bioaerosol concentration was then 156 

evaluated. The details of the laboratory analysis are shown in the Supplementary 157 

Materials. 158 

 159 

[Table 1 inserts here] 160 

[Table 2 inserts here] 161 

 162 

2.3. QMRA 163 

The pathogen of concern in this study was Staphylococcus aureus bioaerosol, which is 164 

the most prevalent airborne pathogenic bacterium in the indoor toilet environment. The 165 

highest levels of bioaerosol occur after toilet flushing. This condition can induce 166 

intestinal flora dysbiosis, whose symptoms include vomiting, fever, and diarrhea [38].  167 
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Table 3 shows the parameters for QMRA calculation. An exponential dose-response 168 

model was utilized as a dose infection model for QMRA [39, 40]. The risk 169 

characterization is based on the dose response model. The annual infection health risk 170 

level recommended by the U.S. EPA (2005) and the DALYs recommended by the WHO 171 

(2008) were used to assess the health risks [41]. Monte Carlo simulation was utilized to 172 

create a probabilistic based risk model [42]. With over 10,000 iterations, output 173 

parameters (P(a)inf and DB) were calculated such that the distributions can reach a stable 174 

state [29, 43]. The details of the QMRA calculation process and the Monte Carlo 175 

Simulation analysis are shown in the Supplementary Materials. 176 

 177 

[Table 3 inserts here] 178 

 179 

3. Results and discussion  180 

3.1. Bioaerosol concentration 181 

Table 4 shows the Staphylococcus aureus bioaerosol concentrations under various 182 

ventilation scenarios from 0 min to 35 min after flushing. The bioaerosol concentrations 183 

significantly increased after pressing the flush button in all ventilation scenarios. At the 184 

initial phase (0 min), the maximum concentration of bioaerosol (855.15±84.81 CFU/m3) 185 

was observed in the poor ventilation scenario given the poor airflow condition [44, 45]. 186 

This outcome was affected by the high average relative humidity in the poor ventilation 187 

scenario (Table 2), which may contribute to the retarded bioaerosol die-off [46]. 188 

Meanwhile, the minimum concentration (466.43±49.47 CFU/m3) was found in the 189 

combined natural and mechanical ventilation scenario due to the combined effect of 190 
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natural and mechanical ventilations, which can promote a strong airflow condition [47, 191 

48]. The high airflow can decrease the relative humidity, which may affect the 192 

survivability of bioaerosol bacteria [49]. 193 

Furthermore, the bioaerosol concentration in the natural ventilation scenario was 194 

comparably 1.1 times higher than that in the mechanical ventilation scenario at the initial 195 

phase. This finding indicates that a mechanical ventilation scenario can ensure a specified 196 

level of air exchange, which affects the indoor relative humidity by employing fan-forced 197 

airflow diffusion via a duck work and dilute the contaminated air [50]. 198 

A decreasing trend in the concentration of bioaerosol was generally observed in all 199 

ventilation scenarios over time. After flushing, the concentration of bioaerosol in the 200 

poor, mechanical, natural, and combined natural and mechanical ventilation scenarios 201 

was considerably reduced by 90.08%, 89.89%, 89.90%, and 89.39%, respectively 202 

(Supplement Materials Fig. 1). These observations are attributed to surface evaporation, 203 

inertia-gravitational settling, and the natural decay rate of bioaerosol related to 204 

temperature and relative humidity and affected by the high flow of ventilation scenarios 205 

and time passage for air dilution [51]. Moreover, the high airflow and time passage could 206 

affect more on air dilution, which affecting the survivability of bioaerosol bacteria. In 207 

addition, the indoor toilet environment may also be affected by the outside environment. 208 

However, in this study as a limitation, we assumed that the humid air only comes from 209 

the activity of toilet flushing for convenience. 210 

 In the comparison of the decreases in bioaerosol concentration ratio over time, the 211 

mechanical ventilation scenario showed a higher decreasing ratio than the natural 212 

ventilation scenario (Supplement Materials Fig. 1). This result was due to the low relative 213 

humidity caused by mechanical ventilation in the indoor toilet (Table 2). Which can 214 

reduce surface evaporation, increase the natural decay rate [52], and remove or dilute the 215 
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bioaerosol with a constant airflow ventilation rate [53]. Meanwhile, natural ventilation, 216 

which has an unstable airflow, is based on minor variations between pressures or 217 

humidity within and outside the indoor bidet toilet [54]. Thus, mechanical ventilation can 218 

disturb the airflow much more potently than natural ventilation [55]. 219 

Furthermore, the bioaerosol-concentration decrease ratio in the poor ventilation 220 

scenario was lower than that in the combined natural and mechanical ventilation scenario 221 

(Supplement Materials Fig. 1). This result was due to the nearly constant temperature. 222 

The maximum relative humidity was observed in the poor ventilation scenario and the 223 

minimum relative humidity in the combined ventilation scenario (Table 2). The combined 224 

ventilation scenario may ventilate and eliminate humidity [56]. However, it also depends 225 

on the settings of mechanical ventilation and window openings. While, in the poor 226 

airflow conditions, the high relative humidity level in poor ventilation scenario led to a 227 

low bioaerosol-concentration decrease ratio (Supplement Materials Fig. 1). A high 228 

relative humidity can reduce the bioaerosol decay rate and protect bioaerosol survival for 229 

an extended period [57].  230 

 231 

[Table 4 inserts here] 232 

  233 

3.2. Size distribution of bioaerosol particles  234 

Fig. 2 demonstrates the size distribution of Staphylococcus aureus bioaerosol. For all 235 

evaluated ventilation scenarios (Fig. 2), the particle size distribution results indicated that 236 

the peak proportion of bioaerosol particle size distribution was generally in the size range 237 

of respirable particle stages 3 (3.3–4.7 μm), 4 (2.1–3.3 μm), and 5 (1.1–2.1 μm). The 238 

respirable bioaerosol particles can be inhaled and deposited in the respiratory tract and 239 
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deeply deposited in the lungs, which are the most common routes of exposure to 240 

bioaerosol particles [58]. Furthermore, at 0 min after flushing, the particle size 241 

percentage of respirable particles approximately increased for all ventilation scenarios 242 

(Fig. 2). A similar study reported that flushing toilets releases bioaerosols, with a 243 

significant proportion of the particles being less than 3 µm in diameter [59]. In addition, 244 

the bioaerosol particles can disintegrate into smaller fractions, either due to the release 245 

mechanisms of a toilet flushing or during the sampling of the six-stage Andersen 246 

impactor [60]. 247 

A maximum respirable particle size percentage was observed in the poor ventilation 248 

scenario (Fig. 2a) due to poor airflow condition and high relative humidity [61]. The high 249 

relative humidity proved a well hospitable environment for the survival of respirable 250 

bioaerosol particles [62]. At 0–20 min after flushing, the percentage of respirable size 251 

particles was as high as 73% in the poor ventilation scenario (Fig. 2a). However, after 252 

flushing 20–35 min, a decreasing trend was noticed probably because of the air dilution 253 

effects of the accelerated settling down with inertia-gravity or with the passage of time 254 

[14]. By contrast, the minimum respirable particle size percentage was recorded in the 255 

combined natural and mechanical ventilation scenario (Fig. 2d). After flushing 0–35 min, 256 

a decreasing trend was observed. Given the combined effect of natural and mechanical 257 

ventilation, a strong airflow infiltrated the respirable particles and decreased the relative 258 

humidity which may inactivate bioaerosol and increase its natural decay rate [63].    259 

In the comparison of the two types of ventilation, the percentage of the respirable 260 

particles of bioaerosol in the natural ventilation scenario (Fig. 2c) was higher than that in 261 

the mechanical ventilation scenario (Fig. 2b). For the mechanical ventilation scenario 262 

(Fig. 2b), 0–15 min after flushing, the percentage of respirable particles of bioaerosol 263 

showed a minor variation, whereas at 15–35 min after flushing, a remarkable reduction in 264 
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rate of respirable particles was perceived. However, in the natural ventilation scenario 265 

(Fig. 2c), at 0–25 min after flushing, the respirable bioaerosol particle percentage 266 

remained high and was nearly constant but after flushing 30–35 min, a decreasing rate 267 

was observed.  268 

 269 

[Fig. 2 inserts here] 270 

 271 

3.3. Annual probability of infection 272 

The P(a)inf for the health risks of bioaerosol after flushing 0–35 min under different 273 

ventilation scenarios are shown in Fig. 3 and Supplementary Materials Tables 2 and 3. 274 

The health infection risk of an adult male was consistently higher in each exposure 275 

ventilation scenario than that of the remaining exposed persons (adult female, elder male, 276 

and elder female). Breathing rate is one of the core aspects that distinctly affect the health 277 

risk [28, 64], and the adult male inhaled breathing rate was significantly higher than that 278 

of the other exposed persons [65] shown in Table 3.  279 

The health infection risk varied with time for all exposed persons after flushing 0–15 280 

min (Fig. 3 and Supplementary Materials Table 2 and 3); the infection risk in all 281 

ventilation scenarios was above the U.S. EPA benchmark and unacceptable. However, at 282 

35 min after flushing, the infection risk of all exposed persons in all ventilation scenarios 283 

satisfied the benchmark and was tolerable. The exception was for the adult male under 284 

conservative estimate in the poor ventilation scenario (Fig. 3a). These results were 285 

obtained because the health risk assessment is primarily dependent on the concentration 286 

of bioaerosols [66, 67], and the concentrations largely decreased after flushing 35 min 287 

(Table 4). However, for the exception condition, a poor ventilation scenario will not 288 
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inactivate the bioaerosol concentration because the window is closed, and the air exhaust 289 

is turned off [68]; thus, the health infection risk of an adult male still exceeded the 290 

benchmark under the worst case scenario (Fig. 3a). 291 

Comparing the health infection risks in various ventilation scenarios, a high health 292 

infection risk was observed for all exposed persons in the poor ventilation scenario (Fig. 293 

3a), and a low value was recorded in the combined natural and mechanical ventilation 294 

scenario (Fig. 3d). Therefore, well ventilation (e.g. open window or turn on air exhaust) 295 

should be used as an appropriate control strategy for lowering the health infection risk to 296 

an acceptable level [69]. After flushing 20–25 min in a poor ventilation scenario (Fig. 3a), 297 

the health infection risk for all exposed persons was intolerable. However, at 30 min after 298 

flushing, the health infection risk of the adult female, elder male, and elder female was 299 

tolerable under the optimistic estimate. In addition, the health infection risk of the adult 300 

male was still over the benchmark. By contrast, for the combined effect of natural and 301 

mechanical ventilation scenario (Fig. 3d), the adult male at 25 min after flushing and 302 

adult female at 20 min to 25 min after flushing satisfied the benchmark under an 303 

optimistic estimate. The health infection risks of elder male and female at 20–25 min 304 

after flushing were almost in the same order of magnitude as the benchmark but still over 305 

the benchmark under the conservative estimate. Moreover, at 30 min after flushing, the 306 

health infection risk of adult male was endurable under the optimistic estimate. 307 

Furthermore, all exposed persons were generally below the benchmark except for those 308 

of adult female and elder male under conservative estimates.  309 

The health infection risk for all exposed persons to the mechanical ventilation scenario 310 

(Fig. 3b) was lower than that for the natural ventilation scenario (Fig. 3c). Thus, in the 311 

mechanical ventilation scenario (Fig. 3b), at 20 min after flushing, the health infection 312 

risk for adult male was above the benchmark, whereas that for the rest of all exposed 313 
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persons under optimistic estimate was below the benchmark. At 25–30 min after flushing, 314 

the health infection risks for all exposed persons were almost in the same order of 315 

magnitude. Therefore, the health infection risk of adult males was acceptable under the 316 

best case scenario. The health infection risks of the remaining exposed persons were 317 

generally below the benchmark except for that under conservative estimates. On the other 318 

hand, in the natural ventilation scenario (Fig. 3c), at 20–25 min after flushing, the health 319 

infection risk of all exposed persons was intolerable except for that of the elder female 320 

under the optimistic estimate. At 30 min after flushing, the health infection risk of adult 321 

male satisfied the benchmark under the optimistic estimate, but those of the remaining 322 

exposed persons were generally below the benchmark, except for the adult female under 323 

the conservative estimate.  324 

 325 

[Fig. 3 inserts here] 326 

 327 

3.4. Diseases burden 328 

Fig. 4 and Supplementary Materials Table 4 and 5 show the DB for the health risk of 329 

bioaerosol at 0–35 min after flushing under different ventilation scenarios. The 330 

estimations of P(a)inf and DB results were nearly identical in various ventilation scenarios. 331 

However, at 20 min to 35 min after flushing in all ventilation scenarios for all exposed 332 

persons, the disease health burdens were bearable and below the recommended DB 333 

benchmark by the WHO. The exception was for the adult male after flushing 20 min in 334 

the poor ventilation scenario (Fig. 4a); the value was over the benchmark under 335 

conservative estimate. 336 
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The disease health burdens in poor ventilation scenario (Fig. 4a) for all exposed 337 

persons at 0–5 min after flushing were unbearable except for adult female, elder male, 338 

and elder female, whose burden, at 5 min after flushing, satisfied the benchmark under 339 

optimistic estimate. However, at 10 min after flushing, the burden results changed 340 

significantly due to the variation in bioaerosol concentration (Table 4). Therefore, given 341 

the high breathing rate (Table 3), the burdens of the adult male under optimistic estimate 342 

were below the benchmark, whereas the values for the rest of all exposed persons 343 

generally satisfied the benchmark except under conservative estimates. Furthermore, the 344 

results of burdens revealed no significant differences between elder males and females. 345 

Their burdens were in the same order of magnitude in all ventilation scenarios because 346 

the breathing rates of elder males and females are almost the same (Table 3). At 15 min 347 

after flushing, the burdens of adult male and female were generally over the benchmark 348 

under conservative estimates, whereas those for the other exposed persons were below 349 

the benchmark in all estimates.  350 

Nevertheless, referring to the combined natural and mechanical ventilation scenario 351 

(Fig. 4d), after flushing 0 min, the disease health burden of the adult male was 352 

intolerable, whereas that of the remaining exposed persons satisfied the benchmark under 353 

the optimistic estimate. At 5 min after flushing, the burden of adult males satisfied the 354 

benchmark under optimistic estimate, and those for the remainder of all exposed persons 355 

were below the benchmark except for the adult female under conservative estimates. At 356 

10 min after flushing, the burden of the adult male was unbearable under conservative 357 

estimates, whereas those for the remaining exposed persons were below the benchmark. 358 

In the mechanical ventilation scenario (Fig. 4b), at 0 min after flushing, the disease 359 

health burden of the adult male was one order of magnitude over the benchmark, whereas 360 

those for the remaining exposed persons satisfied the benchmark under the optimistic 361 
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estimate. At 5 min after flushing, the burden of the adult male was bearable under the 362 

optimistic estimate, whereas those for the other exposed persons satisfied the benchmark 363 

except those for adult female and elder male under conservative estimates. However, 364 

after flushing 10 min, the burden of adult males was unbearable under conservative 365 

estimates, whereas that for the remaining exposed persons was below the benchmark.  366 

Furthermore, in the natural ventilation scenario (Fig. 4c), after flushing 0 min, the 367 

disease health burden of all exposed persons was above the benchmark except for the 368 

elder male and female under optimistic estimates. After flushing 5 min, the adult male 369 

and female burdens were endurable under optimistic estimates, whereas those for the 370 

elder male and female were over the benchmark under conservative estimates. After 371 

flushing 10 min, the burden of an adult male was endurable based on the benchmark 372 

under optimistic estimate, whereas those for the other exposed persons were below the 373 

benchmark except for adult female and elder male under conservative estimates. 374 

Furthermore, after flushing 15 min, the burden was bearable only for the adult male under 375 

conservative estimates. 376 

However, the discussion about disease health burden in this study only presents the 377 

potential impact that a particular health risk exists in the indoor toilet environment rather 378 

than setting compulsory guidelines for public health protection or decision making in real 379 

life. 380 

 381 

[Fig. 4 inserts here] 382 

 383 
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4. Conclusion 384 

At the initial phase, the highest and lowest bioaerosol concentrations were found in the 385 

poor and combined natural and mechanical ventilation scenarios. Furthermore, the 386 

bioaerosol concentration in the natural ventilation scenario was 1.1 times higher than that 387 

in the mechanical ventilation scenario. However, after flushing, a significant decreasing 388 

trend was generally observed in the bioaerosol concentrations in all ventilation scenarios. 389 

The peak proportion of bioaerosol particle size distribution was generally observed in the 390 

size range of respirable particles, and it increased under all ventilation scenarios after 391 

flushing 0 min. The maximum respirable particle size percentage was recorded in the 392 

poor ventilation scenario.  The percentage of the respirable bioaerosol particle in the 393 

natural ventilation scenario was higher than that in the mechanical ventilation scenario. 394 

The health risks (health infection risk and disease health burdens) of adult male were 395 

consistently higher in each exposure ventilation scenarios compared with those of the 396 

other exposed persons. Furthermore, for all exposed persons in various ventilation 397 

scenarios, the maximum health risk was obtained in the poor ventilation scenario, and the 398 

minimum was observed in the combined ventilation scenario. The health risks for all 399 

exposed persons in the mechanical ventilation scenario were lower than those for the 400 

natural ventilation scenario. However, the health infection risk varied with time for all 401 

exposed persons.   402 

The present research provided novel data and enhanced the knowledge of the emission 403 

characteristics of bioaerosol and its health implication on exposed persons after toilet 404 

flushing with the passage of time quantitatively in various ventilation scenarios. The 405 

QMRA framework used in this study can be an effective tool to identify the implication 406 

of human health risks. For further research, sensitivity analysis is recommended to 407 

quantify the contributions of inputted variable parameters to health risk assessment and to 408 
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determine the most influential parameter for the Monte Carlo simulation-based QMRA 409 

framework. 410 
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Table 1 Exposure scenarios 

Items Exposure scenarios 

Ventilation scenarios 

Closed window/turned off air exhaust (poor ventilation scenario), closed window/turned on air 

exhaust (mechanical ventilation scenario), open window/turned off air exhaust (natural 

ventilation scenario), open window/turned on air exhaust (combined natural and mechanical 

ventilation scenario) 

Exposure time per day  5 min/day 

Exposed position Sitting posture (sampling height 0.8 m) 

Exposure site Bidet toilet 

Exposed persons 
Adult male, adult female, elder male, and elder female 

The adult is between 18 and 60. The elder is above 60. 

Exposure frequency per 

year 
365 days (for all exposed person) 
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Table 2 Mean±SD of temperature and relative humidity during sampling campaign for each ventilation scenario 

Meteorological factors 
Closed window/turned 

off air exhaust 

Closed window/turned 

on air exhaust 

Open window/turned 

off air exhaust 

Open window/turned 

on  air exhaust 

Temperature (°C) 

Maximum 14.6 13.8 13.4 13.6 

Minimum 12.1 11.3 10.5 10.2 

Median 13.1 12.9 12.4 12.7 

𝑥̅ ± 𝑠 13.3±1.3 12.7±1.3 12.1±1.5 12.2±1.8 

Relative humidity (%) 

Maximum 78.1 60.1 65.3 59.1 

Minimum 73.1 52.4 58.1 52.3 

Median 75.5 54.3 62.4 55.3 

𝑥̅ ± 𝑠 75.6±2.5 55.6±4.0 61.9±3.6 55.6±3.4 
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Table 3 Parameters for quantitative microbiological risk assessment calculation 

Parameters Unit Values Reference 

EC: Exposure bioaerosol 

concentration 
CFU/m³ Table 4 - 

BR: Breathing rate m³/day 

Elderly, age >60 (male: 13.65, 

female: 12.65) 

Adults, age 18~60 (male: 18.65, 

female: 14.80） 

[65] 

T: Exposure time in an exposure per 

day 
h/day Table 1 - 

AG: Aerosol ingestion rate 0.5 % 

Size distribution of bioaerosol 

particles for the sixth stage of the 

Andersen six-stage impactor 

Fig. 2 

Exposure dose 

d=EC×BR×T×AG  
CFU/day Calculation [64] 

Daily probability of infection 

Pi(d)=1-e-dk  
 k=8.05×10-8 [39] 

Annual probability of infection 

Py=1-(1-Pi(d))
n
  

pppy 
n means exposure frequency  

n=365 
 [64] 

Disease burden 

DB=Py×HB  
DALYs pppy Health burden (HB)=0.0455  [29]  
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Table 4 Mean±SD of Staphylococcus aureus bioaerosol concentration (CFU/m3) 

Ventilation scenarios 

Before 

attending 

toilet 

The 8 different time sampling periods 

After flushing 

-5 min* 0 min** 5 min 10 min 15 min 20 min 25 min 30 min 35 min 

Closed window/turned off air exhaust (Poor 

ventilation scenario) 
10.60±0.41 855.15±10.82 685.51±7.96 494.70±5.54 416.96±3.87 339.22±3.74 233.22±1.76 176.68±1.17 84.81±0.63 

Closed window/turned on air exhaust 

(Mechanical ventilation scenario) 
7.06±0.40 628.98±5.85 480.57±4.46 332.16±3.25 254.42±2.61 162.54±0.98 134.28±0.75 113.07±0.52 63.60±0.55 

Open window/turned off air exhaust (Natural 

ventilation scenario) 
9.18±0.40 699.65±6.25 544.17±4.79 459.36±3.43 367.49±1.75 289.75±1.94 204.95±0.98 127.21±0.63 70.67±0.52 

Open window/turned on air exhaust (Combined 

natural and mechanical ventilation scenario) 
5.65±0.32 466.43±3.29 360.42±2.17 282.69±2.25 197.88±1.37 127.21±0.63 120.14±0.98 98.94±1.03 49.47±0.41 

* “-5 min” means 5 min before attending the toilet. 

** “0 min” means the moment of pressing the flush button.  
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 1 

Fig. 1 Indoor bidet toilet description 2 
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 4 

Fig. 2 Proportion of size distribution of Staphylococcus aureus bioaerosol particles in various 5 

ventilation scenarios: (a) closed window/turned off air exhaust (poor ventilation scenario), (b) 6 

closed window/turned on air exhaust (mechanical ventilation scenario), (c) open window/turned 7 

off air exhaust (natural ventilation scenario), and (d) open window/turned on air exhaust 8 

(combined natural and mechanical ventilation scenario). 9 

The 8 different time sampling periods: A= 0 minute after flushing (the moment of pressing the 10 

flush button), B=5 minute after flushing, C=10 minute after flushing, D=15 minute after 11 

flushing, E=20 minute after flushing, F=25 minute after flushing, G=30 minute after flushing, 12 

H=35 minute after flushing. 13 
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 15 

Fig. 3 Box-and-whiskers diagram showing the annual infection risk under various ventilation 16 

scnarios: (a) closed window/turned off air exhaust (poor ventilation scenario), (b) closed 17 

window/turned on air exhaust (mechanical ventilation scenario), (c) open window/turned off air 18 

exhaust (natural ventilation scenario), and (d) open window/turned on air exhaust (combined 19 

natural and mechanical ventilation scenario).  20 

The bottom and top of the box represent the first (25th percentile) and third quartiles (75th 21 

percentile), respectively. The band inside the box represents the second quartile (median), and 22 

the tetragon inside the box denotes the average value. The bottom and top of the whiskers 23 

respectively represent the 5th (optimistic estimate in best case scenario) and 95th percentile 24 

values (conservative estimate in the worst case scenario). 25 

 26 

 27 

 28 
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 29 

Fig. 4 Box-and-whiskers diagram showing the DB under various ventilation scnarios: (a) closed 30 

window/turned off air exhaust (poor ventilation scenario), (b) closed window/turned on air 31 

exhaust (mechanical ventilation scenario), (c) open window/turned off air exhaust (natural 32 

ventilation scenario), and (d) open window/turned on air exhaust (combined natural and 33 

mechanical ventilation scenario). 34 

The bottom and top of the box represent the first (25th percentile) and third quartiles (75th 35 

percentile), respectively. The band inside the box represents the second quartile (median), and 36 

the tetragon inside the box denotes the average value. The bottom and top of the whiskers 37 

respectively represent the 5th (optimistic estimate in best case scenario) and 95th percentile 38 

values (conservative estimate in the worst case scenario). 39 
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>Poor ventilation scenario has the highest bioaerosol concentration >Health risks of 

adult male were consistently higher than other exposed persons >Health risks in 

mechanical were lower than that in natural ventilation scenario >Health infection risk 

unsatisfied U.S. EPA benchmark after flushing from 0 to 15 min >Disease burdens 

were below the WHO benchmark after flushing from 20 to 35 min 
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